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SUMMARY
The prevalence of type 2 diabetes mellitus (T2DM) in the elderly grew sharply over the last decade. Reduced insulin sensitivity and 
secretory capacity, weight gain, sarcopenia, and elevated adiposity are all common metabolic and body changes in the aging popu-
lation that favor an increased risk of hypoglycemia, frailty syndrome, falls, and cognitive dysfunction. First line antidiabetic therapy 
is frequently not safe in older individuals because of its high risk of hypoglycemia and prevalent co-morbid diseases, such as chronic 
kidney disease, osteoporosis, cardiovascular disease, and obesity. Sodium-glucose cotransporter 2 inhibitor (SGLT2i) is a new class of 
antidiabetic therapy that inhibits glucose and sodium reabsorption on renal proximal convoluted tubule. Its effect is well demonstrat-
ed in various clinical scenarios in the younger population. This review and metanalysis describe particularities of the SGLT2i on the 
elderly, with mechanistic insights of the potential benefit and remaining challenges about the use of these drugs in this important age 
group. Further, we will present a meta-analysis of the main effects of SGLT2i reported in post-hoc studies in which the median age of 
the subgroups analyzed was over 60 years. Despite the absence of specific clinical trials for this population, our findings suggest that 
SGLT2i therapy on older individuals is effective to lower glucose and maintain its effect on systolic blood pressure and body weight.

KEYWORDS: Sodium-glucose transporter/antagonists & inhibitors. Diabetes mellitus. Aging. Effectiveness. 

DATE OF SUBMISSION: 12-Oct-2018 
DATE OF ACCEPTANCE: 26-Oct-2018
CORRESPONDING AUTHOR: Andrei Carvalho Sposito 
Cardiology Division, Faculty of Medical Sciences, State University of Campinas (UNICAMP),  
13084-971, Campinas, São Paulo, Brasil.
E-mail: andreisposito@gmail.com

INTRODUCTION
The rapid increase in longevity and the prevalence 

of type 2 diabetes mellitus (T2DM) are among the 
most striking epidemiological challenges of recent 
decades. As a consequence, nearly 50% of individuals 
with T2DM are 65 years old or older1, and 27% of those 
aged 65 years or older have T2DM2. These figures rep-
resent an increase of 62% over the last decade3. 

Over the last 25 years, population aging was the 
main factor for the 41% global increase in deaths due 
to cardiovascular disease4. For these older individu-
als, the presence of T2DM has doubled the risk of 
death5. Since these evolving changes are of particular 
importance, special attention must be paid to clinical 
and mechanistic features related to aging as well as 
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to the interaction of these biological changes with hy-
poglycemic therapies. 

Aging predisposes a person to T2DM in a num-
ber of mechanisms, which include apoptosis of beta 
cells, reduced insulin sensitivity from sarcopenia, 
decreased mitochondrial activity, and increased lipid 
content in cell membranes – particularly in hepato-
cyte and myocyte6,7. Beta cells of aged individuals 
have reduced secretory capacity. This is probably 
due to different mechanisms such as reduced glu-
cose sense transporters, reduced insulin secretion 
related to mitochondrial activity, and impaired func-
tion of K-ATP voltage channels8. In clinical studies, 
this phenomenon has been related to reductions in 
the amplitude of insulin pulse secretion and glu-
cose-stimulated insulin secretion 8,9. Aging also leads 
to a progressive decline in insulin sensitivity, which 
is the result of processes that include increased ad-
iposity, sarcopenia, and mitochondrial dysfunction 
6,7,10,11. A successful glucose-lowering strategy for the 
elderly must account for the limitations in increasing 
insulin secretion and the reduced effect of insulin on 
muscular and adipose tissues. In line with these as-
sumptions, lowering the threshold for glycosuria has 
emerged as a promising therapeutic target for T2DM 
elderlies. 

About 90% of glucose filtered by the kidney is 
reabsorbed by the sodium glucose co-transporter 
2 (SGLT2), which is the most active co-transport-
er expressed at the proximal convoluted tubule 12. 
In healthy individuals, virtually all filtered glucose 
above 180 mg/dL is excreted; however, in diabetic in-
dividuals, glucose threshold excretion is at least 20% 
higher, probably due to up-regulation of SGLT2 and 
glucose transport channels in the nephron 13. 

From an evolutionary perspective, it seems rea-
sonable that an efficient mechanism to preserve en-
ergy loss through urine has been selected 13. On the 
other hand, higher glycemic levels may contribute to 
metabolic disturbances, such as insulin resistance 
and reduced insulin secretion. Therefore, an ade-
quate balance between retaining and losing glucose 
through the kidney is of particular interest and cer-
tainly plays a role in helping the maintenance of a 
favorable metabolic profile. Accordingly, SGLT2 in-
hibitors (SGLT2i) reduce glycemia in an insulin-inde-
pendent manner and contribute to the improvement 
of beta cells function 14,15 and insulin sensitivity 14-17. 

Only recently, clinical trials with SGLT2i start-
ed enrolling older individuals, and many questions 

remain open to debate. To tackle this issue, this re-
view presents a meta-analysis of the main effects of 
SGLT2i reported in post-hoc studies focused on elder-
ly individuals (Table 1 and Table 2) and describes par-
ticularities of the SGLT2i effect on the elderly, with 
mechanistic insights of the potential benefits and re-
maining challenges about the use of these drugs in 
this important age group. 

 
Methods for Systematic Review and Me-
ta-analysis of SGLT2i Trials in Elderly
We used the methods recommended by the Co-

chrane guidelines to conduct the meta-analysis and 
reported our findings according to the PRISMA (Pre-
ferred Reporting Items for Systematic reviews and 
Meta-Analyses) statement29. All procedures per-
formed for this analysis are presented in detail in the 
supplement. 

Role of the funding source 
There was no funding source for this study. The 

corresponding authors had full access to all the data 
in the study and were fully responsible for the deci-
sion to submit it for publication.

EFFICACY IN CLINICAL TRIALS
Anti-hyperglycemic effects

Recent guidelines have defined glycemic thera-
peutic goals that are less stringent in older individ-
uals when compared to younger ones, based on the 
increased risk of hypoglycemia. Customized ther-
apeutic targets consider functional status, comor-
bidities, and life expectancy30.  More leniency with 
higher glucose levels, however, does not necessari-
ly prevent hypoglycemia31, but it could instead fa-
vor dehydration, cognitive decline, falls, and other 
complications30. Therefore, a more desirable option 
would be a potent antidiabetic treatment that bears a 
low risk for hypoglycemia. SGLT2i qualifies for this 
premise being associated with a risk of hypoglyce-
mia of less than 1% in the elderly when used alone, 
a number three times lower than that obtained with 
DPP-IV inhibitors and 15 to 20 times lower than the 
one observed with sulphonylurea32.

