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We evaluate the effective potential for the conventional linear Walecka non perturbatively up to one loop.
This quantity is then renormalized with a prescription which allows finite vacuum contributions to the three as
well as four 1PI Green’s functions to survive. These terms, which are absent in the standard relativistic Hartree
approximation, have a logarithmic energy scale dependence that can be tuned so as to mimic the effects of φ3

and φ4 type of terms present in the non linear Walecka model improving quantities such as the compressibility
modulus and the effective nucleon mass, at saturation, by considering energy scales which are very close to the
nucleon mass at vanishing density.

Keywords: Renormalization; Nuclear matter; Finite densities, Vacuum corrections; Walecka model.

1. INTRODUCTION

Quantum hadrodynamics (QHD) is an effective relativistic
quantum field theory, based on mesons and baryons, which
can be used at hadronic energy scales where the fundamen-
tal theory of strong interactions, quantum chromodynamics
(QCD), presents a highly nonlinear behavior. The Walecka
model [1] to be considered here represents QHD by means
of a Lagrangian density formulated so as to describe nucle-
ons interacting through the exchange of an isoscalar vector
meson (ω) as well as of a scalar-isoscalar meson (φ) which
is introduced to simulate intermediate range attraction due to
the s-wave isoscalar pion pairs. The original Walecka model
(QHD-I) is described by the Lagrangian density

L = ψ̄[γµ (i∂µ−gvV µ)− (M−gsφ)]ψ+
1
2
(∂µφ∂

µ
φ−m2

s φ
2)

− 1
4

FµνFµν +
1
2

m2
vVµV µ−U(φ,V )+LCT , (1)

where ψ, φ and ω denote respectively baryon, scalar and
vector meson fields (with the latter being coupled to a con-
served baryonic current). The term U(φ,V ), which describes
mesonic self interactions was set to zero in the original model
so as to minimize the many body effects while the term LCT
represents the counterterms needed to eliminate any potential
ultra violet divergences arising from vacuum computations.

It is important to recall that, roughly, counterterms are
composed by two distinct parts the first being a divergent
piece which exactly eliminates the divergence resulting from
the evaluation of a Green function at a given order in pertur-
bation theory. The second piece is composed by a finite part
which is arbitrary and can be fixed by choosing an appropri-
ated renormalization scheme [2].

The important parameters are the ratios of coupling to
masses, C2

s and C2
v , with C2

i = (giM/mi)2 which are tuned to
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fit the saturation density ρ0 = 0.193fm−3 and binding energy
per nucleon, BE = −15.75MeV [1]. However, the QHD-I
predictions for some other relevant static properties of nu-
clear matter do not agree well with the values quoted in the
literature. For example, using the Mean Field Approxima-
tion (MFA) which considers only in medium contributions
at the one loop level one obtains that, at saturation, the ef-
fective nucleon mass is M∗sat ∼ 0.56M, which is somewhat
low, while the compression modulus, K ∼ 540MeV, is too
high according to the accepted values in the literature [3–5]:
M∗sat/M∼ 0.70 to 0.80 and K ∼ 200MeV to 300 MeV. Let us
point out that the effective nuclear mass at saturation density
is not known accurately. According to the type of data and its
analysis, the effective mass is defined in different ways, and
so this mass usually is not that of the nuclear field theory,
although they might be close and related to each other.

In principle, since this is a renormalizable quantum field
theory, vacuum contributions (and potential ultra violet di-
vergences) can be properly treated yielding meaningful fi-
nite results. These contributions were first considered by
Chin [6], at the one loop level, in the so called Relativistic
Hartree Approximation (RHA) which produced a more rea-
sonable value for the effective mass, M∗sat ∼ 0.72M. How-
ever, the compression modulus remained at a high value,
K ∼ 470MeV.

One could then try to improve the situation by also con-
sidering exchange contributions since both, MFA and RHA,
consider only direct terms in a nonperturbative way. When
vacuum contributions are neglected this approximation is
known as the Hartree-Fock (HF) approximation producing
M∗sat ∼ 0.53M and K ∼ 585MeV [1]. By comparing the
results from MFA, RHA and HF one sees how vacuum ef-
fects can improve the values of M∗sat and K. Then, the natural
question is if the situation could be further improved by con-
sidering the vacuum in HF type of evaluations. The main
concern now being the difficulty to deal with overall, nested,
and overlapping type of divergences which surely arise due
to the self consistent procedure.

The complete evaluation of vacuum contributions within
direct and exchange terms was performed by Furnstahl,
Perry and Serot [7] (see Ref. [8] for an early attempt in
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which only the propagators have been fully renormalized ).
This cumbersome calculation considers the nonperturbative
evaluation and renormalization of the energy density up to
the two loop level showing the non convergence of the loop
expansion. Later, the situation has been addressed with the
alternative Optimized Perturbation Theory (OPT) which al-
lows for an easier manipulation of divergences [9]. Two loop
contributions have been evaluated and renormalized in a per-
turbative fashion with nonperturbative results further gener-
ated via a variational criterion. However, saturation of nu-
clear matter could not be achieved with the results supporting
those of Ref. [7].

Meanwhile, the compressibility modulus problem has
been circumvented by introducing some more parameters,
in the form of new couplings [10], to the original Walecka
model. One then considers U(φ,V ) appearing in Eq. (1) as

U(φ) =
κ

3!
φ

3 +
λ

4!
φ

4 , (2)

where κ = 2bMg3
s and λ = 6cg4

s . This version of QHD is
known as the nonlinear Walecka model (NLWM) and the
main role of the two additional parameters, b and c, is to
bring the compression modulus of nuclear matter and the
nucleon effective mass under control. However, one may
object to this course of action since the mesonic self inter-
actions will increase the many body effects apart from in-
creasing the parameter space. Notice also that terms like φn

(n ≥ 5) are not allowed since then, in 3+1 dimensions, one
would need to introduce coupling parameters with negative
mass dimensions spoiling the renormalizability of the origi-
nal model apart from increasing the parameter space.

