
1 	Laboratory of Computing and Applied Mathematics, National Institute for Space Research, CP 515, CEP 12245-970,
São José dos Campos, SP, Brazil, e-mail: vijay@lac.inpe.br

2 	 Department of Computer Science, Santa Catarina State University – UDESC, CEP 89219-710, Joinville, SC, Brazil,
e-mail: gian@joinville.udesc.br

3 	 Mentor Tecnologia, Av. Adhemar de Barros, 633, CEP 12245-010, São José dos Campos, SP, Brazil,
e-mail: valeria.andrade@mentortec.com.br

4 	 Department of Computer Science, Githam University, Visakhapatnam, AP, India, e-mail: drgv_swamy@yahoo.co.in
5 	 Delta Studies Institute, Andhra University, Visakhapatnam, AP, India, e-mail: mjrao_isa@yahoo.co.in

Recebido em 30/11/2011 — Aceito em 17/9/2012

Suporte financeiro: PROCAD/CAPES (Projeto NF 776/2010).

Resumo: Statecharts representam graficamente sistemas reativos que respondem aos estímulos externos ou internos
e mudam estados de um dado sistema. Statecharts estendem diagramas de estado com hierarquia, paralelismo e
interdependência. Devido às suas características, eles foram adaptados para representar e tratar analiticamente
modelos de desempenho (sistemas reativos cujo desempenho deve ser avaliado). Uma característica presente em
Statecharts é registrar (ou memorizar) um estado do sistema que não é possível representar numa forma direta
em modelos Markovianos devido à sua propriedade de “sem memória”. São duas as contribuições deste artigo:
mostrar que Statecharts são viáveis para especificar sistemas reativos e avaliar o seu desempenho tanto por técnicas
analíticas quanto por simulação; mostrar que a inclusão de representação de memória em Statecharts pode, de
fato, ser tratada por abordagens analíticas e de simulação. Um estudo de caso de um sistema de manufatura é
considerado para mostrar que os objetivos foram alcançados.

Palavras-chave: Modelos de desempenho. Statecharts. Representação de memória. Soluções analíticas. Cadeias
de Markov a tempo contínuo. Simulação.

Abstract: Statecharts are a graphical representation to model reactive systems that respond to external or internal
stimuli by changing the state of a given system. Statecharts can be seen as an extension of state-transition diagrams
that allows modeling hierarchy, orthogonality, and interdependence. Due to their features to represent reactive
systems, Statecharts have been adapted to represent and deal analytically with performance models (reactive systems
whose performance is to be evaluated). An interesting feature present in Statecharts is to record the system’s state,
which cannot be represented in Markov models in a straightforward manner due to its “memory-less” property. The
contributions of this paper are: show that Statecharts are a feasible alternative to specify a reactive system so that its
performance can be evaluated by both analytical and simulation techniques; show that the inclusion of the memory
representation in the Statecharts specification can indeed be made by both analytical and simulation techniques.
The results of a case study of a manufacturing system show that the objectives are achieved.

Keywords: Performance models. Statecharts specification. Memory representation. Analytical solutions. Continuous‑time
Markov chains. Simulation.

Memory embedded in Markov models specified in
Statecharts: simulation versus analytical approaches

Tratamento de memória em modelos Markovianos especificados em
Statecharts: abordagens por simulação e analítica

Nandamudi Lankalapalli Vijaykumar1
Gian Ricardo Berkenbrock2

Solon Venâncio de Carvalho1
Valéria Maria Barros de Andrade3

Gurrala Veereswara Swamy4
Mokka Jagannadha Rao5

Gest. Prod., São Carlos, v. 19, n. 4, p. 663-675, 2012

mailto:vijay@lac.inpe.br
mailto:gian@joinville.udesc.br
mailto:valeria.andrade@mentortec.com.br
mailto:drgv_swamy@yahoo.co.in
mailto:mjrao_isa@yahoo.co.in

Vijaykumar et al.

1 Introduction
In systems design, usually, analysts or engineers

must be capable of predicting the system performance,
so that it is possible to avoid possible bottlenecks, as
well as understanding the system behavior, both in the
best and the worst case scenarios. An option to deal
with this issue is to depend on the knowledge and
expertise of the system administrator. An alternative
is to use performance models so that one can infer
the behavior of the system. Performance models are
those models which are reactive systems from which
their behavior can be determined. Such models can
be applied for capacity planning, manufacturing
systems performance analysis, alternative systems,
capacity expansion, spare parts inventory management
(GOMES; WANKE, 2008) and maintenance
systems (DE MARCHI; CARVALHO; MORAIS,
2001). These application areas play a key role in
production management since they enable engineers
to conduct studies on different options by changing
the performance models.

Several performance evaluation methods are
available in the literature, and they are generally
associated to stochastic processes that are
mathematically well defined and can be handled
computationally. Such methods use approaches such as
measuring or modeling. Measurements, benchmarking,
and prototyping are measuring approaches. Modeling
uses a specification method to represent a given
system behavior, and then a technique – either by
simulation or by analytical approach – is associated
to the specification; one issue is the representation
of performance models.

