

observados. A incidência de neutropenia foi de 23%; 12% dos pacientes apresentaram efeitos tóxicos graves, sendo que 6% tiveram que interromper a quimioterapia.

Comentário

De fato, a contribuição da cirurgia no câncer gástrico já atingiu o padrão de excelência máxima no que diz respeito aos benefícios na sobrevida a longo prazo e na determinação adequada do estádio. Dessa forma, a evolução do seu tratamento seguirá o sentido de novas modalidades terapêuticas tais como quimioterapia e radioterapia, em suas várias formas de emprego, desde que desenvolvidas e aprimoradas a partir de protocolos investigativos sérios, criteriosos e bem desenhados.

OSVALDO ANTONIO PRADO CASTRO
ELIAS JIRJOSS ILIAS

Paulo Kassab

Referência

I. Cunningham D, Allum WH, Stenning SP, Thompson JN, Van de Velde CJ, Nicolson M, et al. MAGIC Trial Participants. Department of Medicine, Royal Marsden Hospital, Sutton , Surrey, United Kingdom. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Engl | Med. 2006;355(1):11-20.

Emergência e Medicina Intensiva

EFEITOS DOS NÍVEIS DE PRESSÃO EXPIRATÓRIA FINAL POSITIVA NO PICO DE FLUXO EXPIRATÓRIO DURANTE A HIPERINSUFLAÇÃO MANUAL

A hiperinsuflação manual (HM) é frequentemente utilizada por intensivistas e fisioterapeutas na assistência de pacientes em unidades de terapia intensiva (UTI) adulto, pediátrica e neonatal, com o objetivo de realizar insuflação pulmonar passiva e aumentar o pico de fluxo expiratório (PFE), e consequentemente melhorar a complacência dinâmica e estática, aumentar o volume de secreções mobilizadas e prevenir pneumonias associadas à ventilação pulmonar mecânica (VPM). O estudo randomizado de Savian et al. adaptou uma válvula de pressão expiratória final positiva (PEEP) na saída exalatória da bolsa auto-inflável de ressuscitação manual, com a finalidade de analisar se HM é efetiva como técnica de mobilização de secreções, comparando o PFE e o volume corrente (VC), por meio de um pulmão modelo, utilizando seis diferentes níveis de PEEP (0; 5; 7,5;10; 12; 15 cmH₂O) e duas complacências pulmonares (0,05 e 0,02 l/cmH₂O). Dez fisioterapeutas foram treinados para participar do estudo para executarem a HM com o objetivo de promover desobstrução brônquica, atingindo pico de fluxo inspiratório de no máximo 35 cmH₂O (mensurado através de um manômetro). Verificou-se que o circuito Mapleson-C (tipo de bolsa auto-inflável com reservatório) gerou maior PFE (p<0,01), quando comparado ao circuito Laerdal, em todos os níveis de PEEP.

Entretanto, em pulmões normais (complacência 0,05 l/cm H_2O), houve uma redução do PFE (P<0,01). O circuito Laerdal, em níveis de PEEP maiores do que 10 cm H_2O , não gerou PFE capaz de produzir fluxo de gás-líquido em duas fases, conseqüentemente não mobilizou as secreções. Concluindo que a HM é indicada para a mobilização de secreções espessas com *plugs*, sendo o circuito Mapleson-C considerado o mais adequado para esta finalidade.

Comentário

Alguns estudos clínicos^{2,3}, com pacientes adultos, têm demonstrado benefícios na utilização da HM para a mobilização de secreções traqueobrônquicas, para reexpansão de unidades alveolares colapsadas, para a melhora da complacência dinâmica e da oxigenação de pacientes em VPM.

É importante a monitorização dos parâmetros gasométricos e hemodinâmicos quando da aplicação da HM, embora não se tenha relatos de efeitos adversos no aspecto de estabilidade cardiovascular ou de troca de gases quando aplicada a HM com pressão de até 40 cmH₂O^{3,4}.

A HM é uma técnica de fisioterapia respiratória fundamental em UTI, desde que seja realizada com base em um protocolo e executada por equipe treinada. Entretanto, não existem evidências que suportem a sua utilização em pediatria e neonatologia, mas na rotina destas unidades esta técnica é amplamente difundida e utilizada com sucesso por fisioterapeutas experientes, com o auxílio de um manômetro de pressão.