Heide and Rudaz [11] have then realized that it is still pos-
sible to keep U(φ,V ) = 0 while improving both K and M∗sat.
The key ingredient in their approach is related to the com-
plete evaluation (regularization and renormalization) of di-
vergent vacuum contributions. Regularization is a formal
way to isolate the divergences associated with a physical
quantity for which many different prescriptions exist, e.g.,
sharp cut-off, Pauli-Villars, and Dimensional Regularization
(DR). Within DR, which was used by Chin, one basically
performs the evaluations in d− 2ε dimensions taking ε→ 0
at the end so that the ultra violet divergences show up as
powers of 1/ε. However, to keep the dimensionality right
when doing d→ d−2ε one has to introduce arbitrary scales
with dimensions of energy (Λ, or the related1 ΛMS). Chin
has chosen a renormalization prescription in which the fi-
nal results do not depend on the arbitrary energy scale while
Heide and Rudaz chose one in which such a dependence re-
mains, as in most QCD applications. Since the latter au-
thors also worked at the one loop level their approximation
became known as the Modified Relativistic Hartree Approx-
imation (MRHA) and their main result was to show that it
is possible to substantially improve K and M∗sat by suitably
fixing the energy scale, Λ. Moreover by choosing Λ = M the
MRHA recovers RHA. In connection with neutron stars, the

1 The relation between both scales is given by a constant term, ΛMS =√
4πe−γE Λ, where γE =−0.5772....

MRHA has been applied to the Walecka model in Refs. [12].
The dependence of QHD results on the choice of renormal-
ization conditions, which may be expected in phenomeno-
logical models, has been shown long ago (see Ref. [13] and
references therein). At the same time, it has been discussed
that approximations of the pure Walecka model are incon-
sistent leading to an unstable ground state [14] and ignoring
the usual nonlinear contributions due to renormalization car-
ries the danger to reenter this instability also in the quantum
corrected Walecka model. In principle these facts will spoil
any rigorous attempt to include vacuum corrections, in the
usual Walecka model, at arbitrarily high orders. Very often
however, this model is still being treated at the one loop level
with the MFA and the aim of the present paper is to show that
in this case the values of K and M∗sat can be improved simply
by evaluating vacuum corrections up to an energy scale very
close (but not equal) to the nucleon mass at zero density.

Therefore, even if our procedure may be spoiled at higher
orders by the facts mentioned above we believe that for it
remains a useful, and easy to implement, procedure which
improves MFA results without the need for new paremeters
in the theory. This is an important feature to be considered.
Secondly, as we shall see, models which lead to low effective
masses at saturation are not suitable for neutron stars calcu-
lations, another important application of RMF (Relativistic
Mean Field) models.

Also, one of our goals is to treat the Walecka model us-
ing a formalism which is closely related to the one used in
QCD and other modern quantum field theories. Within the
QHD model, the temperature and density are usually intro-
duced using the real time formalism employed in the orig-
inal work of Walecka. Instead, we use Matsubara’s imagi-
nary time formalism treating the divergent integrals with DR
adapted to the modified minimal subtraction renormalization
scheme MS [2] which constitute the framework most com-
monly used within QCD. To obtain the ground state energy
density, ε, we will first evaluate the effective potential (or
Landau’s free energy), F , whose minimum gives the pres-
sure, P. By choosing appropriate renormalization conditions
we generate effective three- and four-body couplings, in F ,
which are not present at the classical level. As we shall see
the numerical values of these effective couplings run with the
energy scale, ΛMS, allowing for a good tuning of K and M∗sat
which have their values improved at energy scales of about
0.92M-0.98M (M = 939MeV) while the usual RHA results
are retrieved for the choice ΛMS = M.

The MRHA proposed by Heide and Rudaz suggests that
if one seeks to minimize many-body effects in nuclear mat-
ter at saturation, the choice Λ ' M∗sat is the necessary one.
Our philosophy is slightly different and perhaps simpler to
implement. Since possible modifications in the behavior of
K and M∗ seem to be dictated by the presence of κeffφ

3 and
λeffφ

4 type of terms we shall use the Chin-Walecka renor-
malization prescription to deal with φn (n = 0,1,2) vacuum
contributions by requiring that their respective contributions
vanish at zero density (a requirement which was also adopted
within the MRHA). However, as far as the vacuum contribu-
tions related to φ3 and φ4 are concerned we advocate that one
only needs to keep the finite energy scale dependent parts in
the effective three- and four-body couplings. In this way, not
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only κeff and λeff run with ΛMS but, as we shall see, one also
retrieves the RHA at ΛMS = M.

