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Abstract
Computerized adaptive testing (CAT) comes with many advantages. Unfortunately, 
it still is quite expensive to develop and maintain an operational CAT. In this paper, 
various steps involved in developing an operational CAT are described and literature 
on these topics is reviewed. Bayesian CAT is introduced as an alternative, and the 
use of empirical priors is proposed for estimating item and person parameters to 
reduce the costs of CAT. Methods to elicit empirical priors are presented and a 
two small examples are presented that illustrate the advantages of Bayesian CAT. 
Implications of the use of empirical priors are discussed, limitations are mentioned 
and some suggestions for further research are formulated.
Keywords: Bayesian IRT modeling. Computerized Adaptive Testing. Eliciting priors. 
Item Response Theory. Item selection. Parameter estimation.

Teste Adaptativo Computadorizado Bayesiano
Resumo

O teste adaptativo Computadorizado (CAT) chega com muitas vantagens. 
Infelizmente, ainda é bastante caro para desenvolver e manter um CAT operacional. 
Neste artigo, descreve-se várias etapas envolvidas no desenvolvimento de um CAT 
operacional e faz-se uma revisão da literatura nesse tópico. O CAT Bayesiano é 
introduzido como uma alternativa, e propõe-se o uso de prioris empíricas para 
estimar parâmetros de itens e de indivíduos com o objetivo de reduzir os custos 
de CAT. Apresenta-se métodos para obtenção de prioris empíricas e dois pequenos 
exemplos para ilustrar a vantagem do CAT Bayesiano. Discute-se algumas 
implicações no uso de prioris empíricas, menciona-se limitações e formula-se 
algumas sugestões para novas pesquisas. 
Palavras-chave: Modelagem Bayesiana da TRI. Teste Adaptativo Computadorizado. 
Obtenção de priors. Teoria de Resposta ao Item. Seleção de itens. Estimação de parâmetros.
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Test Adaptativo Computadorizado Bayesiano
Resumen

El test adaptativo Computadorizado (CAT) tiene muchas ventajas.  Aunque, 
infelizmente, es bastante caro desarrollar y mantener un CAT operacional. En 
este artículo se describen varias etapas de su desarrollo y se hace una revisión de 
literatura del tópico. El CAT  Bayesiano aparece como una alternativa, y se propone 
el uso de prioris empíricas para estimar parámetros de ítems y de individuos con el 
objeto de reducir sus costos.  Se presentan métodos para obtener prioris empíricas 
y dos pequeños ejemplos que ilustran la ventaja del CAT Bayesiano. Se discuten 
algunas implicaciones en el uso de prioris empíricas, se mencionan limitaciones y 
se formulan sugerencias para nuevas investigaciones. 
Palabras clave: Modelo Bayesiano de la TRI. Test Adaptativo Computadorizado. 
Obtención de prioris. Teoría de Respuesta al Ítem. Selección de ítems. Estimación 
de parámetros.

Introduction
In computerized adaptive testing (CAT) the difficulty of the items is adapted 

to the performance level of the candidate. In this way, more information can be 
obtained about the level of the candidate by administering fewer items. Reductions 
in test length up to 40% can be obtained without any loss of measurement precision. 
Besides, candidates will not get bored by items that are too easy or too hard, and in 
this digital age, candidates often like computer-based testing and prefer CAT above a 
paper and pencil testing. Weiss (1973) presented one of the first CATs. Later on many 
large scale tests, like for example the Armed Services Vocational Aptitude Battery 
(ASVAB);(SANDS;WATERS;MCBRIDE,1997), the Graduate Management Admission 
Test (GMAT);(RUDNER, 2010), or the MathCAT (VERSCHOOR; STRAETMANS, 2010), 
were administered adaptively.

Despite the obvious advantages of adaptive testing, there were some 
misconceptions and some drawbacks when CAT was first implemented. First of all, 
developing a CAT turned out to be rather expensive, because of the amount of items 
that had to be written and pre-tested. An item bank needed to consist of enough 
items with various difficulty levels to enable the algorithm to select items with 
difficulty level close to the estimated ability level of the candidate. This implied 
considerable costs of item development, pre-testing and item calibration. Besides, 
in the early years of CAT, it was believed that CAT enabled continuous testing. 
Candidates could log on and do the test whenever they felt ready. Since the content 
of the test was adapted to the ability level of the candidate, chances of answer 
copying were assumed to be negligible. Besides, the probability of two candidates 
having the same test was controlled by the application of exposure control methods 
(SYMPSON; HETTER, 1985). Unfortunately, organized attempts were conducted to 
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crack the item bank by memorizing the items and publishing them on the web. For 
several high-stakes tests the content of the items was revealed within days after 
the test became operational. 

