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2d Gravity With Torsion, Oriented Matroids And 2+2 Dimensions
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We find a link between oriented matroid theory and 2d gravity with torsion. Our considerations may be useful
in the context of noncommutative phase space in a target spacetime of signature (2+2) and in a possible theory
of gravity ramification.
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As it is known, the theory of matroids is a fascinating topic
in mathematics [1]. Why should not be also interesting in
some scenarios of physics? We are convinced that matroid
theory should be an essential part not only of physics in gen-
eral, but also of M-theory. In fact, it seems that the duality
concept that brought matroid theory from a matrix formal-
ism in 1935, with the work of Whitney (see Ref. [2] and
references therein), is closely related to the duality concept
that brought M-theory from string theory in 1994 (see Refs.
[3-11] for connections between matroids and various sub-
jects of high energy physics and gravity). These observa-
tions are some of the main motivations for the proposal [12]
of considering oriented matroid theory as the mathematical
framework for M-theory. In this paper, we would like to re-
port new progress in our quest of connecting matroid theory
with different scenarios of high energy physics and gravity.
Specifically, we find a connection between matroids and 2d
gravity with torsion and 2 + 2 dimensions. In the route we
find many new directions in which one can pursue further re-
search, such as tame and wild ramification [13], nonsymmet-
ric gravitational theory (see Ref. [14] and references therein)
and Clifford algebras (see Ref. [15] and references therein).
We believe that our results may be of particular interest not
only for physicists but also for mathematicians.

In order to achieve our goal we first show that a 2× 2-
matrix function in two dimensions can be interpreted in
terms of a metric associated with 2d gravity with torsion.
Let us start by writing a complex number z in the traditional
form [16]

z = x+ iy, (1)

where x and y are real numbers and i2 =−1. However, there
exist another, less used, way to write a complex number,
namely [17] (

x y
−y x

)
. (2)

In this case the product of two complex numbers corresponds
to the usual matrix product. These two representations of
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complex numbers can be linked by writing (2) as(
x y
−y x

)
= x
(

1 0
0 1

)
+ y
(

0 1
−1 0

)
. (3)

Since
(

0 1
−1 0

)(
0 1
−1 0

)
= −

(
1 0
0 1

)
one finds from

(1) and (3) that the matrix
(

0 1
−1 0

)
can be identified with

the imaginary unit i.

It turns out that the matrices
(

1 0
0 1

)
and

(
0 1
−1 0

)
can

be considered as two of the matrix bases of general real 2×2
matrices which we denote by M(2,R). In fact, any 2× 2
matrix Ω over the real can be written as

Ω =
(

a b
c d

)
= x
(

1 0
0 1

)
+ y
(

0 1
−1 0

)

+r
(

1 0
0 −1

)
+ s
(

0 1
1 0

)
,

(4)

where

x = 1
2 (a+d), y = 1

2 (b− c),

r = 1
2 (a−d), s = 1

2 (b+ c).
(5)

Let us rewrite (4) in the form

Ωi j = xδi j + yεi j + rηi j + sλi j, (6)

where

δi j ≡
(

1 0
0 1

)
, εi j ≡

(
0 1
−1 0

)
,

ηi j ≡
(

1 0
0 −1

)
, λi j ≡

(
0 1
1 0

)
.

(7)

Considering this notation, we find that (1) becomes

zi j = xδi j + yεi j. (8)

Comparing (6) and (8), we see that (8) can be obtained from
(6) by setting r = 0 and s = 0. If ad−bc 6= 0, that is if detΩ 6=
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0, then the matrices in M(2,R) can be associated with the
group GL(2,R). If we further require ad−bc = 1, then one
gets the elements of the subgroup SL(2,R). It turns out that
this subgroup is of special interest in 2t physics [18-20].

