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Resumo: Statecharts representam graficamente sistemas reativos que respondem aos estímulos externos ou internos 
e mudam estados de um dado sistema. Statecharts estendem diagramas de estado com hierarquia, paralelismo e 
interdependência. Devido às suas características, eles foram adaptados para representar e tratar analiticamente 
modelos de desempenho (sistemas reativos cujo desempenho deve ser avaliado). Uma característica presente em 
Statecharts é registrar (ou memorizar) um estado do sistema que não é possível representar numa forma direta 
em modelos Markovianos devido à sua propriedade de “sem memória”. São duas as contribuições deste artigo: 
mostrar que Statecharts são viáveis para especificar sistemas reativos e avaliar o seu desempenho tanto por técnicas 
analíticas quanto por simulação; mostrar que a inclusão de representação de memória em Statecharts pode, de 
fato, ser tratada por abordagens analíticas e de simulação. Um estudo de caso de um sistema de manufatura é 
considerado para mostrar que os objetivos foram alcançados.

Palavras-chave: Modelos de desempenho. Statecharts. Representação de memória. Soluções analíticas. Cadeias 
de Markov a tempo contínuo. Simulação.

Abstract: Statecharts are a graphical representation to model reactive systems that respond to external or internal 
stimuli by changing the state of a given system. Statecharts can be seen as an extension of state-transition diagrams 
that allows modeling hierarchy, orthogonality, and interdependence. Due to their features to represent reactive 
systems, Statecharts have been adapted to represent and deal analytically with performance models (reactive systems 
whose performance is to be evaluated). An interesting feature present in Statecharts is to record the system’s state, 
which cannot be represented in Markov models in a straightforward manner due to its “memory-less” property. The 
contributions of this paper are: show that Statecharts are a feasible alternative to specify a reactive system so that its 
performance can be evaluated by both analytical and simulation techniques; show that the inclusion of the memory 
representation in the Statecharts specification can indeed be made by both analytical and simulation techniques. 
The results of a case study of a manufacturing system show that the objectives are achieved.

Keywords: Performance models. Statecharts specification. Memory representation. Analytical solutions. Continuous‑time 
Markov chains. Simulation.

Memory embedded in Markov models specified in 
Statecharts: simulation versus analytical approaches

Tratamento de memória em modelos Markovianos especificados em 
Statecharts: abordagens por simulação e analítica

Nandamudi Lankalapalli Vijaykumar1 
Gian Ricardo Berkenbrock2 

Solon Venâncio de Carvalho1 
Valéria Maria Barros de Andrade3 

Gurrala Veereswara Swamy4 
Mokka Jagannadha Rao5

Gest. Prod., São Carlos, v. 19, n. 4, p. 663-675, 2012

mailto:vijay@lac.inpe.br
mailto:gian@joinville.udesc.br
mailto:valeria.andrade@mentortec.com.br
mailto:drgv_swamy@yahoo.co.in
mailto:mjrao_isa@yahoo.co.in


Vijaykumar et al.

1 Introduction
In systems design, usually, analysts or engineers 

must be capable of predicting the system performance, 
so that it is possible to avoid possible bottlenecks, as 
well as understanding the system behavior, both in the 
best and the worst case scenarios. An option to deal 
with this issue is to depend on the knowledge and 
expertise of the system administrator. An alternative 
is to use performance models so that one can infer 
the behavior of the system. Performance models are 
those models which are reactive systems from which 
their behavior can be determined. Such models can 
be applied for capacity planning, manufacturing 
systems performance analysis, alternative systems, 
capacity expansion, spare parts inventory management 
(GOMES; WANKE, 2008) and maintenance 
systems (DE MARCHI; CARVALHO; MORAIS, 
2001). These application areas play a key role in 
production management since they enable engineers 
to conduct studies on different options by changing 
the performance models.