Aging may influence the efficacy of SGLT2i by 
either indirect or direct mechanisms. Indirectly, 
the age-dependent decline in glomerular filtration 
rate (GFR) may reduce the glucose-lowering effect 
of these drugs via down-regulation of the tubular 
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TABLE 1. CLINICAL CHARACTERISTICS OF PATIENTS ENROLLED IN THE META-ANALYSIS
n Fol-

low-up 
time
(years)

whites_ women Age at 
entry
(years)

CKD 
(%)

CKD 
stages
III or IV 
(%)

Treatment arms Publi-
cation 
year

Zinman et al.18, 2015 7020 3.1 72.3 29 63.2 26 26 Placebo vs 
Empagliflozin 10/25mg

2015

Tikkanen et al.19, 2015 549 0.23 93.7 39.9 60.2 0 0 Placebo vs 
Empagliflozin 10mg

2015

Barnett et al.20, 2014 
(CKD II)

290 1 68.3 39 62.6 100 0 Placebo vs 
Empagliflozin 10/25mg

2014

Barnett et al.20, 2014 
(CKD III)

374 1 56.1 43 64.9 100 100 Placebo vs 
Empagliflozin 25mg

2014

Barnett et al.20, 2014 
(CKD IV)

74 1 50 46 64.1 100 100 Placebo vs 
Empagliflozin 25mg

2014

Bolinder et al.21, 2014 182 1.96 100 44.4 60.7 64 3 Placebo+MTF vs 
Dapagliflozin 10mg+MTF

2014

Matthaei et al.22, 2015 218 0.46 95 49 61 0 0 Placebo+MTF/SFU vs 
Dapagliflozin 10mg+MTF/SFU

2015

Kohan et al.23, 2014 252 1.96 86 35 67 100 96 Placebo vs 
Dapagliflozin 5/10mg

2014

Leiter et al.24, 2014 962 1 84 31.7 62.9 0 0 Placebo vs 
Dapagliflozin 10mg

2015

Neal et al.25, 2015 2072 1 75 34 62.7 25 NR Placebo vs
 Canaglifozin 100/300mg

2015

Yale et al.26, 2014 269 1 79.9 39.4 68.5 100 100 Placebo vs 
Canaglifozin 300mg

2014

Sinclair et al.27, 2014 1085 0.5 84.4 41 67 100 100 Placebo vs 
Canaglifozin 100/300mg

2014

Bode et al.28, 2014 714 1.96 77.3 44.5 64.6 0 0 Placebo vs 
Canaglifozin 100/300mg

2015

TABLE 2. BASELINE LABORATORY AND CLINICAL DATA OF PATIENTS ENROLLED IN THE META-ANALYSIS

HbA1c in SGLT2i arm SBP in SGLT2i arm DBP in SGLT2i arm Body weight in SGLT2i 
arm

Baseline 
(%)

Change* 
(%)

Baseline 
(mmHg)

Change* 
(mmHg)

Baseline 
(mmHg)

Change* 
(mmHg)

Baseline 
(Kg)

Change* 
(Kg)

Zinman et al.18, 2015 8.07 -0,24 134.9 -2,6 76.6 -0,3 85.9 -1,1

Tikkanen et al.19, 2015 7.87 -0,65 142.3 -3,78 84.1 -1,52 94.71 -1,72

Barnett et al.20, 2014 (CKD II) 8.02 -0,65 137.4 -4,63 76.5 -3,6 92.1 -1,76

Barnett et al.20, 2014 (CKD III) 8.02 -0,42 137.4 -4,3 76.5 -1,5 83.2 -1,17

Barnett et al.20, 2014 (CKD IV) 8.06 0,48 145 -12,2 77.2 -5,7 77.9 -1

Bolinder et al.21, 2014 7.19 -0,42 NR NR NR NR 92.1 -2,42

Matthaei et al.22, 2015 8.08 -0,69 134.5 -3,7 80.4 NR 88.6 -2,1

Kohan et al.23, 2014 8.22 -0,34 133.7 -6,04 73.8 -0,36 93.2 -3,63

Leiter et al.24, 2014 8.18 -0,4 133.5 -3 77 NR 92.6 -1,9

Neal et al.25, 2015 8.3 -0,72 137.1 -4,9 76.3 -1,9 94.8 -3,1

Yale  et al.26, 2014 8 -0,41 136.7 -6,09 75.7 NR 90.4 -0,99

Sinclair et al.27, 2014 7.9 -0,7 134.3 -3,6 75.9 -2,7 90.2 -1,7

Bode et al.28, 2014 7.75 -0,55 130.8 -6,6 75.5 -2,1 88.6 -2,5

* Relative to placebo change and baseline levels. SBP: systolic blood pressure; DBP: diastolic blood pressure; NR: not reported.Figure Captions
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expression of SGLT2. Directly, early and still poor-
ly explored findings have suggested that aging may 
reduce the expression of SGLT233. In order to verify 
these arguments, we assessed the effect of SGLT2i 
in elderly individuals and as shown in Figure 1, we 
found an overall decrease of 0.402% in HbA1c (95% 
CI: -0.432, -0.370; p<0.001; I2=0%), which is overall 
comparable to findings in younger age groups15,17,24,27. 

Blood Pressure Reduction
Although the coexistence of hypertension and 

T2DM could be related to their increased prevalence 
later in life, it may also stem from many common 
contributors such as aging, diabetic nephropathy, 
volume expansion, hyperinsulinemia, increased ar-
terial stiffness, hyperglycemia34,35. More than 50% 
of hypertensive individuals are older than 60 years; 
and among individuals older than 60 years, up to 67% 
have hypertension36. Typically, isolated systolic hy-
pertension (ISH) is the most frequent type of age-re-

lated hypertension and is responsible for up to 90% of 
cases in individuals older than 7037. 

Arterial stiffness seems to be the main link be-
tween aging and ISH, and its mechanistic basis is 
strongly related to elastin fracture and increased colla-
gen deposition in blood vessel walls38. Among diabetic 
individuals, the process of arterial stiffening is acceler-
ated by the deposition of advanced glycation products 
like glyoxal and methylglyoxal, which are responsible 
for a number of collagen cross-links39. The binding of 
these glycation products with endothelial cells also 
induces cell signaling that results in oxidative stress, 
increased expression of cytokines and adhesion mol-
ecules, and activation of nuclear factor-kappa B (NF-
kB)40. Similarly, modifiable causes such as endothelial 
dysfunction or those related to the metabolism of uric 
acid, calcium or potassium may influence the stiffness 
of conductance arteries leaving room for therapeutic 
interventions41. In fact, treatment with empagliflozin, 
which attenuates oxidative stress and improves endo-

FIGURE 1. Meta-analysis of clinical trials mostly represented by individuals >60 years-old comparing SGLT2 inhibitors vs. pla-
cebo on (A) HbA1c, (B) Body weight, (C) Systolic blood pressure (SBP) and (D) Diastolic blood pressure (DBP).
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thelial function, has led to a reduction in both arterial 
stiffness and vascular resistency42-44. 