Now, consider the following four functions
F(x,y,r,s),G(x,y,r,s),H(x,y,r,s) and Q(x,y,r,s), and
construct the matrix

γ =
(

F G
H Q

)
. (9)

By setting

u = 1
2 (F +Q), v = 1

2 (G−H),

w = 1
2 (F−Q), ξ = 1

2 (G+H),
(10)

we get that γ can be written as

γ = u
(

1 0
0 1

)
+ v
(

0 1
−1 0

)
+w

(
1 0
0 −1

)

+ξ

(
0 1
1 0

)
,

(11)

or

γi j = uδi j + vεi j +wηi j +ξλi j. (12)

We can always decompose the matrix γi j in terms of its sym-
metric gi j = g ji and antisymmetric Ai j =−A ji parts. In fact,
we have

γi j(x,y,r,s) = gi j(x,y,r,s)+Ai j(x,y,r,s). (13)

From (11) or (12) we find that we can write gi j(x,y,r,s) in
the form

gi j(x,y,r,s) = u(x,y,r,s)
(

1 0
0 1

)

+w(x,y,r,s)
(

1 0
0 −1

)
+ξ(x,y,r,s)

(
0 1
1 0

)
,

(14)

while

Ai j(x,y,r,s) = v(x,y,r,s)
(

0 1
−1 0

)
. (15)

An interesting possibility emerges by dimensional reduc-
tion of the variables r and s, that is by setting in (13) r = 0
and s = 0. We have

γi j(x,y) = gi j(x,y)+Ai j(x,y), (16)

with

gi j(x,y) = u(x,y)δi j +w(x,y)ηi j +ξ(x,y)λi j (17)

and

Ai j(x,y) = v(x,y)εi j. (18)

Of course, according to (8) the expressions (16), (17) and
(18) can be associated with a complex structure. This ob-
servation can be clarified by using isothermal coordinates in
which w = 0 and ξ = 0. In this case (16) is reduced to

fi j(x,y) = u(x,y)δi j + v(x,y)εi j, (19)

where we wrote γi j(x,y)→ fi j(x,y) in order to emphasize
this reduction. In the traditional notation, (19) becomes
f (x,y) = u(x,y) + iv(x,y). It turns out that the existence
of isothermal coordinates is linked to the Cauchy-Riemann
conditions for u and v, namely ∂u/∂x = ∂v/∂y and ∂u/∂y =
−∂v/∂x [16].

One of the main reason for the above discussion comes
from the question: is it possible to identify the symmetric
matrix gi j(x,y) with 2d gravity? Assuming that this is the
case the next question is then: what kind of gravitational
theory describes γi j(x,y)? In what follows we shall show
that γi j(x,y) can be identified not only with a nonsymmetric
gravitational theory in two dimensions but also with 2d grav-
ity with torsion. First, consider the covariant derivative of
the metric tensor

5kgi j = ∂kgi j−Γ
l
kigl j−Γ

l
k jgil = 0. (20)

Here, we assume that the symbols Γl
ki are not necessarily

symmetric in the two indices k and i. In fact, if we define
the torsion as T l

ki ≡ Γl
ki−Γl

ik, one finds that the more general
solution of (20) is

Γki j =
1
2
(∂kg ji +∂ig jk−∂ jgki)−

1
2
(Tk ji +Ti jk−Tki j), (21)

where Γki j = Γl
kigl j and Tki j = T l

kigl j.
On the other hand, if we consider the expression

1
2
(∂kγ ji +∂iγ jk−∂ jγik), (22)

by substituting (16) into (22) one gets

1
2 (∂kγ ji +∂iγ jk−∂ jγik) = 1

2 (∂kg ji +∂ig jk−∂ jgki)

+ 1
2 (∂kA ji +∂iA jk−∂ jAik).

(23)

Comparing (23) and (21) one sees that if one sets Tk ji = ∂iAk j
the expression (23) can be identified with the connection Γki j
which presumably describes 2d gravity with torsion. Since
Ai j can always be written as (18) we discover that (23) yields

Γki j =
1
2
(∂kg ji +∂ig jk−∂ jgki)+

1
2
(v,kε ji + v,iε jk− v, jεik).

(24)
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Here, we used the notation ∂kv = v,k.
The curvature Riemann tensor can be defined as usual

R m
ki j = ∂iΓ

m
k j−∂ jΓ

m
ki +Γ

m
niΓ

n
k j−Γ

m
n jΓ

n
ki. (25)

The proposed gravitational theory, which may be interesting
in string theory, can have a density Lagrangian L of the form
L ∼ R 2 +Λ [21], where Λ is a constant. In this context, we
have proved that it makes sense to consider the nonsymmet-
ric metric of the form (16)-(18) as a 2d gravity with torsion.