Several performance evaluation methods are 
available in the literature, and they are generally 
associated to stochastic processes that are 
mathematically well defined and can be handled 
computationally. Such methods use approaches such as 
measuring or modeling. Measurements, benchmarking, 
and prototyping are measuring approaches. Modeling 
uses a specification method to represent a given 
system behavior, and then a technique – either by 
simulation or by analytical approach – is associated 
to the specification; one issue is the representation 
of performance models.

Usually systems whose performance has to be 
evaluated fall into the category of reactive systems. 
Reactive systems are those that respond to external 
or internal stimuli also known as events. Events are 
a perturbation in the behavior, and they change the 
present state (for instance, idle to processing). One 
way to represent reactive systems is a Finite State 
Machine (FSM) whose representation is achieved 
through a state-transition diagram. FSM consists of 
states and transition between states. The change of 
one state to another occurs based on a label on the 
transition which corresponds to an event. Therefore, 
if a system whose performance is to be measured 
can be represented by an FSM, then it is possible 
to associate this representation with a technique 
(analytical approach or simulation) in order to obtain 
its performance evaluation. In case of a technique 
by means of analytical approach, Markov chains 
are usually employed. FSM resembles very much a 
Markov chain since a Markov chain is also represented 
as a set of states and transitions driven by events 
(continuous-time Markov chain) or probabilities 
(discrete-time Markov chain).

Modern complex systems require explicit 
representation of depth and parallelism. A clear 
visualization of systems with several parallel 
components becomes difficult by means of 
state‑transition diagram thus requiring a consideration 
of using higher-level techniques (queuing networks 
(KLEINROCK, 1976), Generalized Stochastic Petri 
Nets (CHIOLA; MARSAN; CONTE, 1993) and 
Statecharts (HAREL, 1987).

Our proposal uses the Statecharts approach 
to represent and deal with performance models 
(VIJAYKUMAR; CARVALHO; ABDURAHIMAN, 
2002). Performance models have been used to observe 
the behavior of a reactive system to understand these 
systems without the need of physically implementing 
them Accordingly, some metrics can be very interesting 
for determining performance, for instance, response 
time, throughput, utilization, etc.

Now, the problem is not only to represent the 
model, but also to solve it so that performance metrics 
of interest can be obtained. With respect to this, the 
PerformCharts tool was used to analytically determine 
these metrics. However, in performance models, it is 
common to face a situation where after a component 
is turned off, a return to “the last active state” of that 
component is necessary. As an example, let’s consider 
a model in which a robot is responsible to do some 
service. In the event of a breakdown, the robot has 
to be repaired, and it should return to the state where 
it was before the breakdown to finish the interrupted 
task. This is easily represented in Statecharts, as 
shown in the following sections. The problem is to 
solve the model using Markov chain. However, the 
memory-less property of Markov chains – future 
depends only on the present and not on the past – has 
to be handled. Markov chains are simple and can deal 
with uncertainty enabling analyzing complex systems 
in the areas of production, industrial engineering 
mathematics, computer science, operations research, 
and others (SHESKIN, 2010; HERMANNS et al., 
2000). In the area of production control, the task of 
dealing with varying service times to properly estimate 
manufacturing times is not an easy task. Therefore, 
Markov chains in queuing theory added to analysis 
of real queue systems with layout constraints have 
generated a hybrid model to access such systems 
(ABEDI et al., 2010).

Thus, this study aims at discussing how memory can 
be automatically eliminated from Statecharts models 
when converting the specification (from Statecharts 
models) in a Markov chain (VIJAYKUMAR et al., 
2002). Vijaykumar, Carvalho and Abdurahiman (2002) 
proposed the use of Statecharts to represent Markov 
chains without dealing with the memory issue, which 
is a very interesting feature of Statecharts. Only one 
algorithm was discussed in Vijaykumar et al. (2002). 
However, a real implementation was not properly done 
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The states are clustered to represent depth. This 
feature enables combining a set of states with common 
transitions into a macro-state also known as super-state. 
Super-state refinement can be achieved by means of 
XOR decomposition and AND decomposition. The 
former decomposition may be used whenever an 
encapsulation is required. When a super-state in a high 
level of abstraction is active, one (and only one) of its 
sub-states is indeed active. The AND decomposition 
represents concurrency, i.e., when a super-state is 
active, all of its sub-states are active. A state is BASIC 
when there are no further refinements from it.