In several studies, including some with older in-
dividuals, SGLT2i has reduced systolic BP17,27,28,42. For 
example, canagliflozin 300 mg has led to a 7.5 mmHg 
(95% CI −9.8, −5.2) reduction in systolic BP compared 
to the placebo over a 104 weeks treatment17,27,28, 
which was consistent with further studies in individ-
uals over 75 years-old treated with empagliflozin42. It 
is noteworthy that such an effect was independent of 
background therapies, such as metformin, sulphony-
lurea, GLP-1 agonists, and insulin22,25,45. Importantly, 
the magnitude of the effect achieved with SGLT2i 
is approximately half of that obtained with hydro-
chlorothiazide 25 mg46, reaching a mean reduction 
in systolic BP of 3.45 mmHg (95% CI: (-4.10, -2.81); p 
<0.001; I2=43.2%). Although this effect may not reach 
clinical benefit alone, it could solve the problem of 
the increasing number of drugs or dose in the antihy-
pertensive therapy47.

The effect of SGLT2i therapy on BP was tested 
on two specific trials, though none of these were ex-
clusively performed on elders. The EMPA-REG BP 
trial assessed the efficacy of empagliflozin on BP 
reduction on hypertensive patients monitored by 
ambulatory BP monitoring (ABPM) using up to two 
hypotensive medications. The mean 24h systolic 
BP on empagliflozin 25 mg reduced by 4.16 mmHg 
(95% CI: -5.5, -2.83; p<0.001) and diastolic BP by -1.72 
mmHg (95% CI: -2.51, -0.93; p<0.0001) compared to 
the placebo19. In a similar trial performed on hyper-
tensive diabetic patients using on angiotensin-con-
verting-enzyme inhibitor (ACEi) or angiotensin II 
receptor blockers (ARB) plus other anti-hypertensive 
medication, dapagliflozin 10 mg was associated to a 
mean 24-h systolic BP reduction of 4.28 mmHg (95% 
CI: –6.54, –2.02)48. This effect was similar across oth-
ers antihypertensive medications such as thiazide di-
uretic, a calcium-channel blocker, and beta-blocker, 
though less intensive when dapagliflozin was added 
to thiazide diuretic48. 

Different factors may contribute to BP reduction 
on SGLT2i therapy35. In the early stage, increased 
natriuresis and osmotic diuresis favor systolic BP re-
duction35. This is likely the reason why a reduction of 
BP was observed as soon as 1 week after treatment 
with dapagliflozin23. Plasma volume contraction of 
-7.3% on dapagliflozin and -5.4% on canagliflozin was 
observed early on during the treatment46,49. Paradox-
ically, this effect on BP is maintained while sodium 

excretion and diuresis tend to return to previous lev-
els over the first 12 weeks19,49.

In addition to these effects, weight loss and gly-
cemic control may also take part in the observed 
effect SGLT2i on BP35. Hyperglycemia is associated 
with up-regulation of SGLT2 and activation of both 
renin-angiotensin-aldosterone axis and sympathetic 
system35. Even weight loss obtained exclusively by 
dietary treatment can reduce BP50, contributing in 
up to 28% of systolic BP reduction51.

Therefore, it seems possible that SGLT2i therapy 
could contribute to the control of the hypertension 
burden in older individuals. It is unlikely that this ef-
fect in BP will be the determinant factor for choosing 
these medications in the future, but they could pose 
as ancillary therapy.

2.3 Weight loss
Weight loss in older individuals is a debating 

theme. In the general population, obesity has been 
extensively associated with multiple comorbidities 
and an increased incidence of cardiovascular events. 
In the elderly, observational studies have reported 
that weight loss is associated with falls, disability52, 
increased morbidity53 and mortality52,54. Multiple ad-
justments have been made in these studies in order 
to mitigate the interference of confounders. Still, the 
inability to exclude the potential interaction by un-
apparent or unknown disease-mechanisms underly-
ing such spontaneous weight loss has carried on this 
controversy. 

Intentional weight loss was not associated with 
increased mortality during a 12-years follow-up in 
obese individuals older than 65 years55. In a cohort of 
older adults, weight loss due to psychosocial stress 
was not associated with increased mortality, though 
an adverse outcome was still associated with spon-
taneous weight loss56. Hence, it is conceivable that 
spontaneous and induced weight loss could not be 
the same; the latter may even be considered as a 
therapeutic target. 

Studies with induced weight loss on elders have 
found improvement in both lipid profile57,58 and glu-
cose metabolism57,59. In such studies, two-thirds of the 
weight loss is from fat and a third from lean tissue. 
While one might assume that this loss of lean body 
mass can trigger or intensify a loss of physical func-
tion, the results available indicate otherwise. In fact, 
the improvement of physical function is related to the 
amount of fat mass lost regardless of the amount of 
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lean mass lost 60.  The muscle’s fat content is inverse-
ly related to its strength and directly related to its de-
cline over time61-64. Thus, reduced muscle strength 
is a reliable marker of mortality and loss of mobility 
independently of lean body mass65,66. Also, the propor-
tional increase in lean mass is associated with a gain 
in bone mineral density, an improvement regarding 
frailty syndrome67 and a reduction in mortality68. 

Although weight loss goals have not yet been 
established, this effect of SGLT2i in the elderly has 
been tested in different backgrounds. As seen in Fig-
ure 1, the pooled effect of SGLT2i therapy across tri-
als with the elderly was of - 1.72 kg (95% CI: -2.48, 
-0.97; p<0.0001; I2=38.3%). For instance, canaglifloz-
in 300 mg was associated with 3.0% (-2.7 kg) weight 
loss at 26 weeks28, which was maintained over 104 
weeks17. Clinically relevant weight reduction (con-
sidered as 5% of weight reduction) increased by 23% 
with this treatment17,27.  On individuals ≥65 years, 
dapagliflozin induced a progressive weight reduction 
that reached -3.4 kg at 52 weeks24.

This is also observed in individuals using medica-
tions associated with weight gain such as sulphony-
lurea or insulin, the addition of SGLT2i reduced body 
weight significantly22,25,69,70. Moreover, this effect is 
additive for other therapies associated with weight 
loss such as GLP-1 agonists45. 

