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SUMMARY
OBJECTIVES: This study aimed to develop artificial intelligence and machine learning-based models to predict alterations in liver enzymes 

from the exposure of low annual average effective doses in radiology and nuclear medicine personnel of Institute of Nuclear Medicine 

and Oncology Hospital.

METHODS: Ninety workers from the Radiology and Nuclear Medicine departments were included. A high-capacity thermoluminescent 

was used for annual average effective radiation dose measurements. The liver function tests were conducted for all subjects and 

controls. Three supervised learning models (multilayer precentron; logistic regression; and random forest) were applied and cross-

validated to predict any alteration in liver enzymes. The t-test was applied to see if subjects and controls were significantly different 

in liver function tests.

RESULTS: The annual average effective doses were in the range of 0.07–1.15 mSv. Alanine transaminase was 50% high and aspartate 

transaminase was 20% high in radiation workers. There existed a significant difference (p=0.0008) in Alanine-aminotransferase 

between radiation-exposed and radiation-unexposed workers.  Random forest model achieved 90–96.6% accuracies in Alanine-

aminotransferase and Aspartate-aminotransferase predictions. The second best classifier model was the Multilayer perceptron 

(65.5–80% accuracies). 

CONCLUSION: As there is a need of regular monitoring of hepatic function in radiation-exposed people, our artificial intelligence-based 

predicting model random forest is proved accurate in prediagnosing alterations in liver enzymes. 

KEYWORDS: Aspartate aminotransferase. Alkaline phosphatase. Bilirubin. Alanine aminotransferase. Radiation dosages. Artificial 

intelligence. Machine learning.
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INTRODUCTION
Ionizing radiation (IR) is a cancer-causing agent that can alter 
several biological effects via oxidative stress1-4. Oxidative stress 
in the body can develop a liver injury, which can lead to liver 
diseases5. The liver is a radiosensitive organ6, and there is a need 
that the hepatic function should be monitored in medical radi-
ation-exposed personnel. The current study was conducted 

to examine the hepatic function in medical radiation workers 
who are exposed to low doses of medical radiation from the 
Radiology and Nuclear Medicine departments of Institute of 
Nuclear Medicine and Oncology (INMOL) Hospital, Pakistan 
during 2014–2020. For comparisons, radiation-unexposed work-
ers (n=30) of the same institute as controls were also included. 
The selection of a powerful predictive bio-computational tool 
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is always a challenge. This study was focused to develop artifi-
cial intelligence (AI)-based models to predict alterations in liver 
enzymes with the following cofactors: age, gender, and exposure 
to radiation doses. Therefore, three supervised learning models 
(multilayer precentron, MLP; logistic regression, LR; and ran-
dom forest, RF) were trained, applied to data, and cross-validated 
on the samples (n=90) of radiation-exposed medical workers. 
We further compared the accuracies and errors of these mod-
els and suggested the best. There is an extensive use of X-ray 
machines, computed tomography (CT), magnetic resonance 
imaging (MRI), positron emission tomography (PET), inten-
sity-modulated radiotherapy (IMRT), cardiac catheterization, 
fluoroscopic interventions, intensity-modulated proton therapy 
(IMPT), conformal therapy (CRT), three-dimensional conformal 
radiation therapy (3D-CRT), etc. in hospitals for the diagnosis 
and the treatment of various diseases and cancers. The radiother-
apy units and diagnostic instruments are handled by the tech-
nicians and physicians, which include a linear particle acceler-
ator (LINAC), the cobalt-60 teletherapy units, brachytherapy 
units, gamma cameras, mammography units, etc. The Nuclear 
Medicine department workers handle various radionuclides, such 
as Tc-99m, F-18, I-131, TI-201, and P-32. Occupational radia-
tion workers, especially from medical procedures and equipment 
are being chronically exposed to low doses of IRs7-10. Low-dose 
radiation-induced (few mSv) late health effects, including can-
cers, are evident from various studies11-13. The liver function test 
(LFT) has been found effective in diagnosing the elevation or 
alteration in radiation-induced liver damages14. We considered 
the following liver enzymes to assess: aspartate-aminotransferase 
(AST), alanine-aminotransferase (ALT), alkaline-phosphatase 
(ALP), and bilirubin for both radiation-exposed workers and 
controls (radiation-unexposed workers). A study had reported 
that a low-dose gamma radiation can impact liver function15. 
Irradiation of the body can lead to a protein oxidation, which 
can cause DNA damage. Irradiation of a liver can initiate the 
oxidation of liver enzymes16. To diagnose a potential problem 
in the liver, the ALT and AST are more important from LFT. 
Their high levels are the indication of specific problems in the 
liver17. The health-risk assessments induced from the exposure to 
IR were prompted from the calculation and observations from 
the studies of atomic bomb survivors of Japan. These observations 
are reported by Nuclear Regulatory Commission, International 
Commission on Radiological Protection (ICRP) , and United 
Nations Scientific Committee on the Effects of Atomic Radiation 
(UNSCEAR). The documents of the Radiation Protection Division 
of the Health Protection Agency are also available as the guide-
lines to assess the risk of chronic low doses for workers exposed to 
radiation. It was reported that out of 28 cancers, including liver 
cancer, the estimated excess relative risk per Sv was significant4. 