Considering the effective potential at zero density we will
choose an appropriate renormalization prescription for this
particular model. Since our main goal is to improve K and
M∗sat by quantically renormalizing κ = 0→ κeff(ΛMS) and
λ = 0→ λeff(ΛMS) we can keep M,ms,mv as representing the
vacuum physical masses for simplicity. This choice means
that, at kF = 0, all mass parameters (M,ms,mv) represent the
effective vacuum masses and shall not run with ΛMS as op-
posed to κeff and λeff. In theories such as QCD the run-
ning of the couplings is dictated by the β function whose
most important contributions come from the so-called lead-
ing logs, e.g. ln(ΛMS/M), which naturally arise in DR evalu-
ations. The application of renormalization group (RG) equa-
tions to the effective Walecka model is beyond the scope of
our work 2. Nevertheless, our renormalization prescription
to obtain a scale dependence so as to better control K and
M∗sat is inspired by the leading logs role in the β function and
the the renormalization scheme presented here proposes that
one should preserve only the scale dependent leading logs
which appear in the expressions for κeffφ

3 and λeffφ
4. As a

byproduct, and contrary to the MRHA case, both quantities
will display the same scale dependence. Here, this approx-
imation will be called the Logarithmic Hartree Approxima-
tion (LHA). The numerical results show that the best LHA
predictions for K and M∗sat according to the literature are ob-
tained at energy scales which are only about 5% smaller than
that of the RHA, that is ΛMS ' 0.95M. This is a nice feature
since the values of the energy scale and that of the highest
mass in the spectrum are almost the same whereas in the
MRHA the optimum scale, set to be close to M∗sat is about
35% smaller than M. From the quantitative point of view,
the LHA produces better results than the MRHA as will be
shown.

The work is presented as follows. In the next section the
one loop free energy is evaluated using Matsubara’s formal-
ism. The renormalization of the vacuum contributions is dis-
cussed in Section III and the complete renormalized energy
density is presented in Section IV. Numerical results and dis-
cussions appear in Section V while our conclusions are pre-
sented in Section VI. For completeness, in the appendix, we
discuss a case in which ms does not represent the physical
mass.

2. THE FREE ENERGY TO ONE LOOP

In quantum field theories the effective potential (or Lan-
dau’s free energy), F , is defined as the generator of all one
particle irreducible (1PI) Green’s functions with zero exter-
nal momentum. The standard textbook definition (for one
field, φ) reads [2]

F (φc) =
∞

∑
n=0

Γ̃
(n)(0)φn

c , (3)

2 See Ref. [16] for a RG investigation of the Walecka model.

where we have absorbed non relevant factors of i and n! by
defining Γ̃(n)(0) = (−i)nΓ(n)(0)/n! with Γ(n)(0) represent-
ing the 1PI n-point Green’s function and φc representing the
classical (space-time independent) scalar field. In practice,
this quantity incorporates quantum (or radiative) corrections
to the classical potential which appears in the original La-
grangian density. While the latter is always finite the for-
mer can diverge due to the evaluation of momentum integrals
present in the Feynman loops. One way to obtain this free
energy density is to perform a functional integration over the
fermionic fields [2]. To one loop this leads to

F (φc,Vc) =−m2
v

2
Vc,µV µ

c +

+
m2

s

2
φ

2
c + i

∫ d4k
(2π)4 tr ln[γµ(kµ−gvVc,µ)− (M−gsφc)] .(4)

Notice that this free energy density contains the classical
potential (zero loop or tree level term) present in the La-
grangian density plus a one loop quantum (radiative) cor-
rection represented by the third term. Working in the rest
frame of nuclear matter we assume that the classical fields
are time-like (Vc,µ = δµ,0Vc,µ). Then, after taking the trace
one can write the free energy as

F (φc,Vc,0) =−m2
v

2
V 2

c,0 +
m2

s

2
φ

2
c + iγ

∫ d4k
(2π)4 ×

× ln[−(k0−gvVc,0)2 +k2 +(M−gsφc)2] , (5)

where γ = 4(2) is the spin-isospin degeneracy for nuclear
(neutron) matter. To obtain finite density results one may
use Matsubara’s imaginary time formalism with k0→ i(ωn−
iµ) where µ represents the chemical potential while, for
fermions, ωn = (2n + 1)πT (n = 0,1, ...) is the Matsubara
frequency with T representing the temperature. Then, upon
using

∫ d4k
(2π)4 → iT ∑

n

∫ d3k
(2π)3 , (6)

the free energy reads

F (φc,Vc,0) =−m2
v

2
V 2

c,0 +
m2

s

2
φ

2
c− γT ∑

n

∫ d3k
(2π)3 ×

× ln{[ωn− (µ−gvVc,0)]2 +k2 +(M−gsφc)2] . (7)

The Matsubara’s sums can be performed using

T
+∞

∑
n=−∞

ln[(ωn− iµ′)2 +E2] = E +

T ln
[
1+ e−(E+µ′)/T

]
+T ln

[
1+ e−(E−µ′)/T

]
, (8)

where E2(k) = k2 +(M−gsφc)2 and µ′ = µ−gvVc,0. Being
interested in the T = 0 case one may take the zero tempera-
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ture limit of Eq. (8) which is given by 3

lim
T→0

T
+∞

∑
n=−∞

ln[(ωn− iµ′)2 +E2(k)] = E(k)+

+
[
µ′−E(k)

]
θ(µ′−E(k)) = max(E(k),µ′) . (9)

Then, at T = 0 and µ 6= 0, the one loop free energy for the
Walecka model becomes

F (φc,Vc,0) =−m2
v

2
V 2

c,0 +
m2

s

2
φ

2
c− γ×∫ d3k

(2π)3

[
µ′−E(k)

]
θ(µ′−E(k))+∆(φc) , (10)

where

∆(φc) =−γ

∫ d3k
(2π)3 E(k) . (11)

Power counting shows that ∆(φc) is a divergent quantity
while the µ dependent term of Eq. (10) is convergent due
to the Heaviside step function.