The amount of glucose lost through urine provides 
a deficit of 200–400 kcal/day. With such caloric loss 
during a long-term follow-up, one could expect that 
the weight loss would be more significant than what 
was actually verified. The increase in caloric intake71 
partially explains this reduced expected effect1. Such 
a compensatory increase in the caloric intake is pro-
portional to the glucose excretion71. Potentially, the 
association between SGLT2i and appetite suppres-
sion would provide a higher and longer weight loss 
than the use of these drugs as monotherapy.

Besides hyperphagia, SGLT2i treatment in mice 
was associated with a decrease in oxygen consump-
tion and brown adipose tissue thermogenesis via 
down-regulation of an inter-organ neural network 
consisting of the common hepatic vagal branch and 
sympathetic nerves72. Together, the reduction of 
energy consumption and increased caloric intake 
promote a balance to caloric loss through urine that 
keeps the initial weight loss achieved with SGLT2i in 
the first few weeks till up to 208 weeks73.

Regarding the effect of SGLT2i in body composi-
tion, over 102 weeks of dapagliflozin treatment, fat 

mass changed by -1.34 kg (-2.44, -0.23) and lean mass 
changed by -0.4 kg (-1.0, 0.2)23. This led to a propor-
tional change in body composition, with a decrease 
of −1.5% (−2.1, −0.8) of fat mass and an increase of 
1.3% (0.5, 2.1) of lean mass21. In the mechanistic point 
of view, one possible explanation could be the effect 
of SGLT2i in increasing insulin sensitivity, thus fa-
voring the anabolism of the muscle tissue14,74. 

Another issue yet to be clarified is the preferred ef-
fect of fat mass loss after SGLT2i in visceral or subcu-
taneous tissue. In a study using magnetic resonance 
imaging, the decrease in visceral adipose tissue (-258.4 
cm3 (-448.1, -68.6)) tended to be higher than that on 
subcutaneous adipose tissue (-184.9 cm3 (-359.7, 
-10.1)), though this difference did not reach statistical 
significance in up to 102 weeks of treatment21,74.  

EFFECT ON KIDNEY AND RENAL DISEASE 
PROGRESSION

As a result of the natural decline in glomerular 
filtration rate (GFR), the elderly often present clini-
cally relevant renal dysfunction, particularly with di-
abetes. Indeed, chronic kidney disease (CKD) affects 
more than 50% of individuals over 70 years75. Al-
though less than 2% of stage 3 CKD patients require 
renal replacement in mid-term follow-up (8 years)76, 
almost half end-stage kidney disease is attributed to 
DM277. The relative risk of death and progression of 
end-stage renal disease is increased in elders with 
low GFR and high albuminuria, though its corre-
sponding effect on mortality wanes at an older age78.

Aging induces changes in the kidney as compared 
to a disease that occurs in some but not all individu-
als. The microanatomical structural changes of the 
kidney with older age include a decreased number 
of functional glomeruli from an increased prevalence 
of glomerulosclerosis, arteriosclerosis and tubular 
atrophy with interstitial fibrosis and compensatory 
hypertrophy of remaining nephrons. Among careful-
ly screened healthy kidney donors, glomerular filtra-
tion rate (GFR) declines at a rate of 6.3 mL/min/1.73 
m2 per decade. The elderly have less kidney functional 
reserve when they do actually develop CKD, and they 
are at higher risk for diabetic kidney disease and its 
progression79. Diabetes accelerates these age-related 
changes leading to a higher functional decline and pre-
cocity80,81. In fact, senescent tubular phenotype cells 
could be induced by high glucose concentrations82, 
and these alterations on tubular proximal cultured 
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cells are associated with increased expression of 
SGLT283. 

Increased glomerular filtration is one of the ear-
lier markers of diabetic nephropathy. The renin-an-
giotensin system (RAS) plays a significant role in 
glomerular hyperfiltration on diabetic nephropathy. 
Glucose can induce angiotensin II (AngII) generation 
by local activation of RAS84, constriction of efferent 
arteriole thus influencing sodium reabsorption and 
increasing glomerular permeability85. 

Similarly, the increased sodium reabsorption 
through SGLT2 may also contribute to renal hyper-
filtration. SGLT2 expression is increased at the prox-
imal tubule of diabetic experimental models86 and in 
diabetic patients87. This promotes a reduction of so-
dium on macula densa, thus increasing vasodilation 
on afferent arteriole88. The therapeutic use of SGLT2i 
increases the sodium delivery to the macula densa, 
thus decreasing GFR89. In parallel, other mediators 
participate in the regulation of renal hemodynamics, 
such as adenosine, nitric oxide, and calcium influx, 
contributing to the glomerular filtration rate. Thus, 
the hyperfiltration of diabetic kidney disease and its 
control will depend on the outcome of the balance of 
this set of players.

On aging CKD patients, an increased rate of neph-
ron loss units is observed. In parallel, there is an 
adaptive decrease in SGTL2 transcription rate90 and, 
consequently, a decrease in SGLT2i effectiveness on 
CKD patients, as SGLT2i acts on the extracellular 
surface of the tubule lumen cell91. Therefore, clini-
cal trials on SGLT2i observed reduced effectiveness 
on glycemic control. A progressive decline on HbA1c 
effectiveness was reported on empagliflozin 25mg 
in individuals with CKD stage 2 (-0.68%), to stage 3 
(-0.42%) and to stage 4 (+0.04%)20. An investigation 
of dapagliflozin effect on CKD individuals indicated 
that the cut-off point for the decline of SGLT2i glu-
cose-lowering effect is GFR ≤45mL/min23. In the gen-
eral population, the concomitant inhibition of SGLT1 
and SGLT2 increases the glycosuria as compared 
with the isolated inhibition of SGLT292. In CKD pa-
tients, however, a head-to-head comparison of their 
effect is unavailable. 

Hypertension is the most common comorbidity 
among CKD patients and its prevalence increases as 
renal function worsens93. Particularly in this popula-
tion, BP controlling could attenuate the progression 
of kidney disease94. On stage 3 and 4 CKD, SGLT2i 
therapy reduced SBP by - 5.46 mmHg (95% CI: -7.83, 

-3.07; p=0.001; I2=0%). SGLT2i therapy was associat-
ed with a reduction on SBP and DBP by 5220,23,26 and 
104 weeks23 among CKD patients. As with glycemia, 
empagliflozin effects on BP wane as renal insuffi-
ciency worsens20. 