From the point of view of complex structure there are a
number of interesting issues that arises from the above for-
malism. One may be interested, for instance, in considering
the true degrees of freedom for the metric gi j. In this case
one may start with the Teichmuller space associated with the
metric gi j and then to determine the Moduli space of such a
metric [22]. Another possibility is to consider similarities. In
this case one may be interested to associate with the metric
g ji either the Riemann-Roch theorem [23] or the tame and
wild ramification complex structure [13]. In the later case
one may assume that the principal part of the metric gi j looks
like

gi j(x,y) = (
Tn

zn +
Tn−1

zn−1 + ...+
T1

z
)δi j. (26)

In this case the similarities can be identified with solitons
associated with black holes. In this scenario our constructed
route to 2d gravity with torsion provides a bridge which may
bring many ideas from complex structure to 2d gravity with
torsion and vice versa.

Let us now study some aspects of the above formalism
from the point of view of matroid theory. Consider the matrix

V A
i =

(
1 0 0 1
0 1 −1 0

)
, (27)

with the index A taking values in the set

E = {1,2,3,4}. (28)

It turns out that the subsets {V1,V2}, {V1,V3}, {V2,V4}
and {V3,V4} are bases over the real of the matrix (27). One
can associate with these subsets the collection

B = {{1,2},{1,3},{2,4},{3,4}}, (29)

which can be understood as a family of subsets of E. It is
not difficult to show that the pair M = (E,B) is a 2-rank
self-dual matroid. The fact that we can express M in the
matrix form (27) means that this matroid is representable (or
realizable) [1]. Moreover, one can show that this matroid is
graphic and orientable. In the later case the corresponding
chirotope [1] is given by

χ
AB = ε

i jV A
i V B

j . (30)

Thus, we get, as nonvanishing elements of the chirotope χAB,
the combinations

12+, 13−, 24−, 34+ . (31)

The relation of this matroid structure with of our previous
discussion comes from the identification {V1,V2} → δi j,
{V1,V3} → ηi j, {V2,V4} → λi j and {V3,V4} → εi j. The
signs in (31) correspond to the determinants of the matri-
ces δi j, ηi j, λi j and εi j, which can be calculated using (30).
Therefore, what we have shown is that the bases of M(2,R)
as given in (4) (or (7)) admit an oriented matroid interpreta-
tion. It may be of some interest to consider the weak map-
ping B → Bc with

Bc = {{1,2},{3,4}}, (32)

leading to the reduced pair Mc = (E,Bc). When the local
structure is considered as in (14)-(18), one needs to rely in
the matroid fiber bundle notion (see Refs. [24] and [25] and
references therein). Therefore, we have found a link which
connect matroid fiber bundle with 2d gravity with torsion.

It is worth mentioning the following observations. It
is known that the fundamental matrices δi j,ηi j,λi j and εi j
given in (7) not only form a basis for M(2,R) but also deter-
mine a basis for the Clifford algebras C(2,0) and C(1,1). In
fact one has the isomorphisms M(2,R) ∼C(2,0) ∼C(1,1).
Moreover, one can show that C(0,2) can be constructed us-
ing the fundamental matrices (7) and Kronecker products. It
turns out that C(0,2) is isomorphic to the quaternion algebra
H. Since all the others C(a,b)’s can be constructed from the
building blocks C(2,0), C(1,1) and C(0,2), this means that
our connection between oriented matroid theory and M(2,R)
also establishes an interesting link with the Clifford algebra
structure (see Ref. [15].and references therein).

Let us make some final remarks. The above links also ap-
ply to the subgroup SL(2,R) which is the main object in 2t
physics. In this case it is known that noncommutative field
theory of 2t physics [18-20] (see also Ref. [26]) contains
a fundamental gauge symmetry principle based on the non-
commutative group U?(1,1). This approach originates from
the observation that a world line theory admits a Lie algebra
sl?(2,R) gauge symmetry acting on phase space [18]. In this
context, consider the coordinates q and p in the phase-space.
The Poisson bracket

{ f ,g}=
∂ f
∂qa

∂g
∂pa
− ∂ f

∂pa

∂g
∂qa , (33)

can be written as

{ f ,g}= εi jη
ab ∂ f

∂qa
i

∂g
∂qb

j
. (34)

where qa
1 ≡ qa and qa

2 ≡ pa, with a and b running from 1 to n.
It worth mentioning that the expression (34) is very similar to
the the definition of a chirotope (see Ref. [8] and references
therein).

