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Vortex Dynamics Equation in Type-II Superconductors in a Temperature Gradient
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In this work we determined a vortex dynamics equation in a temperature gradient in the frame of the time
dependent Ginzburg-Landau equation. In this sense, we derived a local solvability condition, which governs
the vortex dynamics. Also, we calculated the explicit form for the force coefficients, which are the keys for the
understanding of the balance equation due to vortex interactions with the environment.
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1. INTRODUCTION

In type-II superconductors, the vortices are the ones in
charge for the magnetic properties of these systems since ev-
ery vortex carries a magnetic flux quantum. In the last years
the interest in the vortex motion is associated to many non
peculiar properties in HTSC not found in conventional type-
II superconductors. In particular, one of the most important
effects encountered in HTSC is the Hall anomaly [1,2]. In
this sense, it is known that, under the action of the Lorentzs
force vortices acquire a movement and therefore losses ap-
pear in the superconducting state. The equation of motion,
which governs the vortex dynamics in type-II superconduc-
tors, has been subject to a great amount of works, which have
helped us to understand this phenomenon in these systems.
In addition, the interest in the vortex motion is emphasized
by the responsibility of this dynamics in a great variety of
transport phenomena in type II superconductors. Generally,
the vortex dynamics has been considered on the hydrody-
namical two fluid model [3,4], where the relative motion be-
tween the superfluid and the vortex generates the Magnus
force. Next, the normal component reacts to this motion, pro-
ducing the longitudinal viscous drag force and the transver-
sal Iordanski’s force, which are the two components of the
medium force. An attempt to describe the vortex dynamics
was done by Dorsey [5] in the frame of the time dependent
Ginzburg-Landau equation following previous developments
of Gorkov and Kopnin [6]. In this work, Dorsey formulates
a solubility condition through with a vortex equation can be
obtained. Today, there are several attempts to construct a uni-
fied theory about the vortex motion. Some approximations
use the sophisticated many body formalism [7,8,9]. Other
authors apply a simpler theory based on the kinetic Boltz-
mann equation to study the dynamic behavior of the vortex
structures [10], but so far the vortex dynamics is an open
question for the solid state physics community. The purpose
of the present work is to contribute to a better understanding
of the fascinating phenomenon of the vortex motion. In this
connection, the goal of this paper is to determine a vortex
dynamics equation in a temperature gradient in the frame of
the time dependent Ginzburg-Landau equation. Such kind
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of equation has been introduced in a heuristic way in many
works [11] to satisfy experimental data [12,13,14].

The paper is organized as follows: In Section 2, we have
obtained the basics equations of the work. In Section 3, some
dynamic coefficients are calculated and finally in Section 4
we summarized the main results.

2. BASIC EQUATIONS

The present analysis follows the works done by Dorsey [5]
in order to obtain the equation, which describes the vortex
dynamics. Let us write the dimensionless time dependent
Ginzburg-Landau equation for the complex order parameter
in the form:

γ

[
∂

∂t
+ iφ

]
ψ =

[
~∇

κ
− i~A

]2

ψ+ψ−|ψ|2 ψ. (1)

In the above equation γ is the dimensionless relaxation time,
κ is the Ginzburg-Landau parameter, Φ and ~A are the electric
potential and the magnetic vector respectively. The order pa-
rameter ψ in terms of the amplitude f (~r, t) and the fase χ(~r, t)
can be represented as follows ψ(~r, t) = f (~r, t)exp[iχ(~r, t)].
The relaxation time has a complex character and can be writ-
ten

γ = γ1 + iγ2.

The appearance of the imaginary part in the previous expres-
sion is a necessary condition for the gauge invariance conser-
vation of equation (1) [10]. Relaxation processes that entail
to dispersion in the vortex dynamics are of two types: the
first is associated to the Bardeen- Stephens mechanism of
dissipation and the second process is an intrinsic relaxation
mechanism that governs the approach of the order parame-
ter to its equilibrium state due to variations in the chemical
potential. This mechanism is associated to the change of the
order parameter in time because the electrons are forced to
pair and de-pair with respect to different potentials due to the
vortex motion. In consequence, this processe is the respon-
sible that the relaxation time acquires a complex character as
was shown by Kopnin [10] and it is framed in the parameter
γ2

γ2 =− ~
2λ

∂ν

∂µ
,
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where ν and µ are the density of states and the chemical po-
tential respectively. Introducing ψ and γ in the expression
(1) and in addition, introducing the invariant forms for the
magnetic vector and the scalar potential