It has been observed that liver enzymes can be influenced from 
the exposure of X-rays. The BEIR-V Committee of National 
Research Council has mentioned that a long-term exposure to 
radiation can induce a liver cancer18. It is known that there was 
a liver cancer-related mortality risk existed from the exposure of 
plutonium in Mayak nuclear facility workers19-21. Although the 
liver irradiation risks are reported in patients who were treated 
with radiotherapies, these risks are not much evaluated in those 
personnel who are involved in treatments, such as single photon 
emission computed tomography (SPECT), CT, and 3D-CRT. 
The radiation-induced liver disease (RILD) has been reported 
in patients with intrahepatic cancer who were exposed to the 
radiation dose of 45–84 Gy22. Cao et al. (2008)22 mentioned 
that considerable variations are reported on the sensitivity of 
the liver in radiation treatment, which can be measured by liver 
perfusion during the treatment of dynamic contrast-enhanced 
CT (DCE-CT) scanning. 

AI and machine learning (ML) are extensively being in use 
to build models and make predictions for useful decisions and 
outcomes in clinical medicine. The real-time problems can be 
approximated and solved analytically with such models23,24. 
ML is considered a method of AI, in which the system learns 
the given patterns from the data and then with the learning 
and training functions, the model build-up25. Artificial neural 
networks (ANNs) mimicked the neural networks of human 
brain. AI and ML can help decide the diagnosis, treatment 
choices, postprocessing and other calculations through different 
functions and algorithms25. An MLP is a generic ANN model 
called feed-forward network, which can be adapted to train-
ing via learning algorithms. ANNs are the learning methods, 
which can provide a robust tool to solve real- and discrete-val-
ued functions. ANNs are the interconnected units (neurons), 
which take real values for the inputs to produce an output26. 
ML algorithms can be used in predictive quantitative models 
from clinical symptoms and risks, which might be useful in 
diagnosing earliest risks involved and afterwards, in the selec-
tion of the treatment. ML models are characterized by making 
a few preassumptions, learning mechanisms, and then mine the 
structured knowledge from the data provided. There are super-
vised learning methods, such as neural network (NN) algorithms 
and support vector machines (SVM). There are unsupervised 
learning methods for clustering and other statistical configura-
tions. For modeling, there should be some available features vs. 
target variables26,27. MLP is a “finite acyclic graph composed of 
nodes with neurons in logistic activation.” The network consists 
of the input neurons and output neurons in layers. The number 
of output neurons depends on the target value of each training 
pattern26,28. The MLP algorithms support regression, classifica-
tion, and prediction problems. ANN-based MLP is a biological 
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model mimicking the neurons of the brain, which are formu-
lated into a specific function29. The basic random forest (RF) 
algorithm30-32 is a nonparametric general purpose ensemble ML 
algorithm26,33. An ML-based logistic regression (LR) is a simple, 
rapid tool, which is effective in solving many problems through 
training, learning, and achieving specific coefficients26,29.