Recently, a generalization of (34) was proposed [27],
namely
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{ f ,g}= (gi jΩ
ab + εi jη

ab)
∂ f
∂qa

i

∂g
∂qb

j
. (35)

Here, Ωab is skew-simplectic form defined in even dimen-
sions. In particular, in four dimensions Ωab can be chosen
as

Ωab =

 0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 . (36)

Here, by choosing ηab = diag(−1,1,−1,1) we make con-
tact with (2+2)-dimensions which is the minimal 2t physics
theory (see Refs. [28–31]).

Let us write the factor in (35) gi jΩ
ab + εi jη

ab in the form

g′i j + εi jη, (37)

with g′i j = gi jΩ. We recognize in (37) the typical form (18)
for a complex structure. This proves that oriented matroid
theory is also connected not only with (2 + 2)-physics but
also with noncommutative geometry.

An alternative connection with 2t physics can be obtained
by considering the signature ηab = diag(1,1,−1,−1), and
its associated metric:

ds2 = (dx1)2 +(dx2)2− (dx3)2− (dx4)2. (38)

In fact, by defining the matrix

xi j =
(

x1 x3

x4 x2

)
, (39)

it can be seen that (38) can be expressed as

ds2 = dxi jdxkl
ηikη jl , (40)

where the indices i, j,k, l run from 1 to 2 as before, and
ηi j stands for the third matrix defined in (7), namely ηi j ≡(

1 0
0 −1

)
. As before,noticing that in (38) the ”spatial” co-

ordinates x1, x2 are the elements of the main diagonal and
the ”time” coordinates x3, x4 corresponds to the main skew
diagonal in (39), xi j can be written in terms of the bases (7)
as follows:

xi j = Xδ
i j +Sε

i j +Y η
i j +T λ

i j; (41)

where we used the definitions

X = 1
2 (x1 + x2), S = 1

2 (x4− x3),

Y = 1
2 (x1− x2), T =− 1

2 (x3 + x4),
(42)

and considered the notation εi j = εklη
ikη jl and λi j =

λklη
ikη jl , where ηi j is the inverse flat 1+1 metric, and has

the same components as ηi j.

Finally, consider the three index object ηi jk with compo-
nents

η1i j = δi j; η2i j = εi j. (43)
From these expressions and (7) it can be checked that ηi jk
automatically satisfies

ηi j1 = ηi j; ηi j2 = λi j. (44)

Therefore ηi jk has the remarkable property of containing all
the matrices in (7). This means that an arbitrary matrix Ωi j
can be written as

Ωi j = xk
ηki j + yk

ηi jk, (45)

where x1 = x, x2 = y and y1 = r, y2 = s. Here, x,y,r and s
are defined in (5). Observe that ηi jk = η jik, but ηki j 6= ηk ji.
It is worth mentioning that a similar structure was proposed
in Ref. [14] in the context of nonsymmetric gravity [32].

The inverse ηi jk of ηi jk can be defined by the relation

η
i jk

ηi jl = 2δ
k
l , (46)

or

η
ki j

ηli j = 2δ
k
l . (47)

Explicity, we obtain the components

η
1i j = δ

i j; η
2i j =−ε

i j; η
i j1 = η

i j; η
i j2 =−λ

i j. (48)

Traditionally, starting with a flat space described by the
metric ηi j, one may introduce a curved metric gµν = ei

µe j
νηi j

via the zweibeins ei
µ. So, this motivate us to introduce the

three-index curved metric

gµνλ = ei
µe j

νek
λ
ηi jk. (49)

It seems very interesting to try to develop a gravitational the-
ory based in gµνλ, for at least two reasons. First, the ηi jk con-
tains the four basic matrices (7), which we proved are linked
to matroid theory. Therefore this establishes a bridge be-
tween matroids and gµνλ. Thus, a gravitational theory based
in gµνλ may provide an alternative gravitoid theory (see Ref.
[4]). Secondly, since the matrices (7) are also linked to Clif-
ford algebras, such a gravitational theory may determine spin
structures, which are necessary for supersymmetric scenar-
ios. These and another related developments will be reported
elsewhere [33].
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