Usually systems whose performance has to be
evaluated fall into the category of reactive systems.
Reactive systems are those that respond to external
or internal stimuli also known as events. Events are
a perturbation in the behavior, and they change the
present state (for instance, idle to processing). One
way to represent reactive systems is a Finite State
Machine (FSM) whose representation is achieved
through a state-transition diagram. FSM consists of
states and transition between states. The change of
one state to another occurs based on a label on the
transition which corresponds to an event. Therefore,
if a system whose performance is to be measured
can be represented by an FSM, then it is possible
to associate this representation with a technique
(analytical approach or simulation) in order to obtain
its performance evaluation. In case of a technique
by means of analytical approach, Markov chains
are usually employed. FSM resembles very much a
Markov chain since a Markov chain is also represented
as a set of states and transitions driven by events
(continuous-time Markov chain) or probabilities
(discrete-time Markov chain).

Modern complex systems require explicit
representation of depth and parallelism. A clear
visualization of systems with several parallel
components becomes difficult by means of
state‑transition diagram thus requiring a consideration
of using higher-level techniques (queuing networks
(KLEINROCK, 1976), Generalized Stochastic Petri
Nets (CHIOLA; MARSAN; CONTE, 1993) and
Statecharts (HAREL, 1987).

Our proposal uses the Statecharts approach
to represent and deal with performance models
(VIJAYKUMAR; CARVALHO; ABDURAHIMAN,
2002). Performance models have been used to observe
the behavior of a reactive system to understand these
systems without the need of physically implementing
them Accordingly, some metrics can be very interesting
for determining performance, for instance, response
time, throughput, utilization, etc.

Now, the problem is not only to represent the
model, but also to solve it so that performance metrics
of interest can be obtained. With respect to this, the
PerformCharts tool was used to analytically determine
these metrics. However, in performance models, it is
common to face a situation where after a component
is turned off, a return to “the last active state” of that
component is necessary. As an example, let’s consider
a model in which a robot is responsible to do some
service. In the event of a breakdown, the robot has
to be repaired, and it should return to the state where
it was before the breakdown to finish the interrupted
task. This is easily represented in Statecharts, as
shown in the following sections. The problem is to
solve the model using Markov chain. However, the
memory-less property of Markov chains – future
depends only on the present and not on the past – has
to be handled. Markov chains are simple and can deal
with uncertainty enabling analyzing complex systems
in the areas of production, industrial engineering
mathematics, computer science, operations research,
and others (SHESKIN, 2010; HERMANNS et al.,
2000). In the area of production control, the task of
dealing with varying service times to properly estimate
manufacturing times is not an easy task. Therefore,
Markov chains in queuing theory added to analysis
of real queue systems with layout constraints have
generated a hybrid model to access such systems
(ABEDI et al., 2010).

Thus, this study aims at discussing how memory can
be automatically eliminated from Statecharts models
when converting the specification (from Statecharts
models) in a Markov chain (VIJAYKUMAR et al.,
2002). Vijaykumar, Carvalho and Abdurahiman (2002)
proposed the use of Statecharts to represent Markov
chains without dealing with the memory issue, which
is a very interesting feature of Statecharts. Only one
algorithm was discussed in Vijaykumar et al. (2002).
However, a real implementation was not properly done

664 Gest. Prod., São Carlos, v. 19, n. 4, p. 663-675, 2012

Memory embedded in Markov models specified in Statecharts: ...

The states are clustered to represent depth. This
feature enables combining a set of states with common
transitions into a macro-state also known as super-state.
Super-state refinement can be achieved by means of
XOR decomposition and AND decomposition. The
former decomposition may be used whenever an
encapsulation is required. When a super-state in a high
level of abstraction is active, one (and only one) of its
sub-states is indeed active. The AND decomposition
represents concurrency, i.e., when a super-state is
active, all of its sub-states are active. A state is BASIC
when there are no further refinements from it.

In Statecharts, the global state of a given model is
referred to as a configuration that is the active basic
states of each orthogonal component. A complete
syntax and semantics of Statecharts are described
in Harel (1987), Harel et al. (1987) and Harel and
Politi (1998).

By definition, when modeling a given system,
there must always be an initial state, a default state,
in Statecharts. Thus, the initial configuration consists
of active basic states of each orthogonal component.
However, the default state can be bypassed by using
history, i.e. when a system becomes active the most
recently visited state becomes active. This is indicated
by the symbol H. It is also possible to use the history
all the way down to the lowest level as defined in the
Statecharts formalism (HAREL, 1987). In this case,
the symbol H* is used. In order to influence only
certain levels of abstraction, the symbol H should be
applied to the appropriate level. The history feature
is shown in Figure 1.

Let’s consider equipment E that has as a sub-state
a macro-state A, which is an XOR state. Its sub-states
are W (idle), and the macro-states T1, and T2 that
represent two types of jobs T1 and T2 have further
refinements into basic states T11 and T12 and T21
and T22, respectively. E behaves as follows: when
idle (state W), it can be requested to process either
T1 or T2. Event a1 triggers the job type T1, whereas
event a2 triggers type T2. End of service is represented
by events s1 and s2 for jobs T1 and T2, respectively.
Both types of jobs have to undergo two sub-processes,
T11 and T12 (in case of T1) and T21 and T22
(in case of T2). When the equipment is busy, it may
fail, and this takes to state F.