~Q = ~A− 1
κ

~∇χ, P = Φ+
∂χ

∂t
, (2)

one can obtain two equations, the first for the real part and
the other one for the imaginary part as follows:

γ1
∂ f
∂t
− γ2 f P =

1
κ2

~∇2 f +Q2 f − f − f 3 , (3)

γ1 f P− γ2
∂ f
∂t

+
2
κ

~Q.~∇ f +
f
κ

~∇.~Q = 0. (4)

To form a closed system of equations, we need to derive an
equation for the magnetic vector. In this connection, the di-
mensionless equations for the superconducting and normal
current are:

~Js =
1

2κi
(ψ∗~∇ψ−ψ~∇ψ∗)−|ψ|2~A =− f 2~Q, (5)

~Jn = σ
(n)(−1

κ

~∇P− ∂~Q
∂t

)+
1
κ

b(n)~∇T, (6)

where σ(n) and b(n) are the electric and thermoelectric con-
ductivities in the normal state respectively. In this sense, the
dimensionless equation for the magnetic vector is:

~∇×~∇× ~Q = σ
(n)(−1

κ

~∇P− ∂~Q
∂t

)+
1
κ

b(n)~∇T − f 2~Q. (7)

Now, to find an equation for the potential P, one can use
the vector relation ~∇ · ( f 2~Q) = 2 f~∇ f · ~Q + f 2~∇ · ~Q, so that
counting the fact that ~∇ · (~Js + ~Jn) = 0, i.e.

~∇ · (~Js +~Jn) = −~∇ · ( f 2~Q)+~∇ · [σ(n)(−1
κ

~∇P− ∂~Q
∂t

)]+

+
1
κ

~∇ · (b(n)~∇T ) = 0, (8)

we obtain from equations (5) and (6) the following relation:

1
κ

~∇ · [σ(n)(−1
κ

~∇P− ∂~Q
∂t

)]

+
1
κ

~∇ · (b(n)~∇T )+ γ1 f 2P+ γ2 f
∂ f
∂t

= 0. (9)

The above equation together with relations (3) and (7) will
allow to arrive at the solvability condition for the equation
that determines the vortex dynamics in type II superconduc-
tors.

On the other hand, locally in the vortex, the order param-
eter differs from the value in the bulk of superconductor so
that a deviation appears in the order parameter and the poten-
tials. In this connection, the quantities f and ~Q are expanded

f = f0 + f1, ~Q = ~Q0 + ~Q1,

where f0 and f1 are the amplitudes of the order parameter
associated to the equilibrium and non equilibrium states re-
spectively. In addition, in the vortex motion it is possible
to consider that vortices move independently in the first ap-
proximation of the limit B� Hc2, so that one can find an
equation of motion for every individual vortex in presence
of a temperature gradient. In this limit, assuming that the
vortices move uniformly, the quantities f , ~Q and P are func-
tions solely of~r−~vLt, where~r is the electron position vector
and ~vL is the vortex velocity. Thus, the temporary deriva-
tive can be written in terms of spatial derivative by means of
∂

∂t = −~vL ·~∇, so if we introduce this relation in (3), (7) and
(9), we obtain the following set of equations for the equilib-
rium state:

1
κ2 ∇

2 f0 +Q2
0 f0− f0− f 3

0 = 0, (10)

~∇×~∇× ~Q0 + f 2
0
~Q0 = 0, (11)

being

~J0 =− f 2
0
~Q0, (12)

the equilibrium current density. For the non equilibrium state
we have the equations

1
κ2 ∇

2 f1 +Q2
0 f1−2 f0~Q0~Q1− f1−3 f 2

0 f1 + γ2P f0 =−γ1 fv,

(13)

~∇×~∇× ~Q0 =− f 2
0
~Q1−2 f 0 f 1~Q0 +σ

(n)(−1
κ

~∇P+

+~Qv)+
1
κ

b(n)~∇T = ~J1s + ~J1n = ~J1, (14)

where we have considered the fact that f0 � f1, ~Q0 � ~Q1
and the linear approximation of the deviation. In addition we
introduced the quantities

fv ≡~vL ·~∇ f0, ~Qv ≡ (~vL ·~∇)~Q0. (15)

The Ginzburg-Landau equations are translational invariant,
and therefore f0(~r + ~d) and ~Q0(~r + ~d) are the solutions to
the equation (10), being ~d an arbitrary translation vector. If
we expand in Taylors series these two quantities, the linear
equations (13) and (14), without the nonhomogenous terms,
can be written in the form