As a result, the popularity of CAT for educational measurement decreased. 
Even thought it was realized that problems related to item bank compromise, were 
problems of continuous testing rather than of CAT, the problem of expensive item 
banks still existed. These costs could either be reduced by decreasing the test length 
or by reducing the costs of item development. Reducing test length would result 
in less informative tests and in larger measurement errors. Decreasing expenses on 
item writing would imply less money for writing, pre-testing, and calibrating the 
new items. This would result in more uncertainty in the quality of the items. Both 
effects are unwanted. 

In this paper, we propose the use of empirical priors to decrease costs involved 
in CAT. We introduce methods for eliciting empirical priors based on covariates 
about the candidates and the items to increase the efficiency of CAT. First, a general 
framework for CAT is presented and the various steps of CAT are introduced more 
into detail. After that, a Bayesian model for CAT and procedures for eliciting and 
implementing empirical priors in CAT are presented. Some results are presented. 
Finally, implications of applying empirical priors in CAT are discussed, and some 
topics for further research are mentioned.

Computerized Adaptive Testing
Before a CAT can be administered, a whole system of testing has to be designed. 

Sands, Waters e Mcbride (1997), Wainer et al. (2000), and Van der Linden ; Glas 
(2010) describe various aspects involved in developing and implementing CAT.

As a start, test specifications have to be formulated. During this process, many 
questions have to be answered. In this paragraph, we just mention a few of them. 
What is the purpose of the test? Is it for classification, for mastery decisions or for 
proficiency estimation? Is it a fixed- or a variable length test? Are there any content- 
or other type of specifications that have to be met? Will the test be administered via 
the web, or at specific testing locations? Will the test be administered continuously 
or only during specific time slots? How many candidates will do the test? What 
types of items will be used? Are there any groups of candidates with specific 
needs that have to be accounted for? It generally takes quite some time to get a 
complete picture of the operational test. However, it really pays off to invest time 
and resources in designing the framework.

The next step is to choose a measurement framework. In CAT, item response 
theory (IRT) models (LORD, 1980), are applied to formulate the relation between the 
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observed responses and the underlying abilities of the candidate. IRT distinguishes 
the item parameters from the person parameters, which is a very convenient 
property. The item parameters can be estimated separately during item pre-testing. 
The calibrated items can be stored in an item bank, and during test administration 
some of them can be selected adaptively to estimate the person parameters. 
Logistic IRT models are most commonly applied for scoring dichotomous items. 
The 3-parameter logistic model (3PLM) can be formulated as:
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where jθ  denotes the ability of person j, and ( , , )i i ia b c denote the discrimination, 
difficulty, and guessing parameter of item i. In the 2-parameter logistic model 
(2PLM), the guessing parameter is assumed to be zero. Finally, in the Rasch model or 
the 1-parameter logistic model (1PLM), the discrimination parameters of all items 
are assumed to be equal to each other as well. Besides, many models for scoring 
polytomous items (OSTINI; NERING, 2006) have been presented in the literature. 
When several abilities account for the response behavior, multidimensional IRT models 
can be applied (SEGALL, 1996; VELDKAMP; VAN DER LINDEN, 2002; RECKASE, 2009).

Once test specifications have been written and an IRT model is selected, the 
item bank can be developed. Sometimes, the item bank is developed from scratch 
and a blueprint can be developed first (VELDKAMP; VAN DER LINDEN, 2000) to 
guide the item writing process. In other applications, a previous set of items might 
be available that could be used to develop an item bank (VAN DER LINDEN; ARIEL; 
VELDKAMP, 2006). For many testing programs a distinction is made between a 
master pool and operational item pools. This master pool contains all the items 
that are available for the testing program. New items are added regularly, and 
old items (temporarily) retire when they have been exposed too often or when 
their content is not up to date anymore. Operational item banks are selected 
from this master pool (ARIEL;VAN DER LINDEN; VELDKAMP, 2006) and in some 
applications several parallel operation item banks can be selected to rotate over 
locations and time (WAY; STEFFEN; ANDERSON, 1998, ARIEL; VELDKAMP; VAN 
DER LINDEN, 2004). As a rule of thumb, Stocking (1994) suggested the number 
of items in the bank to be roughly equal to twelve times the test length. Once 
the items are available they can be pre-tested and calibrated. During pre-testing 
the items are administered and their item parameters are estimated, either with 
commercial software packages, like for example BILOG-MG3 (ZIMOWSKI et al., 
2003), or with one of the non-commercial software packages that are available 
for estimating IRT models. The size of the pre-testing sample depends on the 
IRT model. The more parameters in the model, the larger the size of the sample 
has to be. For a 2-parameter IRT model, a sample size of 500 or more is often 
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suggested, while for a 3-parameter model it is generally recommended to have 
a sample size of at least 1000 candidates per item. To pre-test a large item bank 
of hundreds of items, it is often too demanding to administer all items to each 
candidate. Instead a linked design (SCHEERENS; GLAS; THOMAS, 2003, Chap. 
8) might be applied where all candidates respond to a subset of items and the 
various subsets of items overlap. To calibrate the whole item bank, a pre-test 
sample of thousands of candidates might be needed. Model fit statistics are 
available to check the psychometric quality of the items and to decide whether 
the items can be added to the item bank, or whether they have to be revised 
first (GLAS, 1988). It often happens that only half of the items show desirable 
psychometric properties, while the other half has to be rejected. This number 
has to be taken into account when the item bank is developed. The result of the 
item bank development step is an operational bank with a well-balanced content 
and a distribution of item difficulties such that there is always at least one item 
available at the performance level of the candidate.