(Failure) via event f. Note that the guard condition
not in(W) is attached to guarantee that the equipment
may fail only when it is not idle.

When the failure is corrected, the last state visited
becomes active, represented by H. In Figure 1a, when
the super-state A becomes active, the most recently
visited state (T1 or T2) will become active bypassing
the default state. When T1 is the most recently visited
state, the sub-state T11 will become active since it
is the default state within T1. With regard to T2,
sub-state T21 (default state within T2) is the one

using adequate testing in several reactive systems . In
addition, the same specification is used in Statecharts
to generate the performance evaluation by adopting
the simulation approach. The PerformCharts tool
deals only with analytical solution. It is necessary
to incorporate the solution via Simulation as well.
The advantages of this approach are to study the
feasibility of incorporating this into the tool and
to validate the PerformCharts tool. In order to deal
with the simulation solution, the system simulation
model was developed, and the simulation executive
is based on the three-phase approach specified by
Pidd (1998). This modeling approach maps two types
of activity: unconditional and conditional activity.
Unconditional activity also known as B activity is
processed at the due simulation time, and conditional
activity or C activity is processed only when the
condition is accepted. There is also another activity,
A activity or A phase, which is concerned with time
advancement or time scan.

The next section briefly introduces Statecharts, in
particular, how the memory feature is represented. In
order to adapt Statecharts to be used in performance
evaluation, a tool named PerformCharts has been
developed. Section 3 shows the tool by describing
how the Statecharts representation is handled to
obtain performance measures. Section 4 deals with
the memory feature represented in Statecharts and
how this has been implemented in the PerformCharts
tool. A case study as well as its solution to obtain
performance metrics through PerformCharts is
presented in Section 5. As previously mentioned,
the PerformCharts tool deals with performance
evaluation using only an analytical approach, and
it is expected to include the solution by means of
Simulation. Therefore, a simulation solution is
developed in order to compare the results from
an analytical approach without implementation of
PerformCharts. The simulation approach has also
been based on the Statecharts representation. This
is presented in Section 6. Finally, some conclusions
about the use of a high-level specification technique
and its association with both Markov chain and
simulation approach are presented.

2 Statecharts
Statecharts are graphical-oriented and are capable

of specifying reactive systems. They have been
originally developed to represent and simulate real
time systems. Moreover, Statecharts are formal
(HAREL, 1987) and (HAREL; POLITI, 1998),
and their syntax and semantics enable considering
complex logic to represent the behavior of reactive
systems. They extend state-transition diagrams
by incorporating notions of hierarchy (depth),
orthogonality (represent‑tation of parallel activities),
and interdependence (broadcast-communication).

665

Vijaykumar et al.

converted into a Markov chain that corresponds to
the behavior of the specified model (VIJAYKUMAR;
CARVALHO; ABDURAHIMAN, 2002).
Therefore, the PerformCharts tool is responsible
to automatically generate a Markov chain from a
Statecharts specification.

Once a model is represented by Statecharts,
the enabled events must be stimulated so that
new configurations (set of active states of all
parallel components) are obtained. Internal events
(true(condition), false(condition) – abbreviated
respectively as tr and fs – and actions) are automatically
sensed and stimulated. External events must be
explicitly stimulated to describe the dynamics of
the modeled system behavior. In order to enable the
association of Statecharts model with a Markov chain,
the only type of external events that can be considered
are stochastic events. The time between their activation
and their occurrence follows a stochastic distribution,
which, in particular, has to be exponential.

An example is used to illustrate the process of
converting Statecharts specification into a Markov
chain. Let’s consider a system with three parallel
components that correspond to two machinery
equipment and a supervisor to repair any failure in
the equipment, as shown in Figure 2.

Components E1 and E2 denote the equipment,
whereas the component Supervisor repairs the
equipment when it fails and a priority is provided to
repair E1 whenever there is the occurrence of double
equipment failure. E1 and E2 are XOR macro-states
and have similar behavior to that of the basic states W1,
P1, and B1 and W2, P2, and B2, respectively. W1 and

that will become active. In Figure 1b, H* is used to
indicate that all levels within the hierarchy will be
affected. For example, if T2 is the most recently visited
state, either sub-state T21 or T22 will become active.

The literature shows several applications of
Statecharts. They have become quite popular due to
their visual appeal making them feasible to describe
complex logic in reactive systems. Recently, Li,
Tong and Nian (2010) have formalized Statecharts
semantics including history states employing temporal
description logic to be used in validation. Haschemi
(2009) proposed coverage criteria for black box testing
for model-based testing for Statecharts. History is
taken into consideration in these coverage criteria.
Wagstaff, Peters and Scharenbroich (2008) proposed
a system to convert text-based specification into
UML Statecharts in order to generate code in C or
C++. They consider entry by history specification as
well. Vijaykumar et al. (2006) proposed a solution to
specify history states in Statecharts for Performance
Evaluation based on Markov chains. However, they
have never implemented or validated this approach.