In Statecharts, the global state of a given model is 
referred to as a configuration that is the active basic 
states of each orthogonal component. A complete 
syntax and semantics of Statecharts are described 
in Harel (1987), Harel et al. (1987) and Harel and 
Politi (1998).

By definition, when modeling a given system, 
there must always be an initial state, a default state, 
in Statecharts. Thus, the initial configuration consists 
of active basic states of each orthogonal component. 
However, the default state can be bypassed by using 
history, i.e. when a system becomes active the most 
recently visited state becomes active. This is indicated 
by the symbol H. It is also possible to use the history 
all the way down to the lowest level as defined in the 
Statecharts formalism (HAREL, 1987). In this case, 
the symbol H* is used. In order to influence only 
certain levels of abstraction, the symbol H should be 
applied to the appropriate level. The history feature 
is shown in Figure 1.

Let’s consider equipment E that has as a sub-state 
a macro-state A, which is an XOR state. Its sub-states 
are W (idle), and the macro-states T1, and T2 that 
represent two types of jobs T1 and T2 have further 
refinements into basic states T11 and T12 and T21 
and T22, respectively. E behaves as follows: when 
idle (state W), it can be requested to process either 
T1 or T2. Event a1 triggers the job type T1, whereas 
event a2 triggers type T2. End of service is represented 
by events s1 and s2 for jobs T1 and T2, respectively. 
Both types of jobs have to undergo two sub-processes, 
T11 and T12 (in case of T1) and T21 and T22 
(in case of T2). When the equipment is busy, it may 
fail, and this takes to state F.

(Failure) via event f. Note that the guard condition 
not in(W) is attached to guarantee that the equipment 
may fail only when it is not idle.

When the failure is corrected, the last state visited 
becomes active, represented by H. In Figure 1a, when 
the super-state A becomes active, the most recently 
visited state (T1 or T2) will become active bypassing 
the default state. When T1 is the most recently visited 
state, the sub-state T11 will become active since it 
is the default state within T1. With regard to T2, 
sub-state T21 (default state within T2) is the one 

using adequate testing in several reactive systems . In 
addition, the same specification is used in Statecharts 
to generate the performance evaluation by adopting 
the simulation approach. The PerformCharts tool 
deals only with analytical solution. It is necessary 
to incorporate the solution via Simulation as well. 
The advantages of this approach are to study the 
feasibility of incorporating this into the tool and 
to validate the PerformCharts tool. In order to deal 
with the simulation solution, the system simulation 
model was developed, and the simulation executive 
is based on the three-phase approach specified by 
Pidd (1998). This modeling approach maps two types 
of activity: unconditional and conditional activity. 
Unconditional activity also known as B activity is 
processed at the due simulation time, and conditional 
activity or C activity is processed only when the 
condition is accepted. There is also another activity, 
A activity or A phase, which is concerned with time 
advancement or time scan.

The next section briefly introduces Statecharts, in 
particular, how the memory feature is represented. In 
order to adapt Statecharts to be used in performance 
evaluation, a tool named PerformCharts has been 
developed. Section 3 shows the tool by describing 
how the Statecharts representation is handled to 
obtain performance measures. Section 4 deals with 
the memory feature represented in Statecharts and 
how this has been implemented in the PerformCharts 
tool. A case study as well as its solution to obtain 
performance metrics through PerformCharts is 
presented in Section 5. As previously mentioned, 
the PerformCharts tool deals with performance 
evaluation using only an analytical approach, and 
it is expected to include the solution by means of 
Simulation. Therefore, a simulation solution is 
developed in order to compare the results from 
an analytical approach without implementation of 
PerformCharts. The simulation approach has also 
been based on the Statecharts representation. This 
is presented in Section 6. Finally, some conclusions 
about the use of a high-level specification technique 
and its association with both Markov chain and 
simulation approach are presented.