1
κ2 ∇

2 fd + fdQ2
0−2 f0~Q0 · ~Qd− fd−3 f 2

0 fd = 0, (16)

~∇×~∇× ~Q0 = f 2
0
~Qd−2 f0 fd~Q0 = ~Jd ≡ (~d ·~∇)~J0, (17)

where we introduced the parameters fd ≡ ~d ·~∇ f0 and ~Qd ≡
(~d ·~∇)~Q0. In order to derive the solvability condition one can
integrate the equations (13) and (16) over a cylindrical area.
Using the in the plane Gauss theorem and neglecting super-
ficial contributions, the following equations are obtained:

f1Q2
0−2 f 0~Q0 · ~Q1− f1−3 f 2

0 f 1 + γ2P f0 + γ1 fv = 0, (18)
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fdQ2
0−2 f0~Q0 · ~Qd− fd−3 f 2

0 fd = 0. (19)

Now we multiply the equation (18) by fd and the equation
(19) by f1. Next both equations are combined to obtain the
following expression:∫

d2r(2 f0 fd~Q0.~Q1−2 f0 f1~Q0 · ~Qd + γ2 f0 fdP+ γ1 fv fd) = 0.

(20)
Multiplying the quantity ~J1s by ~Qd , and the quantity ~Jd by
~Q1, then these two expressions are subtracted each other and
replacing in the equation (20) to obtain:∫

d2r(~Jd · ~Q1− ~J1s · ~Qd) =−
∫

d2r(γ2P f0 fd + γ1 fv fd).

(21)
In order to simplify, in the κ� 1 limit, from equations (2)
and the expression for ~Qd , we have ~Qd ≈−~∇χd/κ and ~Q1 ≈
−~∇χ1/κ. Inserting the above expressions in the left side of
the equation (21) we obtain:

1
κ

∫
d2r(~Jd ·~∇χ1− ~J1sκ~∇χd) =

∫
d2r(~J1sκ~Qd− ~Jdκ~Q1).

(22)
Now considering the vector relation ~∇ · (α~A) = ~A ·~∇α+α~∇ ·
~A and in addition, ~∇ · ~Jd = 0, we can apply the in the plane
divergence theorem as follows:

∫
d2r(~J1s ·~Qd−~Jd ·~Q1) =−1

κ

∫
d2r(~J1s ·~∇χd−~Jd ·~∇χ1)

=−1
κ

∫
d~S · [~J1sχd− ~Jdχ1]+

1
κ

∫
d2rχd

~∇ · ~J1s. (23)

On the other hand, inside the vortex, the total current density
satisfies the continuity equation:

~∇ ·~J =~∇·(~J1n +~J1s +~J0)=−∂ρ

∂t
=~vL ·~∇ρ =~vL ·(~∇ρn +~∇ρs),

(24)
where we have considered that the total charge density is ρ =
ρn + ρs, being ρn and ρs the normal and superconducting
charge densities respectively. In this way, from equation (11)
we have:

~∇ · ~J0 = 0.

So that the expression (24) take the form:

~∇ · ~J1s =−~∇ · ~J1n +~vL ·~∇ρn +~vL ·~∇ρs =−~∇(~vL ·ρn)

+~vL ·~∇ρn +~vL ·~∇ρs. (25)

Replacing the expressions (21) and (25) in the equation (23)
and assuming that~vn homogeneous, we have is

1
κ

∫
[~J1sχd− ~Jdχ1] ·d~S

=−
∫

(γ2P f0 fd− γ1 fv fd)d2r +
1
κ

∫
d2rχd(~vL−~vn) ·~∇ρn

+
1
κ

∫
d2rχd~vL ·~∇ρs. (26)

The equation (26) is the local solvability condition for the
vortex motion. Also it is of the linear order in the vortex ve-
locity. If this condition is not fulfilled, then the non homoge-
nous equations do not have solution. The expression (26)
contains an original contribution of this paper and will al-
low determining the equation that governs the vortex dynam-
ics in type II superconductors in presence of a temperature
gradient. The solvability condition obtained in the present
work differs from Dorsey’s expression [5] by the thermal
flow force due to the temperature gradient and also by nor-
mal contributions (which give a right relation of the involved
dynamic parameters) in the vortex dynamics.

In order to derive the vortex dynamics equation, it is neces-
sary to introduce a coordinate system. In this sense, as much
the applied temperature gradient as the transport current are
oriented in x direction. The magnetic field is directed along
the z-axis. The vortex velocity vector and the displacement
vector ~d form angles θH and φ with the x axis respectively.
The geometry of the problem is pictured in Figure 1.