METHODS

Study design and setting
A cross-sectional study was conducted in the year 2020 to exam-
ine the hepatic function in radiation-exposed medical workers 
with low dose in two departments (i.e., Radiology [RDG] and 
Nuclear Medicine [NMD] of INMOL Hospital, Pakistan). 

Sample size and data collection
The low-dose radiation-exposed workers were included as vol-
unteers through informed consents. The average service time 
for all the included (n=90) INMOL radiation-exposed work-
ers was consecutive 5 years (2014–2020). The radiation-unex-
posed workers (n=30) as controls were also included, who were 
age-matched and with the same socio-economic background. 
The control group individuals were also from the same insti-
tute. They were scientists, nurses, ward attendants, supervisors, 
accounts officers, medical assistants, security guards, engineers, 
technicians, among others. The background/clinical data were 
collected from all subjects.

Measurement of annual 
average effective dose in millisieverts

Thermoluminescent (TLD) dosimeter reader was used to assess 
the whole-body AAEDs in mSv. The radiation doses in the 
Radiology and Nuclear Medicine departments were measured 
by Radiation Dosimetry Laboratory (RDL)35-36. The RDL, 
Pakistan Nuclear Regularity Authority (PNRA) uses a soft-
ware RaDLab to calculate, assess, and keep record of the TLD 
received doses, according to the guidelines of ICRP37. Few peo-
ple of the nuclear medicine department were also working 
with radiopharmaceuticals (Tc-99m and I-131) in Hot and 
Synthesizer Laboratories.

Blood sampling and 
background information

Blood samples were collected from the volunteers (n=120) with 
informed consents from RDG and NMD radiation-exposed 
personnel and other unexposed employees of the INMOL hos-
pital. The general background information was recorded on a 
proforma from each participant. 

Liver function test
The LFTs were conducted for radiation-exposed (n=90) and 
radiation-unexposed workers (n=30) in the biochemistry lab 
of the INMOL hospital. AST in U/L, ALT in U/L, alkaline 
phosphatase (AP) in U/L, and bilirubin in mg/dl were recorded. 
The following normal ranges were considered: AP, 115–539 
(U/L); ALT, up to 40 (U/L); AST, up to 35 (U/L); and biliru-
bin, 0.3–1.2 (mg/dL).

ARTIFICIAL 
INTELLEGENCE MODELS

This study was focused to develop AI-based models to predict 
alterations in liver enzymes with the following cofactors: age, 
gender, and exposure to radiation doses (i.e., AAED in mSv). 
For this purpose, three supervised learning models (MLP, LR, 
and RF) were trained, applied to data, and cross-validated 
(fivefold) on the samples (n=90) of radiation-exposed med-
ical workers. All the model buildings were done in Waikato 
Environment for Knowledge Analysis (WEKA ver. 3.8.3) devel-
oped by The University of Waikato Hamilton, New Zealand. 
Figure 1 shows the flow diagram for the model processing. 
These models were compared for their accuracies (i.e., kappa 
statistics, correctly classified instances, TP rate, FP rate, pre-
cision, recall, F-measure, Matthews correlation coefficient 
(MCC), receiver operating characteristic (ROC) area, and pre-
cision-recall curve (PRC) area and errors (absolute error, root 
mean squared error, relative absolute error, and root relative 
squared error). The kappa statistics is a mean to evaluate the 
prediction performance of the classifiers. Two classes of liver 
enzymes (ALT and AST) were made according to ‘above-the-
range normal values’ in each. Class A in ALT consisted of the 
values greater than 40 U/L, whereas class B consisted of the val-
ues lesser than B. Similarly, class A in AST consisted of the 
values greater than 35 U/L, whereas class B consisted of the 
values lesser than B. 