1.	 The actual administration of CAT consists of five basic steps:
2.	 Initiation of ability estimate
3.	Selection of subsequent item
4.	Administration of the item
5.	Updating the ability estimate
6.	Checking whether the stopping criterion has been met

They are being dealt with in more detail in the next section.

A final issue is related to the platform that is applied to administer the CAT. 
Various commercial software packages are available (for an overview, see www.
iacat.org, Resources). besides, many testing agencies develop their own tailor made 
CAT software, to be able to meet their own specific needs.

The whole process of developing an operational CAT generally takes several years. 
Even though the theoretical framework is there and software for administering 
the test is available, there are still many decisions that have to be made. The item 
bank has to be developed with care, since the quality of the bank determines the 
quality of the CATs. Besides, thorough field testing is recommended not to run into 
nasty surprises once the test is operational.

Five basic steps of CAT
The previous paragraph already introduced the five basic steps of CAT. They are 

being dealt with more into detail in this section of the paper to provide more insight 
into the specificities of CAT. Some steps are rather straightforward to implement, 
but especially the step of item selection entails many issues.
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Step 1. Initiation
In Step 1, an initial estimate is made of the proficiency level of the 

candidate. Generally, the ability level is initialized at the mean of the 
proficiency distribution of the population (THISSEN; MISLEVY, 2000). An 
alternative is to randomly draw it from the ability distribution. Besides, 
initialization based on previously known information about the candidate 
might be applied as well (VAN DER LINDEN, 1999).

Step 2. Item selection
Many item selection rules have been proposed for CAT. Maximum Fisher 

information (BIRNBAUM, 1968) is most commonly applied, but Fisher interval 
information (VEERKAMP;  BERGER,1997), Kullback-Leibler information (CHANG; 
YING, 1996; VELDKAMP; VAN DER LINDEN, 2002), or mutual information 
(WEISSMAN, 2007) might be applied as well. All these item selection rules 
have in common that they try to maximize information obtained about the 
candidate in order to minimize the error of estimation. Chang e Ying (1999), 
on the other hand, observed that during the early stages of CAT administration, 
the ability estimate is not very precise yet. They reasoned that selection of 
very informative items at an uncertain ability estimates might not be optimal 
in practice. As an alternative, they proposed alpha-stratified CAT, where the 
item bank is stratified with respect to the discrimination parameter. Items 
with lower discrimination parameters have flatter item information curves. 
By selecting items with lower discrimination parameters during the early 
stages of CAT, the items will provide a comparable amount of information 
irrespective of the true ability of the candidate. When the estimated ability 
level is more precise, items from higher discrimination strata can be selected. 
Over the past ten years, many comparison studies have been carried out to 
find the best item selection rule. No overall winner has been found. Most of 
the item selection rules perform rather well when twenty or more items are 
being selected for the test. 

During the second step, test specifications have to be taken into account 
as well. These specifications can be related to the content of the test, they can 
be about time limits, or about the distribution of answer keys. They can also 
be about the word count or about items excluding each other from the same 
test when one item contains clues to the other. Specifications can be about the 
psychometric properties of the test, or about technical issues, like a minimum 
number of items to be selected for a text passage or a graph. For an overview 
of various types of specifications, see Van der Linden (2005, chap. 2). Kingsbury 
e Zara (1998) proposed to stratify the item bank with respect to, for example, 
content classifications, and to rotate item selection over the various strata. 
When a limited number of specifications have to be met, this approach might 
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work well. For testing programs where large numbers of specifications have be 
formulated, this approach can become intractable. Stocking e Swanson (1993) 
introduced a Weighted Deviation Model, where targets were set for various 
specifications and the weighted deviation from these targets was minimized, and 
Luecht (1998) developed a Normalized Weighted Absolute Deviation Heuristic. 
However, both of these methods cannot guarantee that the final CAT will meet 
all specifications. As an alternative, Van der Linden e Reese (1998) proposed the 
shadow test approach, a 2-stage procedure for item selection where 0-1 linear 
programming techniques are applied to make sure that all specifications will be 
met. During the first stage, a full-length test is constructed (the shadow test) 
that performs optimal with respect to the item selection rule at the current 
ability estimate and meets all the specifications. During the 2nd stage, the best 
unadministered item is selected from the shadow test to be presented to the 
candidate. For an extensive description of the shadow test approach, see also 
Van der Linden (2005, Chap. 9). 