3 PerformCharts: construction of a
continuous-time Markov chain
from a Statetcharts model
A continuous-Time Markov Chain consisting

of transition rates among states is solved through
numerical methods (SILVA; MUNTZ, 1992;
PHILIPPE; SAAD; STEWART, 1992) to determine
the steady-state probabilities. Thus, the problem is
solved if the model represented by Statecharts is

Figure 1. a) History in a single level; b) History in all the hierarchy levels.

a b

666 Gest. Prod., São Carlos, v. 19, n. 4, p. 663-675, 2012

Memory embedded in Markov models specified in Statecharts: ...

(W1, W2, WS). Hence, the external events have to
be listed. For the initial configuration, the enabled
stochastic events are a1 and a2. Therefore, these events
will be stimulated or triggered so that transitions are
fired to yield new configurations.

When the system is in the initial configuration and
a1 is triggered, the next configuration is P1, W2, and
WS. Suppose that during the process of stimulating the
events, the resulting configuration is (B1, B2, WS). In
this case, the active events are the so called immediate
events tr[in(B1)] and tr[(in(B2) ^ ¬in(B1)]. These
are the events that have to be checked and enabled
before the stochastic events, i.e., even though there
are enabled stochastic events, the immediate events
(true(condition) and false(condition)) are those that
have to be stimulated.

The corresponding state-transition diagram is
shown in Figure 3. As one can notice, this diagram
contains only stochastic events that follow exponential

W2 represent that E1 and E2 are idle, and processing
a job means that these components, equipment E1
and equipment E2, are in P1 (and P2). Both E1 and
E2 are subject to failure, and in this case, the states
P1 and P2 move to states B1 and B2. Supervisor is an
XOR macro-state, and its idle state is represented by
WS. C1 and C2 represent, respectively, repairing E1
and E2. The list of stochastic events (exponentially
distributed) includes a1, r1, f1, s1 a2, r2, f2, and s2.
Internal events are tr[in(B1)] and tr[in(B2) ^ ¬in(B1)].
Actions c1 and c2 that are fired once the events s1
and s2 are taken are also considered as internal events
(without delay time, i.e., immediate transition). A
brief explanation of the events is given in Table 1.

Therefore, a reaction is performed by first checking
the internal events that may be enabled according to
the initial configuration and then stimulating these
enabled events. In the example in Figure 2, there are
no active internal events for the initial configuration

Figure 2. Statecharts representation of an equipment with a repairer.

Table 1. Brief explanation of events in Figure 2.

Event Type Meaning
a1 Stochastic Arrival of a job for E1

r1 Stochastic End of service by E1

f1 Stochastic Failure of E1

c1 Internal E1 repaired

a2 Stochastic Arrival of a job for E2

r2 Stochastic End of service by E2

f2 Stochastic Failure of E2

c2 Internal E2 repaired

tr[in(B1)] Internal B1 (in E1) is active

tr[in(B2) ^ not in(B1)] Internal
B2 (in E2) is active AND B1(in E1)

is NOT active

s1 External End of repair of E1

s2 External End of repair of E2

667

Vijaykumar et al.

has to be defined or some type of alternative ways
of synchronization must be made.

The subset implemented in PerformCharts is
shown in Table 2.

4 PerformCharts: handling memory
in Markov models represented in
Statecharts
One powerful feature provided in Statecharts is the

Entry by History. Due to the memoryless property in
the Markov chains, Entry by History seems, at a first
glance, not to be compatible with Markov models since
it has to depend on the past. However, in fact, memory
is frequently introduced in Markov models just by
adding the necessary past information into the state
space as an additional component. Due to the visual
appeal of Statecharts and its Entry by History feature,
the representation of performance models can be very
much improved (VIJAYKUMAR et al., 2002). The
main idea consists of adding the history information in
each possible “present” state configuration by creating
a new orthogonal component to the root state. In order
to illustrate this idea, let’s consider the example in
Figure 4 in which the history feature is depicted.

Figure 4 illustrates an equipment that accepts
requests for three types of services T1, T2, or T3.
Event a1 takes the equipment to process service T1,
event a2 to service type T2, and event a3 to service
type T3. The equipment may fail, but it is assumed
that the failure occurs during the processing, and
the event f takes the equipment to a failure state F.
Once it is repaired, it returns to the last active service
(T1 or T2, or T3). Figure 4 shows the representation
of an equipment that when returning from F state to P

distribution. The states and arcs with events following
exponential distribution compose a Markov chain
with which numerical methods can be applied to
determine steady-state probabilities, the basis for
calculating performance metrics.

According to the example previously shown, it
should be clear that the translation from a Statecharts
representation into a Markov chain is not a “blind”
AND product. Otherwise, the Statecharts in Figure 2
would result into a 27-state diagram instead of 10-state
diagram (Figure 3). However, one must consider the
well-known problem of state-space explosion that
still exists and depends very much on the number of
components and number of sub-states within each
component. The advantage is that the Statecharts
specification of the model is represented in a “cleaner”
fashion instead of a web of arcs traversing among
several hundreds of states.