From Figure 1 we have:

~Jt = Jt [cosθêr− sinθêθ], (27)

~∇T = ∇T [cosθêr− sinθêθ], (28)

~vL = vL[sin(θ−θH)êr + cos(θ−θH)êθ], (29)

~d = d[cos(θ−φ)êr + sin(θ−φ)êθ]. (30)

The differential equation for the scalar potential P acquires
the following form:

σ
(n)
xx

k2 ∇
2P− γ1P f 2

0 =

[γ2 f0
d f0

dr
− σ

(n)
xy

k
dh0

dr
]vL sin(θ−θH)+

b(n)
xx

k2 ∇
2T cosθ. (31)

In the above equation~h0 =~∇×~Q0. It is possible to determine
the form of the solution to the equation (31) considering the
limit r→ 0, then χ→ θ. Therefore, from the equation (2) we
have P≈− ∂χ

∂t ≈~vL.~∇θ = 1
r êθ.

In general way, the solution to the non homogenous differen-
tial equation (31) takes the form:

P(~r) = vL p1(~r)cos(θ−θH)+ vL p2(~r)sin(θ−θH)+ p3(~r),
(32)

where p1 is the solution to the homogenous equation (31), p2
and p3 are particular solutions to the nonhomogenous equa-
tion. From the previous expression, we have that, p1, p2 and
p3 satisfy the differential equations:

σ
(n)
xx

κ2 ∇
2 p1− γ1 f 2

0 p1 = 0, (33)

σ
(n)
xx

κ2 ∇
2 p2− γ1 f 2

0 p2 = γ2 f0
d f0

dr
− σ

(n)
xy

κ

dh0

dr
, (34)
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FIG. 1: Geometry of the system

σ
(n)
xx

κ2 ∇
2 p3− γ1 f 2

0 p3 =
b(n)

xx

κ2 ∇
2T cosθ. (35)

As ~∇T acts on normal electrons for small values of r(r→ 0)
then f 2

0 → 0 and for high values of r superelectrons do not
feel the presence of the temperature gradient, reason why
in the equation (35) the second term of the left side can be
neglected, having the solution (32) the form:

P(~r) = ~vL p1(~r)cos(θ−θH)+

+~vL p2(~r)sin(θ−θH)− ε|~∇T |r cosθ, (36)

where the parameter ε = b(n)
xx

σ
(n)
xx

was introduced.

3. VORTEX DYNAMICS EQUATION

The solvability condition can be evaluated solving the
equation (26). The surface integral can be expressed in terms

of the applied transport current at the borders, where

~J1s(r = ∞,θ) = ~Jt , ~Jd .êr = d sin
(θ−φ)

κr2 ,

χ1 = κJtr cosθ,χd ≡ ~d.~∇θ = d sin
(θ−φ)

r
, (37)

so that the first integral to evaluate is the only one in the
left side of the equation (26), where we use the formulae
for the transport current ~Jt and χd in cylindrical coordinates
shown in the equations (27) and the trigonometric equality
sin(θ−φ) = sinθcosφ− cosθsinφ ,

1
κ

∫
d~S · [~J1sχd− ~Jdχ1] =

1
κ

∫
(rdθêr) · (~Jtχd)−

1
κ

∫
(rdθêr) · (~Jdχ1) =

1
κ

∫
(rdθêr) · (~Jtχd) =−2

κ
Jtd

∫ 2π

0
cosθsin(θ−φ)dθ =−2π

κ
(~Jt × êz) · ~d. (38)

The following term to solve is the first integral of the right
side of the equation (26), which with the aid of the relation

(36) is written as follows∫
d2rP f0 fd

= γ2

∫
∞

0

∫ 2π

0
drdθ{vL p1 cos(θ−θH)+

vL p2 sin(θ−θH)− ε|~∇T |r cosθ} f0 fd . (39)
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Developing the product f0 fd and using the expression for
~d, given in equation (30), we have

γ2

∫
d2rP f0 fd

=−γ2π

2
(~vL× êz)·~d

∫
∞

0
( f 2

0 )′rp1dr− γ2π

2
~vL ·~d

∫
∞

0
( f 2

0 )′rp2dr

−πγ2ε~∇T · ~d
∫

∞

0
( f 2

0 )′r2dr. (40)

Solving the second integral in the right side of the equation
(26), one must account the relations (12) and (15), obtaining

γ1

∫
d2r fv fd = γ1

∫
d2r(~vL ·~∇ f0)(~d ·~∇ f0)

=−π~vL · ~dγ1

∫
∞

0
( f ′0)

2rdr, (41)

where we have introduced the projections for~vL and ~d given
by the equations (29) and (30) respectively. Now to calculate
the third term of the equation (26), we expand ρn(~r) in a
Taylor’s series around the vortex centre

ρn(~r) = ρn(0)+~r ·~∇ρn(0)+
(~r ·~∇)2

2
ρn(0)+ . . .