3. THE RENORMALIZED VACUUM CORRECTION
TERM

In order to renormalize the vacuum correction term one
must first isolate the divergences which is formally achieved
by regularizing the divergent integral. Here we use DR per-
forming the divergent integrals in 2ω = 3− 2ε dimensions.
Then, in order to introduce the MS energy scale, ΛMS, com-
monly used within QCD one redefines the integral measure
as

∫ d3k
(2π)3 →

(
eγE Λ2

MS
4π

)ε/2 ∫ d2ωk
(2π)2ω

, (12)

where γE =−0.5772... represents the Euler-Mascheroni con-
stant. Note that, with this definition, irrelevant factors of
γE and 4π are automatically canceled but the results of
Refs. [6, 9, 11] can be readily reproduced by using ΛMS =√

4πe−γE Λ. The integral can then be performed yielding [2]

∆(φc) = γ
(M−gsφc)4

32π2

{
1
ε

+
3
2
−2ln

[
(M−gsφc)

ΛMS

]}
.

(13)
As one can see, by expanding the the term proportional to
1/ε, there are five potentially divergent contributions ranging
from g0 to g4 while all terms of order gn (n≥ 5) are conver-
gent. The divergent terms proportional to Γ(n)φn

c (n = 0, ...,4)
are respectively

Γ̃
(0) = γ

M4

32π2

[
1
ε

+
3
2
−2ln

(
M

ΛMS

)]
, (14)

3 As discussed in Ref. [15] this procedure must be taken with care if one
includes loop corrections to the meson propagators which is not the case
here.

Γ̃
(1)

φc =−γ
gsφcM3

8π2

[
1
ε

+1−2ln
(

M
ΛMS

)]
, (15)

Γ̃
(2)

φ
2
c = γ

3(gsφc)2M2

16π2

[
1
ε

+
1
3
−2ln

(
M

ΛMS

)]
, (16)

Γ̃
(3)

φ
3
c =−γ

(gsφc)3M
8π2

[
1
ε
− 2

3
−2ln

(
M

ΛMS

)]
, (17)

and

Γ̃
(4)

φ
4
c = γ

(gsφc)4

32π2

[
1
ε
− 8

3
−2ln

(
M

ΛMS

)]
. (18)

The counterterms contained in LCT needed to render the
free energy finite are [6, 9]

LCT =
4

∑
n=0

αn

n!
φ

n
c , (19)

where the αn coefficients have the general form

αn ∼ gn
s

[
1
ε

+ fn(ΛMS)
]

. (20)

Now, within the MS renormalization scheme generally
adopted within QCD one simply sets fn = 0 and the coun-
terterms have only the bare bones needed to eliminate the
1/ε poles while the final finite contributions depend on the
arbitrary energy scale. If one adopts this scheme within the
Walecka model the free energy would look like the dashed
curve in Fig. 1 which shows F versus φc for the values 4

ΛMS = 0.9GeV, M = 1GeV, ms = 0.55GeV, and gs = 1.
As it is well known, within this scheme M, ms, and mv do
not represent the measurable physical vacuum masses which
are instead taken as mass parameters whose values, like the
values of the couplings, run with ΛMS in a way ultimately
dictated by RG equation.

If instead, like Chin, one adopts the so-called on-mass
renormalization scheme the counterterms completely elim-
inate the total contributions represented by Eqs (14-18).
Within this choice the results are scale independent while M,
ms, and mv represent the measurable physical masses at zero
density whereas the three and four-body mesonic couplings
vanish in agreement with the tree level result displayed by
the original Lagrangian density. The free energy generated
by this scheme is represented by the dashed line in Fig. 2.
Considering the relevant kF = 0 case, let us find a hybrid al-
ternative scheme between the MS and the on-mass-shell so
that a residual, scale dependent, contribution survives within
the three and four 1PI Green’s function given by Eqs (17)
and (18).

4 Note that some of the these values are close to the ones which will later
be used in our numerical procedure. However, at this stage they are not
intended to represent any realistic physical situation apart from letting us
compare possible different shapes of F .
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FIG. 1: (color online) The free energy, in the φc direction, as a
function of the classical field for ΛMS = 0.9GeV, M = 1GeV, ms =
0.55GeV, and gs = 1. The dashed line is the MS renormalization
scheme result. The dotted-dashed corresponds to Γ(0) = Γ(1) = 0
while MS is used in the remaining three 1PI function. The same
situation but with Γ(2) = 0 is represented by the dotted line. The
continuous line represents the LHA prescription.
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FIG. 2: (color online) The free energy, in the φc direction, as a
function of the classical field for ΛMS = 0.9GeV, M = 1GeV, ms =
0.55GeV, and gs = 1. All curves represent the LHA prescription at
the different scales ΛMS = 0.9GeV < M (continuous line), ΛMS =
1GeV = M (dashed line) and ΛMS = 1.1GeV > M. The dashed line
also corresponds to the RHA result.

To do that, let us analyze each of the arbitrary fn terms
contained in the counterterm coefficients from the physical
point of view starting with f0 which is contained in the field
independent Γ(0). This contribution is renormalized by the
constant counterterm α0 which can be referred to as the “cos-
mological constant” [17]. In practice, the only effect this
term has is to give the zero point energy value and by its
complete elimination one assures that F (φc = 0) = 0 which,
within the Walecka model, will later assure that the pressure
as well as the energy density vanish at kF = 0. Therefore,
as in the on-mass shell prescription, we can impose that f0
be exactly equal to the finite part of the Γ(0) term. It is im-
portant to point out that even if one uses the MS scheme this
term can be absorbed in a vacuum expectation value subtrac-
tion of the zero point energy so that the exact way in which
it done is not too relevant for the present purposes.