Artificial neural network 
based multilayer precentron

An MLP is a function for classification, which includes a 
back-propagation algorithm. This classifier can be optimized 
during learning and training phases with certain numbers of 
epochs. Usually, a Sigmoid function is included in the network 
of MLP. This model gives the following options for model build-
ing: seed, momentum, hidden layers, learning rates, momen-
tum, epochs, batch sizes, training times, etc. The seed is used 
to initialize the generation of random numbers. The momen-
tum is applied to the weight updates. The hidden layers are 
used to add where specifically required34.
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debug, ridge (in the log-likelihood), maximum number of iter-
ations, or using conjugate gradient descent instead of Broyden–
Fletcher–Goldfarb–Shanno (BFGS) algorithm34.

Machine Learning-based random forest
A RF is a classifier tree for constructing a forest of random 
trees30. It gives the options to change in seed, the number of 
execution slots to construct the ensemble, bag-size percentage, 
batch sizes, number of iterations, debug, maximum depth, 
number of randomly chosen attributes, etc. 

Statistical analyses
The statistical calculations and analyses were done in SPSS ver-
sion 25. A t-test (unpaired) was applied to the mean values of 
the following: AST (U/L), ALT (U/L), AP (U/L) and biliru-
bin (mg/dl) to discover a difference of significance (at p<0.05) 
between radiation-exposed and radiation-unexposed workers. 
A p-value <0.050 was considered significant. 

RESULTS

Background information and annual 
average effective dose assessment

Out of 90 medical workers exposed to radiation, 78 (86.7%) 
of them were male and 12 (13.3%) were female. The mean 
age of the radiation-exposed workers was 42.7±12.08 years 
with a range 21–59 years. There were 19 males (63.3%) and 
11 (36.7%) females who were radiation-unexposed workers. 
The mean age of unexposed workers was 44.46±10.43 years 
with a range 27–58 years. All participants were not found with 
any hepatic disease during their lifetime.

The mean value of AAED was 0.2550±0.27516 (mSv). 
The personnel of RDG and NMD were exposed to low AAEDs 
(whole body) in the range of 0.07–1.15 mSv during 2014–2019, 
which is well below (<20 mSv) the limit implied by UNCEAR.

Mean values of liver 
function test parameters

The AP was normal in both radiation-exposed and radiation-un-
exposed personnel. There were high values reported in ALT and 
AST enzymes with a mean value of 61.6 U/L (n=45; 50%) and 
38.83 (n=18; 20%), respectively, in radiation-exposed workers. 
There were also high values reported in ALT and AST enzymes 
with a mean value of 51 U/L (n=5; 16.7%) and 45.8 (n=516.7%), 
respectively, in radiation-unexposed workers. Low values in 
bilirubin were reported in 6 (6.7%) (mean=0.23 mg/dL) radi-
ation-exposed workers and in 3 (10%) (mean=0.27 mg/dL) 
radiation-unexposed workers. The details are given in Table 1. 

Figure 1. Flow diagram showing all process steps of the 
models.

Logistic regression
Logistic is a classifier function used for constructing a multi-
nomial logistic regression (LR) model with a ridge estimator73. 
We used a modified LR from the original to handle the weights 
of the instances72. It gives the option of changing batch size, 
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Table 1. Mean, Min and Max. values of Liver Function Test parameters.