On CKD patients, not only the above-cited mecha-
nisms could be beneficial; body weight management 
is associated with hindering proteinuria and the pre-
vention of GFR decline95. Indeed, SGLT2i therapy is 
associated with body weight reduction in CKD pa-
tients, which is inversely proportional to the severi-
ty of renal dysfunction92. This coupling is consistent 
with the reduced tubular expression of SGLT2 and 
the glycosuria induced by SGLT2i, which is propor-
tional to the decline in GFR.  

Probably as a consequence of constriction of the 
proximal arteriole,  eGFR decreases by approximate-
ly 4 mL/min/1.73 m2 on the general population and 
older patients96. The magnitude of the reduction on 
GFR during SGLT2i therapy is similar to that ob-
served after distal arteriole dilation by ACEi88,97. This 
effect is observed as soon as after 1 week98 and tend-
ed to return to baseline values during follow-up17,96,98, 
though persistent reductions can be observed25. 
During SGLT2i therapy, older patients had similar or 
slightly higher reductions of eGFR compared to their 
younger counterpart27,96,98. However, even though ag-
ing does not significantly influence the variation in 
absolute GFR values, the percent loss of renal func-
tion may be higher due to preexisting renal dysfunc-
tion often found in the elderly96,99.  Even though, a 
clinically significant decrease of GFR (at least 50%) is 
infrequent even in Stage 3 CKD (12.2%)96.

Since the approval of the first SGL2i in March 
2013 until October 2015, the FDA received reports of 
101 confirmed cases of acute kidney injury (canagli-
flozin=73, dapagliflozin=28). Hospitalization and need 
of dialysis were required for a selected number of 
patients. Most improved with the discontinuation of 
the drug. There were no signs of direct drug toxicity, 
and most cases were observed in patients with predis-
posing factors to pre-renal AKI: decreased blood vol-
ume, chronic kidney insufficiency, congestive heart 
failure, concomitant medications such as diuretics, 
ACEi, ARBs, NSAID. The warning reinforces that the 
patient’s kidney function should be assessed prior to 
starting treatment and be monitored periodically after 
that before being started on SGLT2 therapy. Also, one 
should consider temporarily discontinuing treatment 
in any setting of severe acute illness, prolonged fast-
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ing, or severe fluid losses. If acute kidney injury oc-
curs, the drug should be discontinued promptly. 

SAFETY CONCERNS
Volume-depletion-related events

Adverse events (AE) related to volume depletion 
are of particular concern of this drug class. As it 
would be expectable, SGLT2i therapy induces plasma 
volume contraction through its effect on the proxi-
mal tubular cells. An increase in 24-h urine output 
of approximately 370 mL and up to 10% contraction 
of plasma volume have been reported on this treat-
ment46,49,100,101. Whether or not and in what degree 
the plasma volume returns to baseline levels during 
therapy is still a debated theme46,49. However, safety 
concern on volume depletion has been assessed in 
recent clinical trials. 

In safety clinical trials, volume depletion has been 
characterized by postural dizziness, orthostatic hy-
potension, increased in heart rate, dehydration, hy-
potension, orthostatic hypotension, pre-syncope, 
and syncope. In 104 weeks, the incidence is reported 
to be 5.9% on canagliflozin17. 

Probably as a consequence of plasma volume 
contraction, RAS activity and aldosterone levels are 
increased during SGLT2i therapy46. Actually, an ele-
gant study demonstrated that during SGLT2i therapy 
there is an increase in both systemic and intrarenal 
RAS activity97. It is established the proatheroscle-
rotic role of the RAS axis activation via a spectrum 
of mechanisms including inflammatory pathways, 
insulin resistance, hypertension, and oxidative 
stress102. The long-term effects of these pathways’ 
activation with SGLT2i remain to be assessed. In the 
only published study in which the cardiovascular ef-
fect of SGLT2i was tested, about 80% of patients were 
on concomitant use of RAS inhibitors18. By presump-
tion, it would be gainful to associate RAS inhibitor 
therapy with SGLT2i48,49. 

The incidence of volume-depletion-related AE is 
low, but it may increase as renal function worsens. 
For example, the incidence after empagliflozin is 1.0% 
on stage 2, 3.7% on stage 3 CKD and 5.4% on stage 420. 
Likewise, the incidence of volume depletion AE is 
dose-dependent103 and increased overtime26,99. There 
is no apparent influence of the concomitant use of 
anti-hypertensive medications19 or even thiazide 
therapy on the incidence of these AE48,104. Among the 
elderly, special attention must be paid to orthostatic 

hypotension, whose incidence is increased in up to 
9% after SGLT2i19.

Osmotic diuresis-related AE
Since long-term therapy with osmotic diuresis be-

came available for clinical practice for the first time 
after SGLT2i development, the pros and cons of this 
therapy remain theoretical. Potential AE includes pol-
lakiuria, polyuria, dry mouth, dry throat, micturition 
urgency, nocturia, polydipsia, and increased thirst, 
among others. So, particular attention must be paid 
on elderly individuals to be treated by SGLT2i whose 
baseline pre-treatment condition is already associated 
with some of these symptoms. Osmotic diuresis symp-
toms are dose-related28, GFR-influenced23,26,96,99,103 and 
time-dependent, raising up to 12.3% over 104 weeks17. 
Also in patients in use of therapies associated with 
sodium retention such as insulin and sulfonylurea, 
similar rates of osmotic diuresis AE have been report-
ed25,45. However, a SGLT2i-induced 3-fold rise (from 
0.1 to 0.3%) in the incidence of volume-related AE were 
previously reported98. 

Diabetes Ketoacidosis
A particular type of diabetic ketoacidosis (DKA) has 

been reported during SGLT2i therapy which differs 
from the usual form by the attenuated expression of 
hyperglycemia and ketonuria; the called euglycemic 
DKA (eDKA). On a pooled analysis, eDKA frequency 
was overall low but slightly higher on SGLT2i (2-3 
times) than with other anti-diabetic therapies18,105. 

SGLT2i therapy increases ketonemia in a dose-de-
pendent manner via a spectrum of mechanisms106. 
In animal and cell models, SGLT2i therapy induces 
ketone production by directly inducing glucagon se-
cretion by alpha pancreatic cells107. Consistently, in 
clinical studies, hepatic glucose production is up-reg-
ulated after SGLT2i treatment14,16, at least in part due 
to the increase in glucagon levels stimulating he-
patic ketogenesis and gluconeogenesis108. Likewise, 
SGLT2i increases the risk of eDKA by augmenting 
ketone absorption and reducing ketonuria108. 