The effect of the the linear (tadpole) term Γ(1)φc is to shift
the origin so that the minimum is not at the origin (φ̄c 6= 0)
as shown by the dashed line of Fig. 1. Also any finite contri-
bution left in the tadpole will cause direct terms to contribute
to the baryon self energy which, at the present level of ap-
proximation, means that M does not represent the physical
nucleon mass at kF = 0, M∗vac. This can be understood by
recalling that the baryon self-energy is ΣB ∼ gsΓ̃

(1)(ΛMS) so
that the vacuum effective baryon mass is given by M∗vac =
M + ΣB(ΛMS) and since M∗vac = 939MeV one sees that M,
as well as gs and ms, should depend on ΛMS. However,
for the purposes of controlling K and M∗sat the renormaliza-
tion of the baryonic vacuum mass from M to M∗vac does not
generate the wanted φ3 and φ4 vertices. Therefore, for sim-
plicity, we can also set f1 so as to completely eliminate the
tadpole vacuum contribution. This choice for f0 and f1 to-
gether with f2 = f3 = f4 = 0 produces the dot-dashed line
of figure 1. The term Γ(2) represents a (momentum indepen-
dent) vacuum correction to the scalar meson mass, ms. As in
the previous case, getting rid of this term assures that ms be
taken as the physical mass simplifying the calculations since
(m∗s,vac)

2 = m2
s + Σs(ΛMS) where Σs(ΛMS) ∼ g2

s Γ̃(2)(ΛMS).
Fixing f2 so as to completely eliminate the Γ(2) contribu-
tion produces the dotted line of figure 1. In summary, so
far we have adopted the usual Chin-Walecka on-mass shell
renormalization conditions for f0, f1, and f2 so that: the vac-
uum energy is normalized to zero, φc = 0 is the minimum
of F (also meaning that M = M∗vac), while ms represents the
vacuum scalar meson mass. In this approach, none of the
vacuum mass parameters present in the original Lagrangian
density run with ΛMS. Note that, physically, our choice was
also inspired by the NLWM observation that the compress-
ibility modulus is improved by the introduction of φ3 and φ4

terms which is consistent with our choice of neglecting any
corrections to terms proportional to φ2 and φψ̄ψ which are re-
spectively related with the scalar meson and baryon masses.

Now, taking f3 = 0 and f4 = 0 would leave us with the
wanted φ3 and φ4 scale dependent terms. However, inspec-
tion of Eq. (17) and Eq. (18) shows that these contribu-
tions would vanish at different scales, given by ΛMS = Me1/3

and ΛMS = Me4/3 respectively. As already emphasized the
NLWM controls the compression modulus with the κφ3 and
λφ4 terms so one can impose that, within our approach, both
κeff and λeff arise at the same energy scale. This can be
achieved by imposing that Γ(3) = Γ(4) = 0 at ΛMS = M in
which case the RHA is always reproduced. Finally, in our
RG-NLWM inspired prescription we also impose that any
ΛMS dependence should be left within the leading logs which
naturally emerge within DR, as shown by Eqs (14-18), and
which are the main contributing terms to the β function. In
this case, the α3 and α4 counterterms also eliminate the ΛMS
independent constants in Eqs (17) and (18). One then ob-
tains the continuous line of Fig. 1. The complete finite, scale
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dependent, vacuum contribution is then given by

∆
LHA
R (φc,ΛMS) =− γ

16π2

[
(M−gsφc)4 ln

(
M−gsφc

M

)
+ gsφcM3− 7

2
(gsφc)2M2 +

13
3

(gsφc)3M− 25
12

(gsφc)4
]

+
γ

4π2

[
(gsφc)3M− 1

4
(gsφc)4

]
ln
(

M
ΛMS

)
. (21)

The free energy obtained with this finite vacuum contribu-
tion term is shown in Fig 2 for ΛMS < M (continuous line),
ΛMS > M (dot-dashed line) as well as for ΛMS = M (dashed
line) in which case the usual RHA is retrieved. As one can
check, the first term in Eq. (21) is just the RHA vacuum
correction [6] so that, in view of Eq. (2), one can write

∆
LHA
R (φc,ΛMS) = ∆

RHA
R (φc)+

κeff

3!
φ

3
c +

λeff

4!
φ

4
c , (22)

where κeff = 2g3
s Mbeff(ΛMS) and λeff = 6g4

s ceff(ΛMS) with

beff(ΛMS) =
3
π2 ln

(
M

ΛMS

)
(23)

and beff(ΛMS) = −3ceff(ΛMS). In this way not only κeff
and λeff vanish at the same scale but an inversion of their
respective signs happen at the same time. We have then
achieved our goal by quantically inducing κ = 0→ κeff(ΛMS)
and λ = 0→ λeff(ΛMS) in a way that all the scale depen-
dence is contained in the leading logs and also achieving
κeff(ΛMS) = λeff(ΛMS) = 0 at ΛMS = M.

For comparison purposes let us quote the MRHA result

∆
MRHA
R (φc,Λ) = ∆

RHA
R (φc)+ γ

(gsφc)3

4π2

[
ln
(

M
Λ

)
−1

+
Λ

M

]
− γ

(gsφc)4

16π2 ln
(

M
Λ

)
. (24)

One notices that the major difference between the MRHA
and our prescription amounts to the finite contribution con-
tained within the cubic term where the scale dependence is

not restricted to the leading log being also contained in an ex-
tra linear term which does not naturally arise when expands
the DR results for the loop integrals in powers of ε, as shown
by Eqs. (14-18).