LFT parameter Mean±SD Min/Max High/Low Values (mean) Normal Range

Radiation Exposed Personnel (n=90)

Alkaline Phosphatase (AP) 222.1667±42.62701 157.00/320.00 None 115–359 (U/L)

Alanine Transaminase (ALT %) 44.8000±22.02460 18.00/102.00 High 61.6 (n=45; 50) Up to 40 (U/L)

Aspartate Transaminase (AST %) 28.9000±6.48256 16.00/43.00 High 38.83 (n=18; 20) Up to 35 (U/L)

Bilirubin (%) 0.5717±0.30208 0.22/1.80 Low 0.23 (n=6; 6.7) 0.3–1.2 (mg/dL)

Radiation Unexposed Personnel (n=30)

Alkaline Phosphatase (AP) 232.2667±51.54906 150.00/348.00 None 115–359 (U/L)

Alanine Transaminase (ALT %) 30.1667±12.86825 14.00/80.00 High 51 (n=5; 16.7) Up to 40 (U/L)

Aspartate Transaminase (AST %) 28.7333±10.17412 15.00/60.00 High 45.8 (n=5; 16.7) Up to 35 (U/L)

Bilirubin (%) 0.5367±0.18907 0.26/0.98 Low 0.27 (n=3; 10) 0.3–1.2 (mg/dL)

Comparison of classifier models
The AI-based prediction classifier models were developed to 
anticipate the alteration in the liver enzymes, ALT and AST, 
with three cofactors, i.e., age, gender of the radiation-exposed 

worker, and AAED in the range of  0.07–1.15 mSv, using 
MLP, LR, and RF on cross-validation (fivefold) over 90 sam-
ples. Tables  2 and 3 describe the detailed comparisons between 
these three models along with the their characteristic features. 

Table 2. Comparisons of AI Models (on Five-Fold Cross-Validation) for the Prediction of Alterations in Liver Enzymes (ALT/
AST) in Medical Radiation-Exposed Personnel.

Model: Multilayer Perceptron (MLP) Classifier 
Hidden Layers: 1 (nodes=2); Learning Rate: 0.4; Momentum: 0.3; Epochs: 500; Batch Size=100; Function: Sigmoid

Correctly Classified 
Instances (%)

Kappa Statistics
Mean Absolute 

Error
Root Mean 

Squared Error

Relative 
Absolute Error 

(%)

Root Relative 
Squared Error 

(%)

ALT

65.5556 0.3192 0.393 0.4455 78.8807 89.2278

AST

80 0 0.2847 0.3829 87.5395 95.5839

Model: Logistic Regression (LR) Classifier 
Ridge Parameter of 1.0E−8

ALT

48.8889 −0.036 0.4998 0.5149 100.3204 103.1264

AST

78.8889 0.1441 0.2873 0.3821 88.3471 95.3939

Model: Random Tree (RF) Classifier 
Bagging with 100 iterations and base learner; Seed=1

ALT

90 0.7982 0.1696 0.2526 34.0503 50.5894

AST

96.6667 0.898 0.0908 0.1618 27.9296 40.3842

ALT: alanine transaminase; AST: aspartate aminotransferase.
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Table 3. Comparisons of AI models: accuracy details by class.

Model: Multilayer Perceptron (MLP) Classifier
Class TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area

ALT

A 0.762 0.438 0.604 0.762 0.674 0.329 0.696 0.694

B 0.563 0.238 0.730 0.563 0.635 0.329 0.696 0.767

AST

A 1.000 1.000 0.800 1.000 0.889 – 0.700 0.909

B 0.000 0.000 – 0.000 – – 0.700 0.366

Model: Logistic Regression (LR) Classifier
ALT

A 0.381 0.417 0.444 0.381 0.410 -0.036 0.494 0.456

B 0.583 0.619 0.519 0.583 0.549 -0.036 0.494 0.549

AST

A 0.944 0.833 0.819 0.944 0.877 0.166 0.723 0.922

B 0.167 0.056 0.429 0.167 0.240 0.166 0.723 0.355

Model: Random Forest (RF) Classifier
ALT

A 0.857 0.063 0.923 0.857 0.889 0.800 0.976 0.974

B 0.938 0.143 0.882 0.938 0.909 0.800 0.976 0.980

AST

A 0.972 0.056 0.986 0.972 0.979 0.898 0.997 0.999

B 0.944 0.028 0.895 0.944 0.919 0.898 0.997 0.983

TP: true positive; FP: false positive; MCC: Matthews correlation coefficient; ROC: receiver operating characteristic; PRC: precision-recall curve; ALT: 
alanine transaminase; AST: aspartate aminotransferase.