Accounting that, the position vector in cylindrical coordi-
nates has the form~r = r[sin(θ−θH)êr + cos(θ−θH)êθ] and

taking the scalar product, the function ρn(~r) can be written
in the following way

ρn(~r) = ρn(0)+ r sin(θ−θH)
∂

∂r
ρn(0)

+ cos(θ−θH)
∂

∂θ
ρn(0)+

r ∂

∂r ρn(0)
2

− r sin(θ−θH)cos(θ−θH)
2

. (42)

Taking the gradient of the function (42) in the limit r→ 0,
we obtain:

~∇ρn(~r) =
∂ρn(0)

∂r
(êr + êθ), (43)

where we have considered that ρn(~r) also grows in the −êr
direction. Replacing the equation (43) in the solvability con-
dition, the third term of this expression acquires the form:

1
κ

∫
d2rχd~vn ·~∇ρn(r̂)=

π

2κ
[(~vn× êz)·~d]ρn(0)+

π

κ
[~vn ·~d]ρn(0).

(44)
Equally, the term associated to~vL in the solvability condition
is obtained as follows:

1
κ

∫
d2rχd~vL ·~∇ρn(r̂) =−dvn

2
×[∫ 2π

0
sin(θ−θH)[sin(θ−θH)+ cos(θ−θH)]dθ

∫
∞

0

∂

∂r
ρn(0)dr

]
=

π

2κ
[~vL× êz · ~d ]ρn(0)+

π

κ
[~vL · ~d ]ρn(0). (45)

Finally, the fourth integral in equation (26) is solved using
the relations (37) and (29):

1
κ

∫
d2rχd~vL ·~∇ρs(r̂) =

− dvL

κ

∫ 2π

0
sin(θ−φ)sin(θ−θH)dθ

∫
∞

0

∂ρs

∂r
dr

=−πρs[(~vL× êz) · ~d ]. (46)

The equation of motion is obtained from the solvability
condition when we replace the results obtained in equations
(38), (40), (41), (44), (45) and (46). In a compact form the
equation of motion can be written:

ρs[(~vs−~vL)×~̃κ] = D(~vL−~vn)+D′[êz× (~vL−~vn)]+d~vL

+d′(êz×~vL)+Sv~∇T. (47)

In the above equation,~̃κ is the quantum of circulation and we
have taken account that ~Jt = ~Js/2 and ~Js = ρs~vs. In addition

we have defined the coefficients

D =−κ̃ρn, D′ = κ̃ρn, (48)

d = κκ̃γ1

∫
∞

0
( f ′0)

2r2dr−κκ̃
γ2

2

∫
∞

0
p2( f 2

0 )′r2dr, (49)

d′ = κκ̃
γ2

2

∫
∞

0
p1( f 2

0 )′r2dr, (50)

Sv = 2γ2ηκ̃κ

∫
∞

0
( f 2

0 )′r2dr, (51)

ρn = ρn(0). (52)

The equation (47) determines the vortex dynamics in type
II superconductors in presence of a temperature gradient.
Equations of this type have been reported in some works in a
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phenomenological way [11]. In the present development this
equation is obtained in a natural way from the time depen-
dent Ginzburg - Landau equation. The term of the left side
of equation (47) represents the Magnus force, which is con-
nected to the momentum transfer between the vortex and the
the superfluid. The forces proportional to D and D′ are due
to dispersion of quasi particles by the vortices, presenting a
momentum transfer between the vortex moving with velocity
~vL and the normal fluid moving with velocity ~vn. The trans-
verse component of this interaction is the Iordanskii force.
The forces proportional to d and d′, according to Kopnin and
Kravtsov [15], are due to vortex relaxation processes associ-
ated to the vortex interaction impurities which are at rest in
the lattice. The transverse component of this interaction is
the Kopnin-Kravtsov force. The force proportional to ~∇T is
connected to the vortex thermal flow with a transport entropy
Sv. If a moving vortex transports entropy, it experiences a
force in a temperature gradient. The excistence of this force
is well known from experimental data [12,13,14].