4. RENORMALIZED ENERGY DENSITY

To obtain the thermodynamical potential, Ω, one mini-
mizes the free energy (or effective potential) with respect to
the fields. That is, Ω = F (σ̄c,V̄0) =−P, where P represents
the pressure. Then, the LHA renormalized pressure is

PLHA =
m2

v

2
V 2

c,0−
m2

s

2
φ̄

2
c + γ

∫ kF

0

d3k
(2π)3

×
[
(µ−gvV 0,c)−E∗(k)

]
−∆

LHA
R (φ̄c,ΛMS) (25)

where E∗ = (k2 + M∗)1/2 with M∗ = M − gsφ̄c while the
Fermi momentum is given by k2

F = (µ−gvV̄0,c)2−M∗2. For
the vector field one gets

V 0,c =
gv

m2
v

ρB , (26)

where ρB = (γk3
F)/(6π2) is the baryonic density whereas for

the scalar field the result is

φ̄c =
gs

m2
s
[ρs +∆

′LHA
R (φ̄c)] , (27)

where

ρs = γ
M∗

2π2

∫ kF

0
dk

k2

E∗(k)
, (28)

represents the scalar density and

∆
′LHA
R (φ̄c) = − γ

4π2

[
M∗3 ln

(
M∗

M

)
+gsφ̄cM2− 5

2
(gsφ̄c)2M +

11
6

(gsφ̄c)3
]

+
γ

4π2

[
3(gsφ̄c)2M− (gsφ̄c)3] ln

(
M

ΛMS

)
. (29)

To get the energy density, ε, one can use the relation ε =
−P+µρB obtaining

ε
LHA =

g2
v

2m2
v

ρ
2
B +

m2
s

2
φ̄

2
c +

γ

2π2

∫ kF

0

× k2dkE∗(k)+∆
LHA
R (M∗,ΛMS) , (30)

where
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∆
LHA
R (M∗,ΛMS) = − γ

16π2

[
M∗4 ln

(
M∗

M

)
+(M−M∗)M3− 7

2
(M−M∗)2M2

+
13
3

(M−M∗)3M− 25
12

(M−M∗)4
]

+
γ

4π2

[
(M−M∗)3M− 1

4
(M−M∗)4

]
ln
(

M
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)
, (31)

and

M∗ = M− γ
g2

s

m2
s

M∗

2π2

∫ kF

0

k2

E∗(k)
dk− g2

s

m2
s

∆
′
R(M∗,ΛMS) ,

(32)

where

∆
′LHA
R (M∗,ΛMS) = − γ

4π2

[
M∗3 ln

(
M∗

M

)
+(M−M∗)M2− 5

2
(M−M∗)2M +

11
6

(M−M∗)3
]

+
γ

4π2

[
3(M−M∗)2M− (M−M∗)3] ln

(
M

ΛMS

)
. (33)

5. NUMERICAL RESULTS

Let us now investigate the numerical results furnished by
LHA for the baryon mass at saturation as well as for the com-
pressibility modulus, with the latter given by

K =
[

k2 ∂2

∂k2

(
ε

ρB

)]
k=kF

= 9
[

ρ
2
B

∂2

∂ρ2
B

(
ε

ρB

)]
ρB=ρ0

. (34)

Table I shows the coupling constants and saturation proper-
ties for some values of the renormalization scale (ΛMS) that
yield BE =−15.75 MeV and kF = 1.42 fm−1 (280.20 MeV).
These values are chosen just in order to compare with the
original Walecka Model (QHD-I) [1]. The meson masses are
ms = 512 MeV and mv = 783 MeV. This table shows that
some of the best LHA values are obtained with ΛMS values
which are very close to M. Since at ΛMS = M the RHA re-
sult is reproduced one concludes, based on our results, that
a slight decrease from the RHA energy scale produces an
enormous effect on the values of both, K and M∗sat.

Figures 3 (a) and (b) show the binding energy per baryon,
BE = E/A−M, and the effective baryon mass as functions
of the Fermi momentum for some ΛMS values, shown in ta-
ble I. One easily sees the effect of considering the vacuum
contribution and its improvements on the compressibility and
the effective mass. As expected, when ΛMS = M, the RHA
results are recovered. From figures 4 (a) and (b) it is possible
to see some properties obtained in table I within the LHA ap-
proach, as functions of ΛMS/M. One notes from figure 4 (a)
that when ΛMS increases the value of the nuclear compress-
ibility (K) also increases and M∗sat decreases. The crossing
point in figure 4 (a) represents the RHA values of K and M∗

which occurs when we set ΛMS = M. Figure 4 (b) shows the

effective couplings that arise due to the LHA as functions of
ΛMS/M. Similarly when ΛMS reaches the value M the RHA
results are recovered and the effective couplings vanish.

To compare our numerical results with those provided
by the MRHA let us make a remark concerning the ef-
fective nucleon mass. From a non-relativistic analysis of
scattering of neutron-Pb nuclei it has been found [3] that
M∗sat/M ≈ 0.74 to 0.82 which can be viewed as approxi-
mately describing the Landau effective mass [4]. The rela-
tivistic isoscalar component known as the effective mass de-
fined in Eq. (32) can be called the Dirac effective mass and is
related to the Landau effective mass. Therefore, the range ex-
pected for the Dirac effective mass at saturation density lies
in the range M∗sat/M ≈ 0.70 to 0.80 whereas for the nuclear
compressibility at saturation the most widely accepted values
are K≈ 200MeV to 300 MeV [5]. For this range of K and ac-
cording to table II the MRHA predicts M∗sat/M≈ 0.80 to 0.85
for Λ/M ≈ 1.185 to 1.466. However, one should note that
this MRHA energy scale range is not unique and can also be
reproduced with Λ/M ≈ 0.753 to 0.778 which in turn leads
to a rather low range for M∗sat values, M∗sat/M ≈ 0.65 to 0.69.
Our results, shown in tables I and II, seem to produce a bet-
ter agreement for this range of K giving the unique range
M∗sat/M ≈ 0.76 to 0.83 for ΛMS/M ≈ 0.920 to 0.977 with
κeff > 0 and λeff < 0.