Questions may arise with respect to the process
of reaction. Especially, what happens when more
than one stochastic event in separate components
become active. These events are put into a sequence
and stimulated one after another. So far, all examples
tested generated the same Markov chain regardless
of the order in which the events are stimulated. This
can be seen in Figure 3. By taking any configuration,
at which more than one exponentially distributed
stochastic event exists, the resulting configurations are
the same regardless of the order in which the events
are stimulated. However, in order to guarantee this,
a formal proof has to be considered and developed
which is not within the scope of the present study.
There might be cases in which the logical behavior
of a complex system depends on the order of the
events; then a time parameter (associated to an event)

Figure 3. Markov chain of Figure 2.

668 Gest. Prod., São Carlos, v. 19, n. 4, p. 663-675, 2012

Memory embedded in Markov models specified in Statecharts: ...

ex(X) where X is a State – which respectively means
that they are stimulated each time state X is entered
and when state X is exited, as shown in Figure 5.
In the event of P macro-state becomes inactive
while in T1, immediately the dummy component
History(P) would make the HT1 sub-state active as
the event ex(P) ^ ex(T1) becomes true. Regardless
of the destination state from P (either F or W), T1
is “memorized”. The “memory” aspect will be used
only when returning from the F state.

Note that in the proposed solution, a dummy state,
History(E), must be created for each state E that
contains Entry by History. In general, these dummy
states must be the direct offspring of the root state i.e.,
they must be on the same level of the other orthogonal
components of the root state. History is eliminated
using this solution, i.e., past information becomes
part of the present configuration. The Markov chain
of this example is shown in Figure 6.

macro-state, the state active within the P macro-state
has to be the last visited state among T1, T2, and
T3. In order to handle this situation, the solution to
be proposed has somehow to “memorize” the last
active state T1, T2, or T3 before a failure occurs so
that this active state can be reached after recovering
from the failure (F state). The proposed solution is
to create another dummy component, History(P),
consisting of the states that are essential to history
plus one more Active state. This extra state indicates
that the P component is active. Whenever the event
f takes the system from P macro-state to F state
(failure state), the state in which the P component
was before the occurrence of a failure is “memorized”
by making the corresponding state in the dummy
component active.

One can notice that in the dummy component,
the solution used events already defined in the
Statecharts formalism such as entered(X) and
exit(X) – abbreviated respectively as en(X) and

Table 2. Subset of Statecharts supported by PerformCharts tool (SANTIAGO JÚNIOR, 2011).

Syntax feature Support
States X

Shallow and deep History X

Hierarchy function X

Type function X

Default function X

Expressions: If k is a number then k ∈ V X

Expressions: If v ∈ V
p
 then v ∈ V X

Expressions: If v ∈ V then current (v) ∈ V
Expressions: If v

1
,v

2
 ∈V and op is an algebraic operation then op(v

1
,v

2
) ∈V X

Conditions: T, F ∈ C, T, F stand for true, false, respectively X

Conditions: If c ∈ C
p
 then c ∈ C X

Conditions: If s ∈ S then in(s) ∈ C X

Conditions: If e ∈ E then not_yet(e) ∈ C
Conditions: If u, v ∈ V, R ∈{=, >, <, ≠, ≤, ≥} then u R v ∈ C X

Conditions: If c ∈ C then current (c) ∈ C
Conditions: If c

1
, c

2
 ∈ C then 1 2 1 2 1c c , c c , c C∨ ∧ ¬ ∈ X

Events: λ ∈ E, λ is the null event X

Events: If e ∈ E
p
 then e ∈ E X

Events: If c ∈ C then true(c) ∈ E X

Events: If c ∈ C then false(c) ∈ E
Events: If v ∈ V then changed(v) ∈ E
Events: If s ∈ S then exit(s), entered(s) ∈ E X

Events: If e
1
, e

2
 ∈ E then 1 2 1 2e e , e e E∨ ∧ ∈ X

Events: If e ∈ E, c ∈ C then e[c] ∈ E X

Actions: µ ∈ A, µ is the null action X

Actions: If c ∈ C
p
, d ∈ C then c: = d ∈ A

Actions: If v ∈ V
p
, u ∈ V then v: = u ∈ A X

Actions: If a
i
 ∈ A, i = 0, ..., n then a

0
; ...; a

n
 ∈ A

Labels X

Transitions X

669

Vijaykumar et al.

Figure 4. Entry by History feature in a model.

Figure 5. A solution to Entry by History.

Figure 6. Markov chain of Figure 5.

There is also H*, which refers to Entry by History
affecting all the levels within a hierarchy. In order to
illustrate this aspect, the example shown in Figure 1

is considered. Figure 7 shows the addition of another
orthogonal component in order to deal with H of
Figure 1a. Just the macro-states T1 and T2 are
necessary to be remembered due to the use of the
symbol H in Figure 1a. Once T1 or T2 are active, their
default states (T11 or T21) will be active anyway.
Therefore, “memorizing” T1 or T2 is enough.