Another issue that has to be mentioned is exposure control. When maximum 
Fisher information is applied for selecting the next item, only those items that 
perform optimally with respect to this criterion will be selected. Typically, 
20 percent of the items in the bank are selected for administration, while 80 
percent are not selected at all. The same pattern can be found when any of 
the other selection rules that maximize some kind of information criterion 
is applied. The best items in the pool are over exposed, while the other items 
are hardly exposed during test administration. Van der Linden and Veldkamp 
(2007) studied this phenomenon more into detail and they found that for an 
operational item bank, only a few items will be maximally informative over 
the whole ability range. We repeated their analyses for an operational bank 
of 499 items. The items bank was part of an intelligence testing battery. To 
calibrate these items, they had been administered to a pre-testing sample of 
3000 candidates. These candidates represented the Dutch labor force. Each of 
the candidates answered a subset of items in the bank. Bilog MG (ZIMOWSKI 
et al.,1996) had been applied to calibrate the items with the 2PLM. The curves 
of the most informative and second most informative items for every ability 
level are shown in Figure 1. 
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Figure 1 - Curve of most informative (solid line) and second most informative 
(dashed line) items

Source: Authors  (2012).

In our analyses, only 12 out of 499 items were maximally informative at any 
ability level. These are the items that will be selected when Fisher information 
is optimized during item selection. It is obvious that their exposure rates will 
be high. The same phenomenon can be observed for the group of items that 
are 2nd most informative or 3rd most informative. Since only 26 items had to be 
selected for CAT, it demonstrates why only 20 percent of the items in the bank 
are actually administered. This has some undesired consequences. The items 
with highest exposure rates might become known to the candidates, which 
implies a test security problem, and it might compromise the testing results. 
Besides this risk, there is also the loss of investments. Considerable efforts and 
money have been put in writing and pre-testing items that are not selected 
for CAT. To deal with both the problems of overexposure and underexposure 
of items in the bank, exposure control methods have been proposed. The most 
famous exposure control method has been proposed by Sympson e Hetter 
(1985). In their method, they conduct a probability experiment after an item 
has been selected. In fact, they add this as Step 2b to the pseudo algorithm 
for CAT. In this experiment, the probability of being administered after being 
selected depends on the popularity of the item. In an extensive simulations 
study, the probabilities are set in such a way that for all items the expected 
exposure rate is smaller than the maximum exposure rate (generally set at 

max 0.20r =  or max 0.25r = ) allowed. The more popular items have a small 

Iθ

θ
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probability of passing this hurdle and the less popular items have a probability 
of being administered close to 1. Whenever a selected item does not pass 
the hurdle, a next item (Step 2) is selected until an item passes the Sympson 
Hetter probability experiment and it can be administered to the candidate. 
Many modifications of the Sympson Hetter method have been proposed. 
For example, Stocking e Lewis (1998) observed that within certain ability 
groups, the same items were administered even though the Sympson Hetter 
method was applied. So, even though the overall exposure rate was below, 
within certain ranges of ability values, it was high. Therefore they proposed 
to modify the Sympson Hetter approach and to make it conditional on the 
ability estimates. In this way, the problem could be dealt with at the costs of 
even more extensive simulation studies. Van der Linden and Veldkamp (2004, 
2007) proposed an entirely different approach. They developed an exposure 
control method that did not need any simulations, but that was based on 
observed exposure rates instead. In their item eligibility method, a probability 
experiment is carried out for every item in the bank with exposure rate higher 
than the maximum exposure rate imposed. In this probability experiment it is 
determined whether the item is eligible for administration, that is, whether it 
is included in the sub item bank from which the subsequent item is selected 
or not. The probability of being eligible depends on the ratio of the observed 
exposure rate and the maximum exposure rate. Barrada, Abad e Veldkamp 
(2009) compared both methods and found a slightly better performance for 
the eligibility method. Besides, Barrada, Olea e Veldkamp (2009) observed that 
it would pay off to randomize item selection at the beginning of CAT and to 
save the more informative items towards the end when the estimated ability 
is close to the true ability of the candidates. Besides, towards the end of the 
adaptive test, the candidates are spread over the whole ability continuum 
and over exposure is less of an issue. Because of this, multiple maximum 
exposure rates can be applied, depending on the position of the item in the 
test. They were able to demonstrate that a more balanced usage of the item 
bank could be obtained this way, with hardly any decrease in measurement 
precision. All of these methods focus on the control of over exposure, and 
it is generally assumed that underexposure problems will reduce when the 
exposure of the most informative items is limited. In practice, exposure 
control methods only increased the use of a subset of the under exposed 
item. Revuelta e Ponsoda (1998) addressed this issue. They proposed the 
progressive or restricted method for item selection where item selection is 
based both on the information provided by the item and on a randomized 
component. During the early stages of CAT the randomized component is more 
important. Towards the end, the information component is more important. 
By partly randomizing item selection, a more evenly distributed exposure was 
obtained. The alphas-stratified method (CHANG; YING, 1999) also deals with 
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underexposure. During the early stages of CAT, items are selected from strata 
with lower discrimination indices. These items are less informative, and tend 
to have low exposure rates. Limiting item selection to these strata increases 
the exposure rates of these items and reduces the problems of underexposure. 
The best results with exposure control problems have been obtained when 
methods for dealing with over exposure were combined with methods that 
deal with underexposure. Veldkamp, Verschoor e Eggen (2010) therefore 
proposed a method that combined both approaches. 