4. CALCULATION OF THE COEFFICIENTS d,d′ AND Sv

In this section we will determine the explicit form for the
coefficients, which are connected to relaxation processes in
the vortex dispersion so as the entropy Sv due to the thermal
motion. In general, when the Ginzburg-Landau equation is
solved, one take some conjectures about the profile of the
order parameter inside the vortex. An approach of the vari-
ation of dimensionless order parameter, which we will use,
was proposed by Brandt [16]. In the present analysis we will
find solutions in the limit r→ 0 where the order parameter
has the form

f 2
0
2
' 1− e

− r2

2ξ2
0 ' r2

2ξ2
0

(53)

Where ξ0 is the coherence length. Replacing the equation
(53) in the equation (33), the following equation in cylindri-
cal coordinates is obtained:

∂2 p1

∂r2 +
1
r

∂p1

∂r
−Rr2 p1 = 0 (54)

where the parameter R = κ2γ1ξ2
0σ

(n)
xx was introduced. The

differential equation (54) has a solution in power’s series
given by the expession p1(r) = Σ∞

n=0anrn+q, where q = −1.
The asymptotic solution to the equation (54) must consider
that:

P = Φ+
∂χ

∂t
=~v ·~∇χcos(θ−θH) = v~∇χcos(θ−θH)

≈ 1
r

vcos(θ−θH). (55)

From the previous analysis p1(r)≈ 1/r in the limit r→ 0.
In the same way for the magnetic vector we have Q0(r) ≈
− 1

κ
∇χ ≈ − 1

kr . But on the other hand, Q0 satisfies the rela-
tion h0 = ~∇× ~Q0, where Q0(r) = 1

2 h0(0)r which determines
the solution Q0(r) =− 1

kr + 1
2 h0(0)r , where h0(0) is the mag-

netic field in the vortex center. In this sense, accounting the

relation (55) in the limit r → 0, then we have a1 = 0 and
therefore

p1(r)≈
1
r
. (56)

In order to determine p2(r) in the same way that for p1(r),
we look to the solution of the equation (32), in power series
and doing all the previous procedure one obtain

p1(r)≈
1
r
− p2cr. (57)

Now we are able to determine coefficients d , d′ and Sv.
Replacing the expressions (56) and (57) in the equations
(49), (50) and (51) in the limit r→ 0:

d = κκ̃γ1

∫
∞

0
( f ′0)

2rdr +
γ2

2

∫
∞

0
p2( f 2

0 )′rdr = κ(γ2− γ1)ρs,

(58)

d′ =−κκ̃
γ2

2

∫
∞

0
p1( f 2

0 )′rdr =−κγ2ρs, (59)

Sv = 2κ̃κγ2η

∫
∞

0
( f 2

0 )′r2dr = κ̃κγ2η
√

2πξo. (60)

From the above equations we observe that the parameter
d, which is associated to the interaction with impurities, has
a double nature, the first one is connected to the Bardeen-
Stephen mechanism of dissipation, whereas the second con-
tribution is due to variations in the local charge density in the
vortex interaction with impurities. The same effect occurs in
the obtaining of the coefficient d′. Equally it is important to
notice that the transport entropy posses a direct relation to re-
laxation processes due to the condensation and Coopers pair
breaking by different pairing potentials via vortex motion as
it is shown in equation (60).

5. SUMMARY

In the present analysis, we have obtained a vortex dynam-
ics equation in type-II superconductors. Following previous
works by Dorsey [5], Gorkov and Kopnin [6] we developed
a more general equation for the vortex motion in the frame of
the time dependent Ginzburg-Landau Equation. After some
assumptions, we derived a local solvability condition, which
governs the vortex dynamics. In this sense, we calculated the
explicit form for the force coefficients, which are the keys for
the understanding of the balance equation due to vortex in-
teractions with the environment. In this connection, we took
into account the spatial distribution of the normal electrons
in the vortex core. This fact allowed to obtain exact expres-
sions for the coefficients D and D′, which characterize the
interaction between vortices and normal electrons by their
dispersion. On the other hand, the approximated expressions
for the coefficients d and d′, which characterize the vortex in-
teraction with impurities were obtained. The nature of these
coefficients is connected to the energy dissipation due to lo-
cal variations of the charge density in the vortex core by the
electron pairing. The same source of dissipation is associated
to the transport entropy in the temperature gradient.
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