2 Statecharts
Statecharts are graphical-oriented and are capable 

of specifying reactive systems. They have been 
originally developed to represent and simulate real 
time systems. Moreover, Statecharts are formal 
(HAREL, 1987) and (HAREL; POLITI, 1998), 
and their syntax and semantics enable considering 
complex logic to represent the behavior of reactive 
systems. They extend state-transition diagrams 
by incorporating notions of hierarchy (depth), 
orthogonality (represent‑tation of parallel activities), 
and interdependence (broadcast-communication).
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converted into a Markov chain that corresponds to 
the behavior of the specified model (VIJAYKUMAR; 
CARVALHO; ABDURAHIMAN, 2002). 
Therefore, the PerformCharts tool is responsible 
to automatically generate a Markov chain from a 
Statecharts specification.

Once a model is represented by Statecharts, 
the enabled events must be stimulated so that 
new configurations (set of active states of all 
parallel components) are obtained. Internal events 
(true(condition), false(condition) – abbreviated 
respectively as tr and fs – and actions) are automatically 
sensed and stimulated. External events must be 
explicitly stimulated to describe the dynamics of 
the modeled system behavior. In order to enable the 
association of Statecharts model with a Markov chain, 
the only type of external events that can be considered 
are stochastic events. The time between their activation 
and their occurrence follows a stochastic distribution, 
which, in particular, has to be exponential.

An example is used to illustrate the process of 
converting Statecharts specification into a Markov 
chain. Let’s consider a system with three parallel 
components that correspond to two machinery 
equipment and a supervisor to repair any failure in 
the equipment, as shown in Figure 2.

Components E1 and E2 denote the equipment, 
whereas the component Supervisor repairs the 
equipment when it fails and a priority is provided to 
repair E1 whenever there is the occurrence of double 
equipment failure. E1 and E2 are XOR macro-states 
and have similar behavior to that of the basic states W1, 
P1, and B1 and W2, P2, and B2, respectively. W1 and 

that will become active. In Figure 1b, H* is used to 
indicate that all levels within the hierarchy will be 
affected. For example, if T2 is the most recently visited 
state, either sub-state T21 or T22 will become active.

The literature shows several applications of 
Statecharts. They have become quite popular due to 
their visual appeal making them feasible to describe 
complex logic in reactive systems. Recently, Li, 
Tong and Nian (2010) have formalized Statecharts 
semantics including history states employing temporal 
description logic to be used in validation. Haschemi 
(2009) proposed coverage criteria for black box testing 
for model-based testing for Statecharts. History is 
taken into consideration in these coverage criteria. 
Wagstaff, Peters and Scharenbroich (2008) proposed 
a system to convert text-based specification into 
UML Statecharts in order to generate code in C or 
C++. They consider entry by history specification as 
well. Vijaykumar et al. (2006) proposed a solution to 
specify history states in Statecharts for Performance 
Evaluation based on Markov chains. However, they 
have never implemented or validated this approach.

3 PerformCharts: construction of a 
continuous-time Markov chain 
from a Statetcharts model
A continuous-Time Markov Chain consisting 

of transition rates among states is solved through 
numerical methods (SILVA; MUNTZ, 1992; 
PHILIPPE; SAAD; STEWART, 1992) to determine 
the steady-state probabilities. Thus, the problem is 
solved if the model represented by Statecharts is 

Figure 1. a) History in a single level; b) History in all the hierarchy levels.

a b
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(W1, W2, WS). Hence, the external events have to 
be listed. For the initial configuration, the enabled 
stochastic events are a1 and a2. Therefore, these events 
will be stimulated or triggered so that transitions are 
fired to yield new configurations.