Item selection in CAT has been an important research topic for many years, 
also because the adaptive item selection process is what makes CAT different from 
administering linear test forms. This paragraph only covers a small part of the 
literature on it. Most of the existing papers are about CAT with dichotomously 
scored items that are calibrated with a unidimensional IRT model. Nowadays, the 
focus is shifting more towards developing methods for CAT with more complex 
item types that are calibrated with more complicated, often multidimensional, IRT 
models. Even though impressive results have been obtained, there are still many 
more areas that have to be studied.

Step 3. Administration
In the third step the item is presented to the candidate. The mode of 

presentation has to be robust against the use of various computer platforms and 
various types of monitors. It has to be guaranteed that every candidate can respond 
to the item based on the same amount of information without any distraction. 
After presenting the item, a candidate either has limited or unlimited time to 
answer the item. When response times are limited, one might consider the use of 
response time models (VAN DER LINDEN, 2007) to correct for speededness of the 
test. In some CATs, several items are presented on the same page, for example, 
when they are all related to the same stimulus. In most CATs however, only one 
item is presented at a time. It is important to realize that as a result of selecting 
each subsequent item based on information obtained in previous items, in most 
CATs it is not allowed to review earlier responses. Allowing item review would 
reduce measurement efficiency and would make CAT vulnerable to test taking 
strategies (WAINER, 1993), besides the assumption of local independence would 
be violated, that states that the observed responses are independent of each 
other given an individual’s score on the latent trait. Bowles e Pommerich (2001) 
studied the impact of item review and found only limited effects on bias and 
root mean squared error of the ability estimates. 

Step 4. Ability estimation
Ability estimation in CAT is very much comparable to ability estimation in paper 

and pencil testing. For every response pattern 1 2( , ,..., )gu u u
 where iu  denotes 
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whether item i is answered correctly ( 1)iu = or not ( 0)iu = and g is the number 
of items administered, a likelihood can be defined as:

1

1

(u | ) ( ) (1 ( )) .i i

g
u u

i
i

L P Pθ θ θ −

=

= −∏          (2)

Since the items have been calibrated, the item parameters are assumed to 
be known. A Gaussian quadrature procedure can be applied to obtain maximum 
likelihood estimates of the ability parameter (ABRAMOWITZ; STENGUN, 1964). It 
should be noted that maximum likelihood estimates stay undetermined until a 
mixed response pattern is observed. As an alternative the Warm estimator (WARM, 
1989) can be applied, where a weighted likelihood is maximized.

Step 5. Stopping rules
In CAT, the composition of the test is adapted to the performance of the 

candidate. Because of this, high and low performing candidates will answer different 
sets of items, and measurement precision might vary over candidates. To compensate, 
a CAT could be terminated when a pre-defined level of measurement precision is 
reached. In this way it is guaranteed that all candidates are measured with the 
same level of precision, even though some candidates might have to answer more 
questions than others. For some applications a variable length CAT might not be 
feasible, either because the content of the test is specified into detail, or because 
candidates might perceive a variable test length as unfair. For these applications, 
a CAT could be terminated after a fixed number of items. A third stopping rule, 
sometimes combined with either variable length or fixed length CAT, is to set a time 
limit for the whole test. For practical reasons this is very convenient, but one should 
be aware of the risks of making the test speeded, which might threat test validity.

A Bayesian framework for CAT
Both the item parameters and the ability parameters are estimated based on 

response patterns obtained during pre-testing (item parameter estimates) or during 
operational testing (ability estimates). No other information about the composition 
of the items or background information about the candidates is taken into account. 
Efficiency of CAT might increase when additional sources of information would 
be taken into account, and a Bayesian IRT framework can be applied to include 
additional information in CAT.

Bayesian IRT models
In educational and psychological measurement, we are generally interested in 

the distribution of the item and the person parameters given the observed response 
patterns. When Bayes Theorem (1763) is applied, the conditional probability of the 



68	 Bernard P. Veldkamp and Mariagiulia Matteucci

Ensaio: aval. pol. públ. Educ., Rio de Janeiro, v. 21, n. 78, p. 57-82, jan./mar. 2013

item and person parameters given the data can be modeled as a combination of 
prior beliefs about them and a parametric model about what the data should look 
like, conditional on the item and person parameter values:

	 (( , ) | ) ( , ) ( | , )p u p p uξ θ ξ θ ξ θ∝             (3)

where ξ denotes the item parameters ( , , )i i ia b c and θ  the person or ability 
parameter. IRT models can be used to model the relationship between the observed 
data and the item and the person parameters in this framework. However, the 
interesting addition of Bayesian models is that information available about the 
items and the persons can be applied to elicit informative priors.