CLARISSA BATTLER
CÍNTIA JOHNSTON

WERTHER BRUNOW DE CARVALHO

Referências

I.Savian C, Chan P, J Paratz. The effect of positive end-expiratory pressure level on peak expiratory flow during manual hyperinflation. Anesth Analg. 2005; 100:1112–6.

2.Suh-Mwa Maa DSN, Tzong-Jen H, Kuang-Hung H. Manual hyperinflation improves alveolar recruitment in difficult-to-wean patients. Clin Investig Crit Care. 2005;128:2714-21.

3. Hodgson C, Denehy L, Ntoumenopoulos G et al. An investigation of the early effects of manual lung hyperinflation in critically ill patients. Anesth Intensive Care. <math>2000;28:255-61.

4. Paratz J, Lipman J, McAuliffe M. Effect of manual hyperinflation on hemodynamics, gas exchange, and respiratory mechanics in ventilated patients. J Intensive Care Med. 2002; 17:317-24.

Ginecologia

O USO DA ASSINATURA GÊNICA NA ESCOLHA DE QUIMIOTERÁPICOS PARA O TRATAMENTO DO CÂNCER

Recente publicação da *Nature Medicine*¹ estudou células cancerosas de mama, ovário e pulmão por meio de *microarray* (análise gênica múltipla), que tem o objetivo de avaliar o perfil gênico, ou seja, suas propriedades moleculares específicas, denominadas assinaturas gênicas. Utilizando-se dessa assinatura, os autores conseguiram caracterizar o melhor regime quimioterápico, consoante o tipo de tumor, pela validação

obtida com o tratamento clínico empregado. Os resultados sinalizaram que a aplicação da assinatura na prática clínica pode melhor selecionar os agentes citotóxicos a serem prescritos, bem como a possibilidade de se associar fármacos alvo-específicos, como o trastuzumab, recomendado para o câncer de mama. De fato, os autores observaram que a assinatura gênica foi capaz de predizer em mais de 80% quais os fármacos de melhor eficácia para o tratamento dos tumores.

Comentário

Entre as novas tecnologias para o melhor entendimento do genoma, destaca-se o microarray, capaz de avaliar simultaneamente milhares de genes, ou seus produtos, que permitiu caracterizar a impressão molecular ou a assinatura gênica dos tumores. Os microarrays estão sendo usados para analisar a expressão de RNAm, ou do DNA, de vários genes, permitindo a caracterização de diferentes fenótipos associados à resposta ao tratamento clínico, bem como predizendo o intervalo livre de doença², por meio das condições linfonodais e da sobrevida livre de doença com distintos agentes quimioterápicos³. Em estudo prévio, a assinatura gênica foi testada em 295 mulheres com câncer de mama (por microarray), definindo dois grupos: o primeiro, cujos genes indicavam bom prognóstico, e o segundo, mal prognóstico. Os resultados

mostraram que as mulheres do primeiro grupo exibiram significativa redução na recidiva da doença⁴.

Mais recentemente, os microarrays estão sendo recomendados como fator preditivo para resposta à quimioterapia. Entretanto, mais estudos são necessários para validação desta indicação³.

Do exposto, conclui-se que a assinatura gênica certamente representará uma importante estratégia futura de tratamento do câncer, visando não só uma maior resposta ao quimioterápico, mas também propiciando uma melhor qualidade de vida às usuárias e menor impacto econômico ao sistema de saúde.

VILMAR M. OLIVEIRA José M. Aldrighi

Referências

- I.Potti A, Dressman HK, Bild A, Riedel RF, Chan G, Sayer R, et al. Genomic signatures to guide the use of chemotherapeutics. Nat Med. 2006. [cited Oct 2006]. Available from: http://www.nature.com/nm/journal/vaop/ncurrent/abs/nm1491.html.
- 2.. Chang JC, Hilsenbeck SG. Prognostic and predictive markers. In: Harris JR; Morrow M; Osborne CK. Disease of the breast. 3^{nd} ed. Philadelphia: Lippincott Williams & Wilkins; 2004. p.674-96.
- 3. Reis-Filho JS, Westbury C, Pierga JY. The impact of expression profiling on prognostic and predictive testing in breast cancer. J Clin Pathol. 2006; 59:225–31. 4. Van de Vijver MJ, He YD, Van't Veer LJ, Dai H, Hart AA, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347:1999-2009.