When the system is in the initial configuration and 
a1 is triggered, the next configuration is P1, W2, and 
WS. Suppose that during the process of stimulating the 
events, the resulting configuration is (B1, B2, WS). In 
this case, the active events are the so called immediate 
events tr[in(B1)] and tr[(in(B2) ^ ¬in(B1)]. These 
are the events that have to be checked and enabled 
before the stochastic events, i.e., even though there 
are enabled stochastic events, the immediate events 
(true(condition) and false(condition)) are those that 
have to be stimulated.

The corresponding state-transition diagram is 
shown in Figure 3. As one can notice, this diagram 
contains only stochastic events that follow exponential 

W2 represent that E1 and E2 are idle, and processing 
a job means that these components, equipment E1 
and equipment E2, are in P1 (and P2). Both E1 and 
E2 are subject to failure, and in this case, the states 
P1 and P2 move to states B1 and B2. Supervisor is an 
XOR macro-state, and its idle state is represented by 
WS. C1 and C2 represent, respectively, repairing E1 
and E2. The list of stochastic events (exponentially 
distributed) includes a1, r1, f1, s1 a2, r2, f2, and s2. 
Internal events are tr[in(B1)] and tr[in(B2) ^ ¬in(B1)]. 
Actions c1 and c2 that are fired once the events s1 
and s2 are taken are also considered as internal events 
(without delay time, i.e., immediate transition). A 
brief explanation of the events is given in Table 1.

Therefore, a reaction is performed by first checking 
the internal events that may be enabled according to 
the initial configuration and then stimulating these 
enabled events. In the example in Figure 2, there are 
no active internal events for the initial configuration 

Figure 2. Statecharts representation of an equipment with a repairer.

Table 1. Brief explanation of events in Figure 2.

Event Type Meaning
a1 Stochastic Arrival of a job for E1

r1 Stochastic End of service by E1

f1 Stochastic Failure of E1

c1 Internal E1 repaired

a2 Stochastic Arrival of a job for E2

r2 Stochastic End of service by E2

f2 Stochastic Failure of E2

c2 Internal E2 repaired

tr[in(B1)] Internal B1 (in E1) is active

tr[in(B2) ^ not in(B1)] Internal
B2 (in E2) is active AND B1(in E1) 

is NOT active

s1 External End of repair of E1

s2 External End of repair of E2
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has to be defined or some type of alternative ways 
of synchronization must be made.

The subset implemented in PerformCharts is 
shown in Table 2.

4 PerformCharts: handling memory 
in Markov models represented in 
Statecharts
One powerful feature provided in Statecharts is the 

Entry by History. Due to the memoryless property in 
the Markov chains, Entry by History seems, at a first 
glance, not to be compatible with Markov models since 
it has to depend on the past. However, in fact, memory 
is frequently introduced in Markov models just by 
adding the necessary past information into the state 
space as an additional component. Due to the visual 
appeal of Statecharts and its Entry by History feature, 
the representation of performance models can be very 
much improved (VIJAYKUMAR et al., 2002). The 
main idea consists of adding the history information in 
each possible “present” state configuration by creating 
a new orthogonal component to the root state. In order 
to illustrate this idea, let’s consider the example in 
Figure 4 in which the history feature is depicted.

Figure 4 illustrates an equipment that accepts 
requests for three types of services T1, T2, or T3. 
Event a1 takes the equipment to process service T1, 
event a2 to service type T2, and event a3 to service 
type T3. The equipment may fail, but it is assumed 
that the failure occurs during the processing, and 
the event f takes the equipment to a failure state F. 
Once it is repaired, it returns to the last active service 
(T1 or T2, or T3). Figure 4 shows the representation 
of an equipment that when returning from F state to P 

distribution. The states and arcs with events following 
exponential distribution compose a Markov chain 
with which numerical methods can be applied to 
determine steady-state probabilities, the basis for 
calculating performance metrics.