Instead of the logistic IRT models in Equation (1), normal ogive IRT models (LORD, 
1952) are commonly applied within a Bayesian framework. The 3-parameter Normal 
Ogive (3PNO) model can be formulated as:

( 1| , , , ) (1 ) ( )i i i i i i i iP u a b c c c bθ α θ= = + − Φ −           (4)

where
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π

−
−

−∞

Φ − = ∫           (5)

Both the 3PLM and the 3PNO define item characteristic curves that are identical 
up to a scaling constant 1.702d = . To estimate the item and ability parameters in 
this model a Gibbs sampler (GEMAN; GEMAN, 1984) might be applied. Among others, 
Albert (1992), Béguin e Glas (2001), Fox e Glas (2001), and Matteucci, Mignane e 
Veldkamp (2009) developed Gibbs samplers for various IRT models. Standardized 
software packages, like MATLAB or the R-package, can be applied for Bayesian 
parameter estimation. Albert (1992) provides MATLAB code for the 2PNO model 
and Fox (2010) provides R codes for several more complicated IRT models. 

Eliciting and including priors for item parameters
Several methods have been proposed in the literature to predict item parameters 

based on item features. In item cloning, families of clones are derived from a parent 
item, by varying those attributes that are assumed not to be related to the item 
difficulty (BEJAR, 1993; GLAS; VAN DER LINDEN, 2003). Luecht (2009) proposed the 
assessment engineering approach, where items are generated based on construct 
maps that describe performance expectations at various levels of the scale. Sheehan 
(1997) introduced the application of Classification and Regression Trees (CART) 
(BREIMAN et al., 1984), to model the relationship between skills needed to solve 
the items and item difficulty. All of these methods have in common that they result 
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in an initial prediction of the item parameters with a certain level of uncertainty. 
Incorporating these predicted values in the parameter estimation process, might 
offer serious reductions in the costs of item bank development.

Including collateral information about persons in CAT
Various kinds of background variables about the abilities of the candidates 

might be available during testing. They might include socio-economic or 
demographical variables, but they might also be scores resulting from earlier tests. 
Several authors discussed the issue of including collateral information in CAT 
(ZWINDERMAN, 1991, 1997; VAN DER LINDEN, 1999, VAN DER LINDEN; PASHLEY, 
2010; MATTEUCCI; MIGNANI; VELDKAMP, 2009). First of all, collateral information 
can be used to find an initial estimate of the ability of the candidate. When the 
initial ability estimate is close to the true ability of the candidate, only items 
that are informative will be selected, item exposure will be less of a problem, and 
the CAT will converge faster, which results in shorter, less expensive tests. Guyes 
(2008) motivated the use of more accurate initial ability estimates in CAT by 
demonstrating how a poor initial estimate might cause a very slow convergence 
of CAT. Besides, an informative prior could be used to formulate a posterior 
distribution of the ability parameter and expected a posteriori (EAP) estimation 
can be applied to obtain ability estimators. Bayesian item selection criteria have 
been developed and compared (OWEN, 1975; VAN DER LINDEN, 1998; VAN DER 
LINDEN; PASHLEY, 2010; VELDKAMP, 2010).  Matteucci e Veldkamp (2012) even 
proposed to use a Gibbs sampler for ability estimation, for example, to handle 
applications where the abilities of the population are not normally distributed. 

Empirical example
To illustrate the use of empirical information about both the items and the 

persons, data was analyzed from a computerized adaptive IQ test. The Connector 
Ability (MAIJ-DE MEIJ et al., 2008) is developed to measure IQ for application in 
the field of Human Resource Development, either during job applications or for 
career development. It consists of several subtests: Number Series, Figure Series, 
and Raven’s Matrices. All of the items can be solved by applying a certain set of 
rules. For example, for the Number Series subtest, each item consists of a range of 
numbers and the candidates have to select the correct next number from a set of 
alternatives. Each item can be described by:

1.	Initial number in the interval [-10,10]
2.	Operator at level 1 (addition, subtraction, multiplication, division)
3.	Operand at level 1
4.	Operator at level 2 (addition, subtraction, multiplication, division, none)
5.	Operand at level 2
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To solve the item correctly, a candidate has to identify the features of the item and 
to apply them correctly to infer the next number in the series. For example, the item

	 1 4 10 22 46 ?
can be decomposed as

	 1 3 6 12 24 ?+ + + + ⇔

	
1 3 2*( 3) 2*(2*( 3)) 2*(2*(2*( 3))) ?+ + + +

The initial number equals 1, the level 1 operator is addition, the level 1 operand equals 
3, the level 2 operator is multiplication, and the level 2 operand equals 2. As a consequence, 

the next step would be 2*(2*(2*(2*( 3)))) 48+ = + , and the correct answer would 
be 94. In the Connector Ability, the difficulty of the Number Series items is increased even 
further by adding items that are a mix of two series. The odd positions in the range of these 
items belong to the first series, while the even positions belong to the second series. For all 
subtests it holds that the complete set of rules that has to be applied to solve the items is 
presented to the candidate in the introduction section of the test. Some operators are more 
difficult than others, and the size of the operands also influences the complexity of the items. 
In this example we use the features of the items as background information to elicit priors 
for the item parameters. The scores on one subtest were used as background information 
about the person, to elicit information priors for the person parameters.