Machine Learning-based Random Forest
According to the results, the best model was the RF, which 
achieved 90% and 96.6% accuracies in ALT and AST pre-
dictions, respectively, with the defined cofactors. RF model 
achieved a reduced number of errors and good kappa statistics 
(i.e., 79% and 89%) (Tables 2 and 3).

Artificial Neural Network-based 
Multilayer Perception

The second best classifier model was the MLP with respect to 
the accuracies and errors for both ALT and AST. The MLP 
model was tested and trained on different learning rates (LR), 
momentum, number of hidden layers, epochs, and the hid-
den layers. The best accuracy was found with one hidden layer 
of two nodes, LR=0.4, momentum=0.3, and epcohs=500. 
Figure 2A and B show the ANN of MLP with and without 
hidden layers.

Machine Learning-based logistic 
regression

This model worked well for AST prediction with 78% accu-
racy as compared to 48% accuracy in predicting ALT. The odds 

ratios in class A (values more than 40 U/L) of the ALT model 
were as follows: age=1.0342; gender: female=1.3057; and 
AAED=0.5493. The odds ratios in class A (values more than 
35 U/L) of the AST model were as follows: age=1.0619; gen-
der: female=0; and AAED=0.1614.

Comparisons based on t-test
The t-test was applied to see if both groups (radiation-exposed 
and radiation-unexposed workers) were significantly different 
from each other in LFT parameters. There existed a significant 
difference (p=0.0008; 95%CI t=3.445; df=118; 6.22–23.05) in 
the mean values of ALT between radiation-exposed and radi-
ation-unexposed workers. There existed a nonsignificant dif-
ference in the mean values of AP, AST, and bilirubin with the 
following p-values: 0.2890, 0.9169, and 0.554, respectively. 

DISCUSSION
Liver is a radiosensitive organ6, and the long-term low-dose 
radiation effects must be regularly monitored in occupational 
workers. It has been reported that a radiation exposure can 
induce hepatic toxicity and can increase the risk of hepatic 
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cancers19. Liver cancer has been reported12 in medical radiation 
workers who were exposed from low doses. A study reported 
that the X-ray workers were found with high risks of leuke-
mia, lung, liver, and breast cancers from the chronic exposure 
of radiations38. The workers of the Mayak nuclear production 
facility have been diagnosed with high risks of mortality from 
liver, lung, and bone cancers20-40. Similarly, the mortalities were 
also reported from liver cancer in the workers of the Sellafield 
nuclear plant in Britain41. We figured out a best predicting 
model from AI and ML-based algorithms for the impact on 

liver enzymes with the following cofactors: age, gender, and 
low doses of AAEDs (mSv) in radiology and nuclear medicine 
workers of the INMOL hospital. Among three supervised 
learning models (MLP, LR, and RF), the ML-based classifier 
RF achieved high accuracies (90–96%) in predicting altered 
levels of liver enzymes, AST and ALT. The ML-based decision 
tree models have been used for the detection or diagnosis of 
the diseases42-46. ML tools are now considered more powerful 
to assist in the decision making for problems in medical sci-
ence46. ML is a branch of AI that has been found best in its 

age

AAED

gender=Female

A

B

age

AAED

gender=Female

A

B

Figure 2. (A) Top: Neural network of liver enzymes with one hidden layer (nodes: 2); (B) bottom: Neural network of liver 
enzymes with one hidden layer (nodes; 4).
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implications in nonlinear biological systems with complex 
measurements46. The ML-based RFs or the random decision 
forests are the ensembling learning methods for the classifica-
tion and regression by building a multitude of decision trees 
via training. The RF consists of many individual decision trees, 
with each tree splits on a class prediction, and the class which 
is most opted, becomes the model’s prediction47.