According to the example previously shown, it 
should be clear that the translation from a Statecharts 
representation into a Markov chain is not a “blind” 
AND product. Otherwise, the Statecharts in Figure 2 
would result into a 27-state diagram instead of 10-state 
diagram (Figure 3). However, one must consider the 
well-known problem of state-space explosion that 
still exists and depends very much on the number of 
components and number of sub-states within each 
component. The advantage is that the Statecharts 
specification of the model is represented in a “cleaner” 
fashion instead of a web of arcs traversing among 
several hundreds of states.

Questions may arise with respect to the process 
of reaction. Especially, what happens when more 
than one stochastic event in separate components 
become active. These events are put into a sequence 
and stimulated one after another. So far, all examples 
tested generated the same Markov chain regardless 
of the order in which the events are stimulated. This 
can be seen in Figure 3. By taking any configuration, 
at which more than one exponentially distributed 
stochastic event exists, the resulting configurations are 
the same regardless of the order in which the events 
are stimulated. However, in order to guarantee this, 
a formal proof has to be considered and developed 
which is not within the scope of the present study. 
There might be cases in which the logical behavior 
of a complex system depends on the order of the 
events; then a time parameter (associated to an event) 

Figure 3. Markov chain of Figure 2.
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ex(X) where X is a State – which respectively means 
that they are stimulated each time state X is entered 
and when state X is exited, as shown in Figure 5. 
In the event of P macro-state becomes inactive 
while in T1, immediately the dummy component 
History(P) would make the HT1 sub-state active as 
the event ex(P) ^ ex(T1) becomes true. Regardless 
of the destination state from P (either F or W), T1 
is “memorized”. The “memory” aspect will be used 
only when returning from the F state.

Note that in the proposed solution, a dummy state, 
History(E), must be created for each state E that 
contains Entry by History. In general, these dummy 
states must be the direct offspring of the root state i.e., 
they must be on the same level of the other orthogonal 
components of the root state. History is eliminated 
using this solution, i.e., past information becomes 
part of the present configuration. The Markov chain 
of this example is shown in Figure 6.

macro-state, the state active within the P macro-state 
has to be the last visited state among T1, T2, and 
T3. In order to handle this situation, the solution to 
be proposed has somehow to “memorize” the last 
active state T1, T2, or T3 before a failure occurs so 
that this active state can be reached after recovering 
from the failure (F state). The proposed solution is 
to create another dummy component, History(P), 
consisting of the states that are essential to history 
plus one more Active state. This extra state indicates 
that the P component is active. Whenever the event 
f takes the system from P macro-state to F state 
(failure state), the state in which the P component 
was before the occurrence of a failure is “memorized” 
by making the corresponding state in the dummy 
component active.

One can notice that in the dummy component, 
the solution used events already defined in the 
Statecharts  formalism such as entered(X) and 
exit(X) – abbreviated respectively as en(X) and 

Table 2. Subset of Statecharts supported by PerformCharts tool (SANTIAGO JÚNIOR, 2011).

Syntax feature Support
States X

Shallow and deep History X

Hierarchy function X

Type function X

Default function X

Expressions: If k is a number then k ∈ V X

Expressions: If v ∈ V
p
 then v ∈ V X

Expressions: If v ∈ V then current (v) ∈ V
Expressions: If v

1
,v

2
 ∈V and op is an algebraic operation then op(v

1
,v

2
) ∈V X

Conditions: T, F ∈ C, T, F stand for true, false, respectively X

Conditions: If c ∈ C
p
 then c ∈ C X

Conditions: If s ∈ S then in(s) ∈ C X

Conditions: If e ∈ E then not_yet(e) ∈ C
Conditions: If u, v ∈ V, R ∈{=, >, <, ≠, ≤, ≥} then u R v ∈ C X