Example 1. Item parameter estimation
Matteucci, Mignani,Veldkamp (2012) studied the use of informative priors in 

CAT. A pool of 391 Number Series items, that were calibrated with a 2PNO model, 
was available. Discrimination parameters were in the range of [0.10,2.35], with the 
median equal to 0.69. The difficulty parameters were in the range of [-3.30,2.30]. 
Regression trees were used to build a model that predicted the psychometric item 
parameters based on the item features using MATLAB 7.1 (MATHWORKS, 2005). The 
minimum node size was set equal to 10 items, the 1-SE rule was applied to choose 
the best tree, and 10-fold cross validation was applied. The resulting regression 
trees were used as informative priors in the process of item parameter estimation.

To simulate a real item calibration process, 20 items were randomly selected 
from the 391 item bank. Response patterns of 100 candidates were simulated as a 
calibration sample. In order to evaluate the parameter recovery by using different 
prior distributions for item parameters, a vague prior distribution for the item 
parameters, represented by the product of an indicator function ensuring positive 

discrimination parameters, i.e. 
1

( ) ( 0)
n

i
i

p I aξ
=

= >∏
 
(see ALBERT, 1992; FOX; GLAS, 

2001; BAKER; KIM, 2004), was compared to the empirical prior distributions elicited 
using regression trees. 
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A Gibbs sampler (MATTEUCCI; MIGNANI; VELDKAMP, 2009) was used to estimate 
the parameters. For each simulation, 5000 iterations were used with a burn-in of 
500 and 100 replications were conducted. The convergence of the algorithm was 
checked by calculating the Monte Carlo error as implemented in the R package 
BOA (SMITH, 2007). A rule of thumb is that the Monte Carlo error should be 
smaller than 5% of the standard deviation. All simulations were implemented in 
the software MATLAB 7.1 (MATHWORKS, 2005). 20 items were randomly chosen 
from a calibrated item bank. Based on their discrimination parameters they were 

classified as low discriminative (α<0.60), medium discriminative ( [0.60,1.00]a ∈

), and high discriminative ( 1.00)a > items, and based on their difficulties as very 

easy ( 1.00)b < − , easy ( [ 1.00,0.00])b∈ − , moderate ( (0.00,1.00])b∈ , and 

difficult ( 1.00)b >  items. These categorizations were used to compare the results 
of re-estimating the item parameters based on empirical priors based on regression 
trees on the one hand and the vague prior on the other hand. The results are shown 
in Tables 1 and 2. 

Table 1 - Item discrimination recovery using different priors

Vague prior Empirical prior

aTRUE â bias RMSE â bias RMSE

Low 0.53 0.06 0.22 0.52 0.04 0.18

Medium 0.92 0.15 0.44 0.80 0.03 0.20

High 1.74 0.42 1.06 1.22 -0.11 0.25

Source: Authors  (2012).

Table 2 -  Item difficulty recovery using different priors

Vague prior Empirical prior

bTRUE b̂ bias RMSE b̂ bias RMSE

Very easy -1.51 -0.21 0.63 -1.31 -0.02 0.20

Easy -0.62 -0.06 0.30 -0.56 0.00 0.18

Moderate 0.17 0.02 0.16 0.12 -0.03 0.14

Difficult 0.89 0.07 0.20 0.81 -0.00 0.15

Source: Authors  (2012).
	
Informative priors results in a more accurate item parameter recovery for both 

the parameters. Especially for medium ( [0.60,1.00]a ∈ ) and high ( 1.00)a >
discriminating items, the use of empirical priors increased measurement precision 
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considerably. The average Root Mean Squared Error (RMSE) was reduced by more 
than fifty percent. This is especially important for CAT, because high discriminating 
items are selected more often to be administered. For the difficulty parameter, 
the effects were less drastic. Only for the very easy items ( 1.00)b < − , the use of 
empirical priors reduced RMSE more than fifty percent.

The lesson learned from this example is that one might reduce the sample size 
considerably when empirical priors are used, without any loss in measurement 
precision. This is one way to reduce the costs of CAT. 