Among the reported eDKA cases, a high propor-
tion of individuals had concurrent conditions which 
may increase their susceptibility, such as of auto-
immune diabetes, reduction of insulin background 
therapy and acute illness105. Moreover, the eDKA 
cases were one decade older than their counterparts, 
and at least 50% had late autoimmune diabetes on 
adults (LADA)109, while the prevalence of LADA is up 
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to 10% on diabetic population110,111. Thus, although the 
incidence of eDKA during SGLT2i is low (1.3/1000 
patients-year), the possibility of this diagnosis must 
be borne in mind particularly among the elderly and 
those insulin-requiring109. 

Hypoglycemia
In elderly diabetics, the casual detection of hy-

poglycemia indicates a fourfold increase in the risk 
of death, which is a risk predictor even greater than 
pre-existing ischemic heart disease112. Beyond that, 
in this age group hypoglycemia is associated with 
an increased risk of fall113, fracture114, and cognitive 
decline115,116.

From a pathophysiological point of view, direct 
and indirect effects of hypoglycemia ensues a set of 
metabolic, thrombotic, inflammatory and vasomotor 
effects, favoring the remodeling of atherosclerotic 
plaques to an unstable phenotype and its thrombotic 
occlusion. In the short term, hypoglycemia can reduce 
the energy source for myocardial cells, particularly in 
individuals with diabetes or ischemic heart disease, 
prolonging QT interval, a substrate for life-threaten-
ing ventricular arrhythmias. In the elderly, impaired 
counter-regulatory mechanisms may result in higher 
susceptibility to hypoglycemia’s duration and its del-
eterious effects117. Consistent with the short-term ef-
fect, while the blood glucose decreased by about 16% 
the risk of nonfatal myocardial infarction, the inci-
dence of cardiovascular death is not reduced.

SGLT2i therapy in the elderly did not increase 
the risk of hypoglycemia. The relative risk of hypo-
glycemia was 1.11 (95% CI: 0.84, 1.45; p=0.554; I2=0%) 
across SGLT2i and comparators on patients on a 
background therapy not prone to hypoglycemia, as 
seen in figure 2A. Hypoglycemia was not described 
slightly more often when SGLT2i was added to a 
background prone to hypoglycemia (insulin or sul-
phonylurea), posing a RR of 1.05 (95% CI: 0.99, 1.11; p 
= 0.198; I2=39.1%) (Figure 2B), although considerable 
heterogeneity was observed. Although hypoglyce-
mic adverse events were higher on SGLT2 inhibitors 
when compared to the placebo, these AE were much 
higher on insulin or sulphonylurea therapy back-
grounds. It is also described as an increase of hypo-
glycemic AE when renal function worsens. However, 
specifically on the elderly, there are no head-a-head 
trials of other hypoglycemic therapies vs. SGLT2i. 
Therefore, although it is possible that SGLT2i could 
reduce hypoglycemia rates in comparison to other 

drugs on older individuals, more studies are needed 
to assess this issue. 

In stage 3 or 4 CKD individuals, hypoglycemia rate 
was similar among SGLT2i and placebo on individuals 
not on hypoglycemia prone therapy, with RR of 1.01 
(95% CI 0.75, 1.37; p=0.688; I2=0%), though on insulin 
or sulphonylurea background therapy RR was 1.05 
(95% CI: 0.85, 1,30; p=0.311; I2=57%) with substantial 
heterogeneity among trials in this last comparison. 
Comparing the effect of empagliflozin on different 
stages of CKD, progressively renal impairment was 
associated with higher rates of hypoglycemia20. In 
fact, stage 4 CKD on empagliflozin had an incidence 
of 37.8% of hypoglycemic AE vs. 32.4% on placebo, 
but lower incidence of AE were noted on stage 3 CKD 
(27.8% vs. 28.3% on empagliflozin and placebo, respec-
tively) or stage 2 CKD (22.7% vs. 26.5% vs. 24.2% on em-
pagliflozin 25 and 10 mg and placebo, respectively)20. 

Genital urinary-tract infections 
Urinary tract infections (UTI) incidence is higher 

on older TSDM females, specifically those with poor-
ly controlled diabetes118. Actually, in T2DM, moder-
ate to severe glycosuria is associated with asymp-
tomatic bacteriuria and also to pyelonephritis119. As a 
concern of diabetic and older individuals and because 
of increased glycosuria on SGLT2i therapy, most of 
the clinical trials and reviews involving SGLT2 inhibi-
tors reported UTI and GTI incidences117-122. 

As observed in Figure 3, SGLT2i therapy did not 
increase the incidence of UTI events in trials with el-
derly individuals. The RR of uncomplicated and com-
plicated UTI on SGLT2i therapy was respectively 1.04 
(0.95, 1.14; p=0.186; I2=24.9%) and 0.93 (0.66, 1.31; 
p=0.745; I2=0%). However, as expected on SGLT2i ther-
apy, females had a higher risk of GTI, with a RR of 4.13 
(2.96, 5.76; p<0.001; I2=32.6%), while males had a RR 
of 4.02 (2.91, 5.57; p<0.001; I2=0%). However, few par-
ticipants discontinued medication due to this AE, and 
the majority of GTI and UTI are benign conditions that 
were resolved with appropriate medication.

The overall incidence of UTI was higher on EM-
PAREG trial than others (on females, 40.6% on pla-
cebo and 36.4% on empagliflozin; on male individ-
uals, 9.4% on placebo and 10.4% on empagliflozin). 
Paradoxically, the placebo branch had higher rates 
of complicated urinary tract infections than the em-
pagliflozin (1.8% vs. 1.7%), though urosepsis developed 
on 17 individuals on empagliflozin and 3 on placebo18. 
The RR of UTI on CKD patients was 1.09 (0.83, 1.44; 
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FIGURE 2. Meta-analysis of clinical trials in individuals >60 years-old comparing SGLT2 inhibitors vs. placebo on (A) Hypogly-
cemic events in patients not on background insulin or sulphonylurea therapy, (B) Hypoglycemic events in patients on back-
ground insulin or sulphonylurea therapy.

FIGURE 3. Meta-analysis of clinical trials in individuals >60 years-old comparing SGLT2 inhibitors vs. placebo on (A) uncompli-
cated urinary tract infection (UTI), (B) complicated UTI events, genital tract infection (GTI) events in males (C) and females. (D)
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p=0.517). Similar to that of subjects without renal dis-
ease, RR of GTI was 2.31 (95% CI: 1.13, 4.75; p=0.22) 
on males and 4.00 (95% CI: 1.62, 9.86; p=0.003) on 
females on SGLT2i therapy. 