According to the study conducted by Boice et al.48, the 
cancer risks were evaluated in the employees of Rocketdyne 
(Atomic International), who were having an intake of radio-
nuclides. They reported that the lung cancer and other can-
cers of liver, bone, esophagus, and kidney were not reported 
from the average dose of the external radiation of 13.5 mSv. 
However, cardiovascular disease, diabetes, the cirrhosis of the 
liver and other respiratory diseases were reported with signifi-
cant deficits. Guha and Kavanagh49 reported the RILD within 
4 months in patients receiving hepatic radiation therapy. They 
reported higher levels of AP, but normal levels of bilirubin and 
ammonia through LFT. Lian et al.50 assessed the severity and 
risk factors of liver radiation tolerance in more than 100 pri-
mary liver cancer patients who were treated with 3D-CRT. 
Although, they found that the mean dose of 23 Gy was toler-
able for a normal liver, however, they did not asses the hepatic 
radiation tolerance from the dosimetry calculations. They sug-
gested that the most important risk factor for RILD was related 
to the liver cirrhosis. Wang et al (2013)51 has mentioned that 
during radiotherapy, the 99mTc-labeled immindodiacetic acid 
(IDA) SPECT obtained can be employed to assess the hepatic 
function, which can help to anticipate any post radiotherapy 
liver function alteration. Therefore, an optimized radiation 
treatment plan can be decided to avoid RILD in patients51. 
Howe et al. and Azizova & Muirhead52,53 had mentioned that 
the chronic use of radiation can induce some changes in liver 
metabolism in many occupational radiation-exposed groups. 
When a liver receives radiation doses via whole-body expo-
sure, the “upregulation in the genes of main proinflammatory 
chemokines occurs from the activity of proinflammatory cyto-
kines”54,55. “An exposure of radiation induces the oxidative stress 
and this in turn can impact the liver through increase in con-
centrations of thiobarbituric acid-reactive substances (TBARS), 
decrease in superoxide dismutase, glutathione peroxidase activ-
ity55,56, reduced glutathione concentration (GSH), and hence 
an activation of the stress-inducible haemoxygenase-1 (HO-1) 
gene”57. It is known that the reduced levels of GSH can lead to 
the increased stress induced oxidation58. The HO-1 gene has 
a protective function as anti-inflammation and antioxidant 
and has a role in the production of bilirubin59,60. However, 
some researchers did not report any change in TBARS levels 
from the radiation exposure61,62. The elevation in hepatocyte 

growth factor was observed with the exposure of total body 
irradiation55-63. A whole-body irradiation can impact other 
body organs, including the liver. Nwokocha et al.55 conducted 
a study in which they evaluated the impacts of total-body radi-
ation (1.27  Gy/ min for 5 days), which leads to the alterations 
in liver enzymes in rats. They found that the levels of ALT and 
AST were significantly increased with the increase in the radi-
ation doses. The decreased serum total protein and albumin 
levels were also reported from radiation exposures, mentioned 
by Holten and Christiansen, Moulder et al, and Wheeler and 
Bernard 64-66. An increase in cholesterol and lipid levels were 
also reported from the radiation injury, due to the increased 
inflammatory actions38,39. Nwokocha et al.55 reported that with 
the radiation exposure, the levels of bilirubin varied within the 
normal range, and the high levels were not significant. 