Example 2. Person parameter estimation
To study the impact of background variables in CAT, the scores of the Raven 

Matrices (RM) subscale of the Connector Ability were used as collateral information 
for the Number Series (NS) subtest. The method in Matteucci, Mignani e Veldkamp 
(2009) was applied to find the relationship between both subscales. It could be 
formulated as 

	 ~ ( 0.243 0.394 ,0.414)NS RMNθ θ− + ⋅       (6)

where NSθ  and RMθ  represent the latent scores on the NS and RM subscales. 
Matteucci e Veldkamp (2012) studied the effects of the use of background 
information for person parameter in CAT. The NS CAT was simulated for 660 real 
candidates whose NS and RM scores were available. The NS item bank in this example 
consisted of 499 items calibrated with the 2PNO model. The Connector Ability is 
a variable length CAT where Standard Error (SE)<0.32 is used as a stopping rule 
for each subtest. 

In a simulation study, the average test length for CAT where the empirical 
prior ~ ( 0.243 0.394 ,0.414)NS RMNθ θ− + ⋅ ,  based on Equation 6, for both 
initialization and ability estimation was compared to CAT with a non-informative 
prior ~ (0,1).NS Nθ  For every candidate, the CAT was replicated 10 times to 
get reliable results. Based on the known abilities of 660 real candidates, more 
or less evenly distributed over the ability ranges {<-0.9;[-0.9,-0.6];(-0.6,-
0.3];(-0.3,0.0];(0.0,0.3];>0.3}, answer patterns to the variable length CAT were 
simulated and the person parameters were re-estimated. The CAT was terminated 
when the SE < 0.32. For various groups of candidates the resulting test lengths 
are reported in Table 3. 
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Table 3 -  Person parameter estimation using different priors

Empirical

prior

Non-

Informative 
prior

Ability range

Number of 
items with 
difficulty in 
this range

Number of 
candidates in 

this range

Average 
number of 

items

Average 
number of 

items

< -0.9 136 106 10.27 11.02

[-0.9, -0.6] 64 97 9.14 9.48

[-0.6, -0.3] 78 132 9.09 9.20

[-0.3, 0.0] 78 123 9.32 9.50

[0.0, 0.3] 61 86 9.92 10.31

>0.3 82 116 13.78 15.38

Source: Authors  (2012).

For those candidates with a true ability close to zero, the informative prior 
resulted in slightly shorter tests. For the candidates in the lowest and highest ability 
category however, considerable reduction in test length was obtained. 

Empirical priors therefore, can be used successfully to reduce test length without 
any loss of measurement precision. 

Discussion
In this paper, various aspects of CAT were introduced and reviewed. It was argued that 

even though CAT has some important advantages, the cost of development and maintenance 
are high. Much higher in general, then the costs of linear testing. To reduce the costs, Bayesian 
CAT was introduced. In Bayesian CAT, prior beliefs and observed data are combined to estimate 
both item and person parameters. It was demonstrated that, both in the item parameter 
estimation and in the person parameter estimation phase, considerable gains can be made 
by eliciting empirical priors for both the person and the item parameters, and implementing 
them in CAT. Bayesian CAT might therefore be an important future direction of CAT. 

The quality of the information is of course very important. If the predictive 
power of the model is low, hardly any gains will be made. Moreover, as was also 
illustrated by Guyer (2008), inaccurate initialization of CAT will even result in longer 
and less informative tests. Another issue is related to the ethical implications of the 
use of empirical priors. When they are applied, each candidate is not only scored 
based on his/her responses, but background information is taken into account as 
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well. In medical applications it would be no problem to use available information 
about the patient to obtain more precise results of testing. But in high-stakes 
educational measurement, it would not be accepted. For those applications, it 
could be considered to use empirical information during CAT administration, but 
to report final scores based on response patterns only.

With respect to the item parameter estimation, the use of empirical information 
is less controversial. Recently the interest in automated item generation has grown 
considerably. Based on cloning models, CART models or Assessment Engineering 
models, psychometric item parameters can be predicted, and the time consuming 
expensive pre-testing phase might be skipped completely. Initially, predicted item 
parameters can be used to administer the test, and these parameters can be updated 
on-the-fly (MAKRANSKY, 2009). Of course, the uncertainty in the item parameters 
is considerable initially, which might result in over estimation of the information in 
the test (HAMBLETON; JONES, 1994). But recently, some papers have been written 
about taking the uncertainty in the item parameters into account during test 
assembly (VELDKAMP, 2012). 

Finally, this paper dealt mainly with increasing the efficiency, just one of 
the fascinating aspects of CAT. Another important topic of research would be 
the use of more complex item types. At this moment, almost all operational 
CATs use either dichotomously or polytomously scored multiple-choice items. 
But since CATs are administered on a computer, more complex item types with 
constructed responses and dependencies between items might be developed. 
New IRT models will be needed to account for then. Besides, almost all 
operational CATs have been developed for assessment of learning. The first 
initiatives (EGGEN, 2011) have been taken to develop CATs for assessment for 
learning, where an adaptive algorithm is used to optimize the learning process 
instead of the measurement of learning outcomes. More research and practical 
work will be needed to explore all possibilities of CAT.
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