Figure 8 shows the addition of the orthogonal
component to deal with Figure 1b, where H* is used
and this symbol denotes to go all the way down to the
lowest level. In this case, it is necessary to “memorize”
all the sub-states within T1 and T2. Therefore, it is
essential to somehow memorize T11, T12, T21, and
T22 so that it is possible to get back to whichever state
was active. As previously, mentioned in order to deal
with the history feature to influence only certain levels
of the hierarchy, one can use an appropriate number
of H symbols applied to the desired level. Algorithms
to deal with history represented in Statecharts and
its consequent translation into a Markov chain can
be seen in Vijaykumar et al. (2006).

670 Gest. Prod., São Carlos, v. 19, n. 4, p. 663-675, 2012

Memory embedded in Markov models specified in Statecharts: ...

Figure 7. Dealing with History of Figure 1a.

Figure 8. Dealing with H* of Figure 1b.

5 Case study: PerformCharts to
evaluate a performance evaluation
of a manufacturing system with
memory
Let’s consider a flexible manufacturing system with

two machines, M
a
 and M

b
, operating in series and

continuously producing a single product, a robot Rb,
and an operator Op. Each product goes through a

process by the first machine M
a
 and is followed by

another process by the second machine M
b
. The

products are loaded and unloaded by the robot Rb.
The machines and the robot are subject to failure,
and the operator Op is used to repair them. The times
in the process are: time to failure of the machines
or the robot, the corresponding times to repair the
failures, and the times to process each product. All of
them are considered to be exponentially distributed.

671

Vijaykumar et al.

Figure 9. Statecharts representation of a Flexible Manufacturing System.

Machines M
a
 and M

b
 are modeled by the states

W (Waiting), P (Processing), WU (Waiting to be
unloaded), and B (Failure). The initial state of each
machine is W. Event c

a
 (respectively c

b
) loads a product

to be processed by machine M
a
 (respectively M

b
)

and triggers a transition from W to the P state. Both
machines can operate at the same time but on different
products. Machines leave their P state through two
events: either a product has been processed (β

a
 and β

b
)

or a failure (λ
a
 and λ

b
) has occurred. It is assumed

that the machines are subject to failure only while
they are in operation. Once a product is processed,
the machines are switched to WU state. If a failure
occurs, the machine is switched from P state to B,
and in this case, a product in process can be lost with
probability p

a
 for M

a
 (with p

b
 for M

b
). In state WU,

the machines have to wait for the robot to unload
the processed product, and when this happens, event
d

a
 or d

b
 (machine M

a
 or M

b
, respectively) is triggered,

and a transition from state WU to W takes place. In
the failure state B, the operator repairs the machines
and triggers events r

a
 or r

b
 (M

a
 or M

b
, respectively)

to indicate termination of repair. Then, a switch to
state W takes place if the product being processed is
lost, or a switch to state P takes place if the product
being processed is not lost (i.e., the product continues
to be processed).

Robot’s states are W (Waiting), La (Loading M
a
),

Ua (Unloading M
a
), Lb (Loading M

b
),

Ub (Unloading M
b
), and B (Failure), and the initial

state is W. The robot has a priority to unload M
b
 (δ

b
),

followed by unloading M
a
 (δ

a
) and loading M

b
 (γ

b
)

and finally loading Ma (•γ
a
). The robot may fail (λ

r
)

while in La, Ua, Lb, Ub, in which case it moves to
B state waiting to be repaired. Once it is repaired, it
has to bypass the initial state and return to the last
activity. This feature is depicted by the H symbol
in Figure 9.

The states for the operator Op are W (Waiting), Ra
(Repairing M

a
), Rb (Repairing M

b
), and Rr (Repairing

robot). The highest priority is given to repair M
b

followed by a lower priority to repair M
a
, and the

lowest priority is to repair the robot. Once in the W
state, the operator reacts immediately to any failure
in the system and switches to the corresponding
repairing state. The times to repair are exponentially
distributed with parameters µ

a
, µ

b
, and µ

r
 for M

a
, for

M
b
, and for the robot respectively. Once the repair

is over, the operator generates an event (r
a
 for the

machine M
a
, r

b
 for the machine M

b
, and r

r
 for the

robot) and returns to the initial state W.
Input parameters and the performance measurements

obtained using the software developed to generate
steady-state probabilities for systems specified in
Statecharts are shown respectively in Tables 3 and 4.

6 Performance evaluation from
simulation
The manufacturing system presented previously

was considered for the simulation study, and then
the required computer programming has been

672 Gest. Prod., São Carlos, v. 19, n. 4, p. 663-675, 2012

Memory embedded in Markov models specified in Statecharts: ...

simulations were run to obtain the results to be
compared with the values shown in Table 4.

Performance measures obtained from simulation
with arrival rate of seven units are shown in Table 5.
The results obtained were close to the measurements
shown in Table 3. Additionally, the queue size of M

b

was monitored, as shown in Figure 10. This is one
major advantage over the analytical approach because
one can, without too much effort, monitor the system
behavior. After analyzing the results, it could be noted
that, based on these input parameters, the queue size
of M

b
 begins with an unstable behavior if product

arrival rate is greater than seven units.

developed to perform this simulation. The approach
described by Pidd (1998) was followed for the
simulation solution.