LFT is the first helpful screening to find out any dysfunc-
tioning in the hepatic system69. “Overproduction and leakage 
in blood are the basis of abnormality in AP levels. Leakage from 
the damaged tissue is a basis of normality in ALT/AST levels. 
The elevated levels of ALT/AST are used to mark in hepati-
tis, autoimmune diseases, toxicity, and ischemic conditions. 
Mild high levels of AST can be an indication of a liver disease; 
whereas, its moderate levels can be the indication of extrahepatic 
biliary atresia (EHBA), IHBA (intrahepatic biliary hypoplasia), 
infiltrating disorders or granulomatous hepatitis. The basis of 
normality in bilirubin is related to the decreased hepatic clear-
ance. Its mild increased levels can indicate physiological jaun-
dice, inherited hyperbilirubinemia; whereas, its moderate high 
levels can indicate EHBA, IHBA, drug toxicity, viral hepatitis, 
or inherited hyperbilirubinemia”69. There existed a significant 
difference (p=0.0008) in ALT between radiation-exposed and 
radiation-unexposed workers. None of the radiation-exposed 
or radiation-unexposed people of INMOL were having an 
abnormal value of AP. The major change was observed in ALT, 
which was high in 50% radiation-exposed workers. The AST 
was high in 20% radiation-exposed workers. Only 6.7% lower 
levels were found in bilirubin in radiation-exposed workers. “It 
is known that the extremely high levels of ALT/AST are found 
in viral hepatitis, drug toxicity induced hepatic necrosis, and 
circulatory shock. Moderate-high levels of ALT/AST are found 
in patients with acute/chronic hepatitis, autoimmune hepatitis, 
drug-induced hepatitis, alcoholic hepatitis, and acute biliary 
tract obstructions. In chronic liver diseases, the ALT can fre-
quently increase. The mild high levels of ALT/AST are seen in 
EHBA, fatty liver, liver cirrhosis, nonalcoholic steato hepatitis 
(NASH), drug toxicity, myositis, Duchenne muscular dystrophy 
or after strenuous exercises. The lower levels of bilirubin may 
be reported from the side effects of certain drugs, such as sul-
phonamides and salicylates”69. Abnormalities in liver enzymes 
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are commonly reported in elderly people70. The elevated levels 
of ALT/AST can be observed in short duration and may not 
point towards any significant damage to the liver. A chronic 
intake of antidepressants, pain relief medicines, antibiotics, or 
muscle relaxants can temporarily raise liver enzymes. Barshishat-
Kupper et al.16 reported a hepatic metabolic alteration with the 
radiations of 8.5 Gy, which also led to the radiation-induced 
carbonylation of associated liver enzymes. A study had reported 
that the altered levels of AST, AP, and bilirubin were signifi-
cantly linked with the radioactivity of thorium in occupational 
workers71. Moreover, high levels of AST, AP, bilirubin, and albu-
min were significantly associated with the alpha-radiation (50 
μCi) emission from the radium industry in female workers72. 

Recommendations
There is a need to evaluate the same models on large data. 
There should be some planning in implementing these models 
in hospitals for the health and safety of the radiation workers. 
The practical implications could provide the real testing to solve 
for the errors and other limitations. More AI and ML-based 
models can also be tested with more specific cofactors for their 
robustness and validations. There should also be more consid-
eration of different learning methods and more data for the 
training samples. Moreover, the developed AI models can be 
further helpful in diagnosing any intial health abnormality in 
patients who receive radiotherapies.

Limitations and strengths
This was a single-center based pilot study and was conducted 
to test the validity of AI and ML predictive models for the 
prediagnosis of biochemistry alterations. Although, few spe-
cific models were successfully validated, there is a need to test 
more AI models on larger data. The accuracy in the results of 
the tested models indicates that they can help clinicians to pre-
diagnose any abnormality in the biochemistry of popultation 
who are being exposed to environmental toxics. 

CONCLUSION
A radiation-induced injury can occur in the medical radi-
ation workers from low doses. Therefore, there is a need to 
monitor the hepatic function of radiation-exposed people on 
a regular basis. The RF achieved the highest accuracy in pre-
dicting the altered levels of liver enzymes. The application of 
ML-based models can provide us fast monitoring and assess-
ment of biochemistry to point out an earliest risk in case of 
any alterations. 
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