As a last remark we would like to point out that if
one chooses ΛMS/M = 0.9805, (gs/ms)2 = 9.468 fm2 and
(gv/mv)2 = 4.879 fm2 the LHA approach reproduces the
same saturation properties as performed by the so-called
GM2 parameter set according to [18]: K = 300 MeV,
M∗sat/M = 0.78, BE = −16.3 MeV, kF = 1.313 fm−1 and
ρ0 = 0.153 fm−3. The resulting effective couplings are:
beff = 0.005986 and ceff =−0.001995.
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TABLE I: Coupling constants and saturation properties for some values of the renormalization scale (ΛMS) that yield BE =−15.75 (MeV)
and kF = 1.42 fm−1. The meson masses are ms = 512 MeV and mv = 783 MeV. The constants Cs and Cv are defined as: Ci = (gi M/mi)

.

ΛMS/M K (MeV) M∗sat/M C2
v C2

s g2
v g2

s κeff/M λeff

1.030 1279.408 0.606 171.339 176.984 119.138 52.619 -6.859 49.753
1.020 910.234 0.646 151.744 184.093 105.512 54.736 -4.875 36.063
1.010 639.833 0.684 132.232 185.875 91.945 55.263 -2.485 18.474
1.005 542.279 0.702 123.626 185.609 85.961 55.184 -1.243 9.233
1.000 468.140 0.718 114.740 183.300 79.782 54.497 0.000 0.000
0.990 371.437 0.745 99.784 177.933 69.383 52.901 2.351 -17.099
0.980 314.086 0.767 88.623 173.525 61.622 51.591 4.551 -32.689
0.975 294.260 0.776 84.456 172.456 58.725 51.273 5.651 -40.463
0.970 277.989 0.784 80.307 170.683 55.840 50.746 6.694 -47.684
0.960 253.249 0.798 73.691 168.648 51.240 50.141 8.811 -62.391
0.950 235.660 0.809 67.923 166.440 47.229 49.484 10.855 -76.356
0.940 222.493 0.818 63.025 164.576 43.824 48.930 12.875 -90.058
0.920 202.507 0.832 55.411 162.702 38.529 48.373 17.054 -118.611
0.900 188.175 0.843 49.467 161.826 34.396 48.112 21.375 -148.267
0.8595 166.351 0.8595 40.936 164.038 28.464 48.770 31.349 -218.926
0.850 162.638 0.863 39.348 165.080 27.360 49.080 33.971 -237.992
0.800 144.532 0.876 32.511 172.680 22.606 51.340 49.902 -357.552
0.700 118.409 0.893 23.328 200.551 16.221 59.626 99.833 -770.891
0.600 98.285 0.905 17.052 256.570 11.857 76.281 206.893 -1806.98
0.500 81.019 0.914 12.239 397.387 8.510 118.147 541.142 -5881.97
0.400 65.319 0.921 8.235 1290.240 5.726 383.600 4185.070 -81967.5

(RHA) 468.140 0.718 114.740 183.300 79.782 54.497 - -
(MFT) 546.610 0.556 195.900 267.100 136.210 79.423 - -
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FIG. 3: (a) Binding energy per nucleon as a function of the Fermi momentum for different values of our scale ΛMS. We also plot the
MFT and RHA results for comparison purposes. The saturation properties are: BE =−15.75 MeV and kF = 1.42 fm−1 (280.20 MeV). (b)
Similar as figure (a) but for the effective baryon mass M∗ as a function of the Fermi momentum for different values of the scale. Note that
when ΛMS = 1 we reproduce the RHA results.

In the appendix we show that leaving a leading log depen-
dence also in the two point Green’s function, Γ(2), only in-
creases the numerical complexity without producing results
better than the ones generated by the simplest LHA version
employed so far.

6. CONCLUSIONS

We have considered the simplest form of the Walecka
model to analyze how the values of the compressibility mod-

ulus as well as the baryon mass, at saturation, can be im-
proved by adopting an appropriate renormalization scheme
in which cubic and quartic effective couplings are radiatively
generated. With this aim we have evaluated the effective po-
tential to the one loop level using Matsubara’s formalism to
introduce the density dependence. The vacuum contributions
have been evaluated using dimensional renormalization com-
patible with the MS renormalization scheme.

We have then chosen the renormalization conditions in
such a way so that all the mass parameters appearing in the
original Lagrangian density represent the physical mass at
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FIG. 4: Some properties obtained in table I within the LHA approach, as a function of the renormalization scale ΛMS in units of the baryon
mass. (a) Compression modulus and effective baryon mass × ΛMS/M and (b) effective couplings that arise due to the LHA as functions of
ΛMS/M. They vanish when ΛMS/M = 1 and the RHA results are reproduced as one sees in table I.

TABLE II: Comparison between the LHA and the MRHA approaches with other estimates.
Λs/M K (MeV) M∗/M

MRHA [11] 1.185 - 1.466 300 - 200 0.80 - 0.85

MRHA [11] 0.778 - 0.753 300 - 200 0.65 - 0.69

LHA 0.977 - 0.920 300 - 200 0.76 - 0.83

Estimates [3–5] - 300 - 200 0.70 - 0.80
Where Λs = Λ for MRHA and LHA is given by: Λs = ΛMS .

zero density and therefore do not run with the energy scale.
For our purposes the most important part was to renormal-
ize the values of the cubic and quartic terms (κφ3/3! and
λφ4/4!) which vanish at the classical (tree) level in the orig-
inal model. We have then allowed only scale dependent log-
arithms, which naturally arise within DR, to be present in
the final finite expressions and, contrary to the MRHA pre-
scription, we obtained that both couplings have exactly the
same type of scale dependence. In other words, the pa-
rameters b and c contained in the cubic and quartic terms
have been dressed by one loop vacuum contributions so that
b = 0→ beff = 3/π2 ln(ΛMS/M) and c = 0→−beff/3.