Additionally, the system in Figure 9 was modeled
using the three-phase approach (TOCHER, 1963).
Tocher shows the simulation executive as a process
with three phases: time scan (A-activity – it manages
the time advancement), execution of B-activities
(unconditional – they execute their related procedure)
that are due at the current time, and execution of
C-activities (conditional – they only execute if their
processing condition are satisfied). To model using
this approach, it is necessary to define the entities,
the resources, and the entities’ life cycle. Therefore,
the model is a set of entities, resources, and B and C
activities that define the life cycle. Using this approach,
the model has twenty B-activities and nine C-activities.
The memory issue in simulation is dealt, normally,
through modeling using B and C activities, as well
as using attribute values to decide the state in which
the product was. The A activity or time advancement
is a task related to the simulation executive and it is
not a model concern.

The values for the input parameters and the product
arrival rate are shown in Table 3. Ten replications of
the simulation were executed, and each execution
lasted ten thousand units of time. Each simulation
had a different product arrival rate. Hence, eighty

Table 3. Input values of the Model of Figure 9.

Ma Mb Robot

Production rate β
a
 = 50 β

b
 = 10

Failure rate λ
a
 = 1 λ

b
 = 1 λ

r
 = 0.5

Repair rate μ
a
 = 10 μ

b
 = 10 μ

r
 = 10

Prob. of losing a product p
a
 = 0.05 p

b
 = 0.02

Loading Ma γ
a
 = 100

Unloading Ma δ
a
 = 100

Loading Mb γ
b
 = 100

Unloading Mb δ
b
 = 100

Table 4. Performance measurements – Markov approach.

Ma Mb Robot

Average production rate 6.803 6.789

Average rate for product loss 0.007 0.014

Availability 98.6% 93.1% 98.6%

Table 5. Performance Measurements – Simulation approach: with 7 Products arrival rate.

Ma Mb Robot
Mean StdDev Mean StdDev Mean StdDev

Average product rate 6.999 0.024 6.984 0.024 - -

Average rate for product loss 0.007 0.001 0.014 0.001 - -

Availability (%) 98.537 0.051 92.935 0.153 98.547 0.052

Figure 10. Queue size variations of machine B.

673

Vijaykumar et al.

References
ABEDI, S. et al. Using Markov chain and Simulation to

Analysis and Optimization Production Lines Systems
with Layout Constraints. In: INTERNATIONAL
CONFERENCE ON COMPUTERS AND INDUSTRIAL
ENGINEERING - CIE, 40., 2010, Awaji. Proceedings...
Awaji, 2010. p. 1-6.

CHIOLA, G.; MARSAN, M.; CONTE, G. Generalized
Stochastic Petri Nets: A definition at the net level and
its implications. IEEE Transactions on Software
Engineering, v. 19, n. 2, p. 89-106, 1993. http://dx.doi.
org/10.1109/32.214828

DE MARCHI, M. M.; CARVALHO, S. V.; MORAIS, P.
R. Um modelo estocástico para a manutenção de um
equipamento baseado na inspeção das peças produzidas.
Gestão & Produção, v. 8, n. 2, p. 115-127, 2001. http://
dx.doi.org/10.1590/S0104-530X2001000200002

GOMES, A. V. P.; WANKE, P. Modelagem da gestão de
estoques de peças de reposição através de cadeias de
Markov. Gestão & Produção, v. 15, n. 1, p. 57-72, 2008.
http://dx.doi.org/10.1590/S0104-530X2008000100007

HAREL, D. Statecharts: a visual formalism for complex systems.
Science of Computer Programming, v. 8, p. 231-274, 1987.
http://dx.doi.org/10.1016/0167-6423(87)90035-9

HAREL, D. et al. On the formal semantics of Statecharts.
In: IEEE SYMPOSIUM ON LOGIC IN COMPUTER
SCIENCE, 1987, Ithaca. Proceedings... IEEE, 1987.

HAREL, D.; POLITI, M. Modeling Reactive Systems
with Statecharts: the Statemate Approach.
McGraw-Hill, 1998.

HASCHEMI, S. Model Transformations to Satisfy
All-Configurations-Transitions on Statecharts. In:
MODELS WORKSHOP ON MODEL-DRIVEN
ENGINEERING, VERIFICATION, AND
VALIDATION - MoDeVVa’09, 2009, Denver. Proceedings...
Denver, 2009. http://dx.doi.org/10.1145/1656485.1656490

HERMANNS, H. et al. A Markov Chain Model Checker. Lecture
Notes in Computer Science, v. 1785, p. 347-362, 2000.
http://dx.doi.org/10.1007/3-540-46419-0_24

KLEINROCK, L. Queueing Systems. New York: John
Wiley & Sons, 1976. v. 2.

LI, M.; TONG, G.; NIAN, F. The Semantics Research of
StateCharts. In: INTERNATIONAL SYMPOSIUM
ON INFORMATION PROCESSING - IFIP, 3., 2010,
Qingdao. Proceedings... Qingdao, 2010.