Conditions: If c ∈ C then current (c) ∈ C
Conditions: If c

1
, c

2
 ∈ C then 1 2 1 2 1c  c , c  c ,  c C∨ ∧ ¬ ∈ X

Events: λ ∈ E, λ is the null event X

Events: If e ∈ E
p
 then e ∈ E X

Events: If c ∈ C then true(c) ∈ E X

Events: If c ∈ C then false(c) ∈ E
Events: If v ∈ V then changed(v) ∈ E
Events: If s ∈ S then exit(s), entered(s) ∈ E X

Events: If e
1
, e

2
 ∈ E then 1 2 1 2e  e , e  e E∨ ∧ ∈ X

Events: If e ∈ E, c ∈ C then e[c] ∈ E X

Actions: µ ∈ A, µ is the null action X

Actions: If c ∈ C
p
, d ∈ C then c: = d ∈ A

Actions: If v ∈ V
p
, u ∈ V then v: = u ∈ A X

Actions: If a
i
 ∈ A, i = 0, ..., n then a

0
; ...; a

n
 ∈ A

Labels X

Transitions X
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Figure 4. Entry by History feature in a model.

Figure 5. A solution to Entry by History.

Figure 6. Markov chain of Figure 5.

There is also H*, which refers to Entry by History 
affecting all the levels within a hierarchy. In order to 
illustrate this aspect, the example shown in Figure 1 

is considered. Figure 7 shows the addition of another 
orthogonal component in order to deal with H of 
Figure 1a. Just the macro-states T1 and T2 are 
necessary to be remembered due to the use of the 
symbol H in Figure 1a. Once T1 or T2 are active, their 
default states (T11 or T21) will be active anyway. 
Therefore, “memorizing” T1 or T2 is enough.

Figure 8 shows the addition of the orthogonal 
component to deal with Figure 1b, where H* is used 
and this symbol denotes to go all the way down to the 
lowest level. In this case, it is necessary to “memorize” 
all the sub-states within T1 and T2. Therefore, it is 
essential to somehow memorize T11, T12, T21, and 
T22 so that it is possible to get back to whichever state 
was active. As previously, mentioned in order to deal 
with the history feature to influence only certain levels 
of the hierarchy, one can use an appropriate number 
of H symbols applied to the desired level. Algorithms 
to deal with history represented in Statecharts and 
its consequent translation into a Markov chain can 
be seen in Vijaykumar et al. (2006).

670 Gest. Prod., São Carlos, v. 19, n. 4, p. 663-675, 2012
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Figure 7. Dealing with History of Figure 1a.

Figure 8. Dealing with H* of Figure 1b.

5 Case study: PerformCharts to 
evaluate a performance evaluation 
of a manufacturing system with 
memory
Let’s consider a flexible manufacturing system with 

two machines, M
a
 and M

b
, operating in series and 

continuously producing a single product, a robot Rb, 
and an operator Op. Each product goes through a 

process by the first machine M
a
 and is followed by 

another process by the second machine M
b
. The 

products are loaded and unloaded by the robot Rb. 
The machines and the robot are subject to failure, 
and the operator Op is used to repair them. The times 
in the process are: time to failure of the machines 
or the robot, the corresponding times to repair the 
failures, and the times to process each product. All of 
them are considered to be exponentially distributed.
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Figure 9. Statecharts representation of a Flexible Manufacturing System.