Bone Metabolism

From the fifth decade of life, there is a progressive 
loss of bone mass, which may reach the osteoporosis 
degree according to the peak of bone mass achieved, 
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the rate of bone loss and longevity. Genetic factors, 
hormonal status, physical inactivity, low calcium in-
take, low sun exposure, smoking and comorbidities 
such as CKD and DM2 may all contribute to an accel-
erated deterioration of bone mass; thus, they may fa-
vor the risk for osteoporotic fragility fracture. In par-
allel, regardless of the bone mineral density (BMD), 
individuals with T2DM may have an osteopathic 
disease with significant changes in bone quality and 
architecture123. Finally, T2DM is also associated with 
increased risk of fractures among the older popula-
tion due to peripheral neuropathy and increased risk 
of falls124. 

In regards to pharmacodynamics of SGLT2i, this 
therapy may favor mineral and electrolytes distur-
bances, which can further contribute to the rate of 
bone loss by increasing phosphate, calciuria and 
production of parathyroid hormone (PTH) and fibro-
blast growth factor 23 (FGF23)125. In up to 50 weeks, 
SGLT2i treatment on subjects ≥60 years presented no 
significant differences between SGLT2i therapy and 
the placebo on markers of bone reabsorption, such as 
procollagen type 1 N-terminal propeptide and C-ter-
minal cross-linking telopeptides of type I collagen126. 
However, on a longer follow-up of 104 weeks, differ-
ent bone turnover markers such as β-carboxy-telo-
peptide and osteocalcin were increased with SGLT2i 
therapy127. However, the increased bone turnover 
does not seem to impact on BMD of the femoral 
neck, lumbar spine, and total hip after 50 weeks126 or 
104 weeks21 of SGLT2i. 

In a recent trial performed on individuals between 
55-80 years, canagliflozin was associated with a 1.2% 
decrease in total hip BMD over 104 weeks, though 
not on other sites measured127. Despite the hypothe-
sis-generating nature of the study, the possibility of a 
more significant impact on the decline in bone mass 
after SGLT2i was raised by these findings.  It is not 
plausible that it could be a direct action of the drug 
since SLGT2 is not expressed on bone cell types128. It 
is possible that the decrease in BMD is attributable to 
weight loss. On a post hoc analysis, 40% of BMD de-
cline could be attributed to weight loss127. Similar re-
sults were observed in other weight loss situations129. 

In the animal model, prolonged treatment with 
canagliflozin was associated with trabecular bone de-
terioration125. However, in subjects with T2DM treat-
ed for a long time, improved glycemic control and in-
sulin resistance attenuation can compensate an initial 
loss in bone calcification. In fact, oral hypoglycemic 

drugs are generally safe on clinical trials129. Few clin-
ical trials have assessed bone health and the majority 
has reported fracture as an adverse event, posing a 
limitation to accurate analysis. Thus, a clearer picture 
of the mechanisms and clinical implications of the in-
teraction between the inhibition of SGLT2 receptors 
and bone metabolism is still pending.

Another aspect to be considered in this scenar-
io is diabetic osteopathy leading to weakness from 
BMD-independent structural changes in the bone130. 
Thus, the hard endpoint to be considered during 
clinical trials or in real life situations must be the in-
cidence of fractures. In patients ≥65 years, the inci-
dence of fractures was higher on the placebo branch 
than on dapagliflozin (2.7% vs. 0.4%, respectively)24. In 
a pooled analysis of canagliflozin trials, the incidence 
of fractures was similar in both canagliflozin and the 
placebo, 2.7% vs. 1.9 (HR 1.32 [1.00–1.74]), respective-
ly. However, in a subpopulation of high cardiovascu-
lar risk patients, canagliflozin was associated with 
a higher incidence of fracture (4% vs. 2.6%), possibly 
due to increased incidence of falls, as volume-relat-
ed AE were more frequent on canagliflozin than on 
placebo (HR 1.76 (1.27–2.44))131. Possibly endorsing 
fall-related fractures, this incidence was higher ear-
ly on the beginning of treatment, and the fracture 
sites were the fists and feet. A sensitivity analysis 
including only osteoporotic fractures showed a sim-
ilar risk increase of with canagliflozin131. It was also 
observed on the SGLT2i group a tendency (RR 1.30 
(1.00-1.68)) to increase the risk of stroke, and this 
could be related to the risk of falls, especially for the 
elderly132. Therefore, it is possible that fractures re-
lated to SGLT2i therapy are associated with volume 
depletion.

In individuals with increased susceptibility to 
fractures due to osteoporotic fragility such as CKD 
patients, there is no clear evidence of an adverse ef-
fect of SGLT2i therapy. The incidence of fractures on 
CKD patients was indeed lower on canagliflozin 300 
mg (1.1%) than on the placebo (2.2%) over 104 weeks26. 
Patients on empagliflozin had a reduced number 
of fractures compared to those on the placebo with 
progressive renal failure from stage 2 to 3 CKD20. Al-
though one study observed higher rates of fractures 
with dapagliflozin (7.7%), all reported events were re-
lated to trauma, and only 2 were considered severe 
adverse events23.  

In conclusion, although the available data are in-
sufficient to confirm or exclude a specific deleterious 
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effect of these drugs on bone metabolism, falls due 
to hypovolemia were reported and the risk of fall-
ing should be considered in therapy indication with 
SGLT2 or SGLT2 / SGLT1 in elderly individuals.  

Effect on mortality 
Recently, the EMPA-REG Outcome trial showed 

a decrease in all-cause and cardiovascular mortal-
ity after the short-term use of SGLT2i in high-risk 
diabetic individuals18. Although SGLT2i could have 
a positive influence on cardiovascular risk factors 
(i.e., HbA1c, systolic BP, weight excess), the role of 
SGLT2i on survival improvement via atherosclerot-
ic risk is unlikely. In this trial, for each non-fatal 
myocardial infarction prevented with empagliflozin 
three cardiovascular deaths were spared. This num-
ber speaks for itself against the attenuation of ath-
erosclerosis as the primary mechanism of benefit. 
In fact, in statin trials, for each nonfatal myocardial 
infarction prevented 0.5 cardiovascular deaths are 
spared133. Moreover, the early opening of the survival 
curves in about one month is unlikely a consequence 
of complex, long-lasting phenotypic changes such as 
stabilization of atherosclerotic plaques.

Potentially, a change in the heart-kidney crosstalk 
would favor the SGLT2i effect on cardiovascular mor-
tality. Several mediators for this crosstalk have been 
reported, many with apparent impact on survival. 
Fibroblast growth factor 23 (FGF23)134, renalase135, 
asymmetric dimethylarginine (ADMA), erythropoi-
etin, trimethylamine-N-Oxide (TMAO) and PTH are 
among the most studied players. As noted above, 
with aging there is a progressive decline in GFR gen-
erating an imbalance in the heart-kidney crosstalk in 
favor of increased cardiovascular risk. In fact, in the 
EMPA-REG trial18, there was a significant interaction 
between age and cardiovascular benefit provided by 
SGLT2 inhibition, which was higher among those 
with 65 years or older. 