PHILIPPE, B.; SAAD, Y.; STEWART, W. J. Numerical
Methods in Markov Chain modeling. Operations
Research, v. 40, n. 6, p. 1156-1179, 1992. http://dx.doi.
org/10.1287/opre.40.6.1156

PIDD, M. Computer Simulation in Management
Science. 4th ed. John Wiley & Sons, 1998.

SANTIAGO JÚNIOR, V. A. SOLIMVA: A Methodology
for Generating Model-Based Test Cases from Natural
Language Requirements and Detecting Incompleteness in
Software Specifications. 2011. Doutorado (Computação
Aplicada)-Instituto Nacional de Pesquisas Espaciais,
São José dos Campos, 2011.

SHESKIN, T. J. Markov Chains and Decision Processes
for Engineers and Managers. CRC Press, 2010.

7 Conclusions
Statecharts have potential features to represent

performance models due to their visual appeal.
Considering that these models can be used for capacity
planning, capacity expansion, inventory management,
and maintenance system, engineers and analysts
can use the high-level abstraction provided by the
Statecharts to create performance models in their areas
of interest. The software PerformCharts has been
used in order to obtain performance measurements
for systems specified in Statecharts. The feature of
“remembering the last visited state” bypassing the
default state has been included to the software, and
this feature is essential to improve the representation
and deal with performance models.

The present study described a solution to
automatically bring the “past” to the present based
on an elegant Statecharts representation. When
specifying the models (when they are simple enough)
directly as Markov chains, usually the same solution
of bringing the “past” to the present is applied.
The solution (just as it occurs when systems are
modeled directly as Markov chain) proposed in this
paper, leads to a computational effort that increases
proportionally to the number of History symbols
present in the model. This study also shows how
to deal with this issue by adopting the simulation
approach. The simulation approach is also based
on Statecharts representation. The representation of
memory within the simulation approach was much
easier since the information about the memory is
directly embedded into the model specification and
implementation.

The analytical solution using Markov chains is
a much faster approach as long as the exponential
distribution of stochastic information (events on
transition arcs) is guaranteed. However, this may
not always be true in real world cases. Therefore,
simulation is an alternative since there are no
restrictions with respect to stochastically distributed
times. Nevertheless, the drawback is the computational
effort since simulation requires lot of preparation
such as data collection, sampling, and several runs
and statistical measurements.

Currently, PerformCharts deals only with analytical
approach. It is expected to incorporate simulation
solution to the tool. The tool has a textual interface
based on eXtensible Markup Language (XML), and
this language is converted into C++ main program.
This has brought a reasonable advantage of specifying
a complex system since most of the specification is
based on pointers. A graphical interface is in progress,
and due to one-to-one correspondence of a Markov
chain to a Finite State Machine (FSM), this tool has
also been used to generate test case sequences.

674 Gest. Prod., São Carlos, v. 19, n. 4, p. 663-675, 2012

http://dx.doi.org/10.1109/32.214828
http://dx.doi.org/10.1109/32.214828
http://dx.doi.org/10.1590/S0104-530X2001000200002
http://dx.doi.org/10.1590/S0104-530X2001000200002
http://dx.doi.org/10.1590/S0104-530X2008000100007
http://dx.doi.org/10.1016/0167-6423(87)90035-9
http://dx.doi.org/10.1145/1656485.1656490
http://dx.doi.org/10.1007/3-540-46419-0_24

http://dx.doi.org/10.1287/opre.40.6.1156
http://dx.doi.org/10.1287/opre.40.6.1156

Memory embedded in Markov models specified in Statecharts: ...

PERFORMANCE - WPERFORMANCE, 1.;
BRAZILIAN COMPUTER SYMPOSIUM - SBC, 2002,
Florianópolis. Proceedings... Florianópolis, 2002.

VIJAYKUMAR, N. L. et al. Performance Evaluation
from Statecharts representation of Complex Systems:
Markov Approach. In: WORKSHOP ON COMPUTING
SYSTEM PERFORMANCE - WPERFORMANCE, 5.;
BRAZILIAN COMPUTER SYMPOSIUM - SBC, 2006,
Campo Grande. Proceedings... Campo Grande, 2006.

WAGSTAFF, K. L.; PETERS, K.; SCHARENBROICH,
L. From Protocol Specification to Statechart to
Implementation. Jet Propulsion Laboratory, California
Institute of Technology, 2008.

SILVA, E. A. S.; MUNTZ, R. R. Métodos Computacionais
de Solução de Cadeias de Markov: Aplicações a
Sistemas de Computação e Comunicação. UFRGS, 1992.

TOCHER, K. D. The Art of Simulation. English
Universities Press, 1963.

VIJAYKUMAR, N. L.; CARVALHO, S. V.;
ABDURAHIMAN, V. On proposing Statecharts to specify
Performance Models. International Transactions in
Operational Research, v. 9, n. 3, p. 321-336, 2002.
http://dx.doi.org/10.1111/1475-3995.00358

VIJAYKUMAR, N. L. et al. On embedding memory
in Markov Models specified in Statecharts. In:
WORKSHOP ON COMPUTING SYSTEM

675

http://dx.doi.org/10.1111/1475-3995.00358