In this approach each value of the energy scale produces
only one value for K and M∗sat while two values can be ob-
tained within the MRHA. In our case the best values for
these physical quantities occur at energy scales very close
to the highest mass value, M. Since the RHA is obtained for
ΛMS = M one concludes that a small variation around this
value of the energy scale can significantly improve both K
and M∗sat as shown by our numerical results which predict
M∗sat/M ≈ 0.76 to 0.83 and K ≈ 200MeV to 300 MeV at
ΛMS/M ≈ 0.920 to 0.977. These results turn to be in ex-
cellent agreement with the most quoted estimates M∗sat/M ≈
0.70 to 0.80 and K ≈ 200MeV to 300 MeV. To achieve these
K values the MRHA predicts either M∗sat/M ≈ 0.80 to 0.85
or M∗sat/M ≈ 0.65 to 0.69 in the two possible energy scale
ranges. Recalling that at ΛMS/M = 1 the (RHA) results are
M∗sat/M = 0.718 and K = 468.14MeV one may further ap-

preciate how a small tuning of the energy scale within the
LHA greatly improves the situation. To compare the LHA
with the MRHA we recall that the philosophy within the lat-
ter is that many-body effects in nuclear matter at saturation
can be minimized by choosing the energy scale close to M∗sat
in which case the values M∗sat/M = 0.731 and K = 162MeV
are reproduced. Although the former seems reasonable the
latter seems too low according to the above quoted estimates.
The philosophy of the LHA, proposed in the present work, is
to keep only the scale dependent leading logs in the finite
parts of the effective cubic and quartic couplings.

In practice, the main difference between the two approxi-
mations is reflected by the fact that the MRHA effective cu-
bic coupling, apart from the logarithmic term, also displays a
term which depends linearly on the energy scale accounting
for the numerical differences cited above. It is worth point-
ing out that, within the LHA as well as the MRHA, a given
scale sets both κeff and λeff so that both K and M∗sat cannot be
separately tuned as in the NLWM where κ and λ can be set
separately. However, even in an effective theory such as the
Walecka model, an increase in the parameter space as the one
generated by the NLWM can be viewed as an unwanted fea-
ture and the LHA succeeds in improving the values of K of
M∗sat without the drawback of increasing many body effects
and parameter space. The method proposed here should be
easy to be implemented within many existing MFA or RHA
applications where ∆LHA can be added to the energy density
(in the MFA case) or used to replace the existing ∆RHA in a
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RHA type of calculation.
In principle the LHA philosophy could be extended to the

two loop level in a calculation similar to the one performed
in Refs. [7] and [9]. Then, by tuning the energy scale appro-
priately one could try to reduce the size of the two loop cor-
rections producing physically meaningful results. However,
at that level of approximation one may possibly encounter
other issues related to the inclusion of the vacuum.

Our method is another demonstration of how phenomeno-
logical models can be affected by the choice of renormal-
ization conditions but instead of taking this as a drawback
we have shown how a judicious choice of renormalization
conditions and scale can improve the value of relevant phe-
nomenological quantities. The LHA presented here can ex-
tend MFA and RHA applications related to neutron stars as
well as to the evaluation of other physical quantities, such
as the symmetry energy. Then, is very plausible that MFA
(and RHA) results related to quantities such as the solution
of the Tolman-Oppenheimer-Volkov equations will be read-
ily improved as we intend to demonstrate in a forthcoming
work. Note also that models and/or approximations which
lead to low effective masses at saturation are not suitable for
neutron stars calculations since as the density increases the
effective mass vanishes so quickly that higher densities can-
not be properly reached as needed [19]. In principle, the
LHA has potential to correct this problem without the need
to introduce extra mesonic interactions with their respective
parameters.
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APPENDIX

For completeness, let us check numerically the effects
of leaving a leading log dependence also in the two point
Green’s function with zero external momentum, Γ(2), given
by Eq. (16). Then,

∆
LHA
R (M∗,ΛMS)→ ∆

LHA
R (M∗,ΛMS)− (M−M∗)2M2

γ

16π2

[
6ln
(

M
ΛMS

)]
, (A.1)

and

∆
′LHA
R (M∗,ΛMS)→ ∆

′LHA
R (M∗,ΛMS)− (M−M∗)M2

γ

8π2

[
6ln
(

M
ΛMS

)]
. (A.2)

In this case, the effective potential gives a first (momentum
independent) correction to the effective scalar mass in the
vacuum, m∗s,vac. Then, for each energy scale, apart from the
BE requirement one also has to fix the parameter set so that
the effective scalar meson mass is m∗s,vac = 512 MeV. This ef-
fective mass is obtained by considering one loop momentum
independent self energy

(m∗s,vac)
2 = m2

s −M2g2
s

γ

8π2

[
6ln
(

M
ΛMS

)]
, (A.3)

which clearly indicates that ms (as well as gs) must run with
the energy scale. However, this more cumbersome approach
has almost no effect in our best results for K and M∗sat as
table III shows indicating the adequacy of the LHA simple
prescription previously adopted.

TABLE III: Same as in table I for the case in which Γ(2) has a non vanishing leading log and ms runs with the energy scale.
ΛMS/M K (MeV) M∗sat/M C2

v C2
s g2

v g2
s ms (MeV)

1.000 468.140 0.718 114.740 183.300 79.782 54.497 512.000
0.975 294.260 0.776 84.456 74.106 58.725 22.032 641.594
0.950 235.660 0.809 67.923 46.297 47.229 13.765 671.839
0.920 202.507 0.832 55.411 31.755 38.529 9.441 687.840
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