Looking from a different perspective, as a 
co-transporter of sodium and glucose, its inhibi-
tion can hypothetically reduce the sodium influx 
into cardiomyocytes reducing the propensity for 
life-threatening ventricular arrhythmias136. Con-
sistent with this finding, the risk of sudden death 
was about 30% lower in those treated with SGLT2i18. 
Both aging137 and T2DM138 increase the incidence 
of sudden cardiac death8; the severity of coronary 
artery disease and hypoglycemia are mediators of 
the risk in both cases. In disagreement with this 

assumption, although the evidence is still scarce, 
studies in humans have indicated that SGLT1 is 
the predominant receptor in the myocardium and 
small intestine, while SGLT2 is predominant in the 
kidney139. We still do not know if the proportion 
of SGLT1 and SGLT2 in the myocardium changes 
during the life course or under different stimuli. So 
far, aside from canagliflozin, other SGLT inhibitors 
have had minimal effect on the SGLT1140. 

In subjects with T2D141 or heart failures (HF)142, 
the liver converts abundant plasma FFA into ketone 
bodies (KB) such as acetoacetate and 3-hydroxybu-
tyrate. This KB excess in plasma is highly absorbed 
in the myocardium and in a dose-dependent manner 
is converted to acetyl-CoA143. In rodents, KB is used 
as the primary source of energy by cardiac cells144, 
and such use might hypothetically occur in individu-
als with T2D and heart failure, favoring the improve-
ment in energy reserves141. Nevertheless, it is also 
possible that overfeeding myocardium with KB may 
induce insulin resistance and block the citrate cycle, 
thus reducing the power supply143. This controversy 
has been highlighted recently with the confrontation 
of two SGLT2i effects: increasing plasma KB and de-
creasing cardiovascular mortality in individuals with 
T2D and HF. In healthy elderly individuals, the KB 
output is similar to that in younger adults145. How-
ever, as commented above, among diabetic elderlies, 
the KB production tends to be increased due to in-
sulin deficiency and malnutrition109. Hence, if this 
mechanism is in fact involved in the SGLT2i effects, 
elderly diabetic patients will be among the most im-
proved populations.

Effect on stroke
A neutral or even beneficial effect has been re-

ported with hypoglycemic therapies in stroke risk146. 
The possibility of benefits concerning stroke risk 
becomes even more likely if we consider the reduc-
tion of systolic blood pressure during treatment with 
SGLT2i147. However, despite the clear cardiovascu-
lar benefit SGLT2i, some concern was raised with a 
tendency to increase the incidence of stroke. In the 
EMPA-REG Outcome trial, the incidence of stroke 
tended to increase by 24% (95% CI 0.92, 1.67; p = 
0.16)18. Considering the EMPA-REG trials outcome 
together  with phase 2 or 3 studies, the risk of stroke 
increased by 30% (95% CI: 1.00, 1.68; p=0.049)132. An 
overall set of mechanisms that may be behind this 
potential adverse effect is unclear. However, ortho-
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static hypotension148, hemoconcentration149and in-
creased activity of renin-angiotensin-aldosterone 
system (RAAS)150 are among consequences of SGLT2i 
therapy that would favor stroke incidence.

In the elderly, this potential adverse effect may 
have greater significance for the natural propensi-
ty to hemoconcentration and orthostatic hypoten-
sion. To date, however, the relationship between the 
SGLT2i and the risk of stroke remains hypothetical 
as the number of events is small and only one pro-
spective outcome-driven trial analysis is published. 
Two other studies are underway with dapagliflozin 
and canagliflozin, and its completion will help to dis-
cern more clearly this finding. 

CONCLUSION

Few studies performed pre-specified analysis 
on the elderly. Therefore, to accurately assess its 

effects in older individuals, prospective studies 
are necessary. SGLT2i therapy is associated with 
glycemic effects on older individuals that are simi-
lar to younger ones. Similar effects on BP and BW 
have also been observed. In fact, as intentional body 
weight is not associated with higher AE, it is plau-
sible that drug-induced decrease on BW would have 
no increase in mortality. One limitation of these new 
agents is the higher prevalence of CKD on older indi-
viduals that could, in turn, reduce effectiveness. Oth-
er safety concerns are being outlined recently. DKA 
could influence SGLT2i prescription on insulin users 
but is rare on other individuals. Few cases of urosep-
sis were described on the largest SGLT2i trial to this 
date, and it is possible that this low number will be 
maintained in the long-term. The forthcoming stud-
ies regarding the cardiovascular safety of these new 
agents may establish this class as a top second- or 
first-line option in diabetes therapy.

RESUMO

A prevalência da diabetes mellitus tipo 2 em idosos cresceu muito na última década. A redução na sensibilidade à insulina e na ca-
pacidade secretora, ganho de peso, sarcopenia e adiposidade elevada são todas alterações metabólicas e corporais comuns entre a 
população idosa. Essas mudanças críticas favorecem o aumento no risco de hipoglicemia, síndrome de fragilidade, quedas e disfunções 
cognitivas. A primeira linha de tratamento contra a diabete muitas vezes não é segura para indivíduos mais velhos devido ao alto 
risco de hipoglicemia e a prevalência de comorbidades patogênicas, como doença renal crônica, osteoporose, doença cardiovascular 
e obesidade. Os inibidores do cotransportador sódio-glicose 2 (SGLT2) são uma nova classe de tratamento contra a diabete que inibe 
reabsorção de glicose e sódio na parte convoluta do túbulo proximal. Seu efeito é claramente demonstrado em diversos cenários clíni-
cos em populações mais jovens. Esta revisão e meta-análise descreve as particularidades dos SGLT2 na população idosa, abordando 
os mecanismos dos potenciais benefícios e desafios ainda presentes do uso destes medicamentos nesse grupo etário tão importante. 
Além disso, apresentaremos uma meta-análise dos principais efeitos dos SGLT2 encontrados em estudos post-hoc nos quais a idade 
média dos subgrupos analisados foi acima de 60 anos. Apesar da ausência de ensaios clínicos que incluem essa população, os dados 
encontrados sugerem que o tratamento com SGLT2 em idosos é eficaz para diminuir os níveis de glicose e tem efeitos na pressão 
arterial sistólica e no peso corporal. 

PALAVRAS-CHAVE: Transportador 2 de glucose-sódio/antagonistas e inibidores. Diabetes mellitus. Idoso. Eficácia.
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