Machines M
a
 and M

b
 are modeled by the states 

W (Waiting), P (Processing), WU (Waiting to be 
unloaded), and B (Failure). The initial state of each 
machine is W. Event c

a
 (respectively c

b
) loads a product 

to be processed by machine M
a
 (respectively M

b
) 

and triggers a transition from W to the P state. Both 
machines can operate at the same time but on different 
products. Machines leave their P state through two 
events: either a product has been processed (β

a
 and β

b
) 

or a failure (λ
a
 and λ

b
) has occurred. It is assumed 

that the machines are subject to failure only while 
they are in operation. Once a product is processed, 
the machines are switched to WU state. If a failure 
occurs, the machine is switched from P state to B, 
and in this case, a product in process can be lost with 
probability p

a
 for M

a
 (with p

b
 for M

b
). In state WU, 

the machines have to wait for the robot to unload 
the processed product, and when this happens, event 
d

a
 or d

b
 (machine M

a
 or M

b
, respectively) is triggered, 

and a transition from state WU to W takes place. In 
the failure state B, the operator repairs the machines 
and triggers events r

a
 or r

b
 (M

a
 or M

b
, respectively) 

to indicate termination of repair. Then, a switch to 
state W takes place if the product being processed is 
lost, or a switch to state P takes place if the product 
being processed is not lost (i.e., the product continues 
to be processed).

Robot’s states are W (Waiting), La (Loading M
a
), 

Ua  (Unloading M
a
), Lb (Loading M

b
), 

Ub (Unloading M
b
), and B (Failure), and the initial 

state is W. The robot has a priority to unload M
b
 (δ

b
), 

followed by unloading M
a
 (δ

a
) and loading M

b
 (γ

b
) 

and finally loading Ma (•γ
a
). The robot may fail (λ

r
) 

while in La, Ua, Lb, Ub, in which case it moves to 
B state waiting to be repaired. Once it is repaired, it 
has to bypass the initial state and return to the last 
activity. This feature is depicted by the H symbol 
in Figure 9.

The states for the operator Op are W (Waiting), Ra 
(Repairing M

a
), Rb (Repairing M

b
), and Rr (Repairing 

robot). The highest priority is given to repair M
b
 

followed by a lower priority to repair M
a
, and the 

lowest priority is to repair the robot. Once in the W 
state, the operator reacts immediately to any failure 
in the system and switches to the corresponding 
repairing state. The times to repair are exponentially 
distributed with parameters µ

a
, µ

b
, and µ

r
 for M

a
, for 

M
b
, and for the robot respectively. Once the repair 

is over, the operator generates an event (r
a
 for the 

machine M
a
, r

b
 for the machine M

b
, and r

r
 for the 

robot) and returns to the initial state W.
Input parameters and the performance measurements 

obtained using the software developed to generate 
steady-state probabilities for systems specified in 
Statecharts are shown respectively in Tables 3 and 4.

6 Performance evaluation from 
simulation
The manufacturing system presented previously 

was considered for the simulation study, and then 
the required computer programming has been 
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simulations were run to obtain the results to be 
compared with the values shown in Table 4.

Performance measures obtained from simulation 
with arrival rate of seven units are shown in Table 5. 
The results obtained were close to the measurements 
shown in Table 3. Additionally, the queue size of M

b
 

was monitored, as shown in Figure 10. This is one 
major advantage over the analytical approach because 
one can, without too much effort, monitor the system 
behavior. After analyzing the results, it could be noted 
that, based on these input parameters, the queue size 
of M

b
 begins with an unstable behavior if product 

arrival rate is greater than seven units.

developed to perform this simulation. The approach 
described by Pidd (1998) was followed for the 
simulation solution.

Additionally, the system in Figure 9 was modeled 
using the three-phase approach (TOCHER, 1963). 
Tocher shows the simulation executive as a process 
with three phases: time scan (A-activity – it manages 
the time advancement), execution of B-activities 
(unconditional – they execute their related procedure) 
that are due at the current time, and execution of 
C-activities (conditional – they only execute if their 
processing condition are satisfied). To model using 
this approach, it is necessary to define the entities, 
the resources, and the entities’ life cycle. Therefore, 
the model is a set of entities, resources, and B and C 
activities that define the life cycle. Using this approach, 
the model has twenty B-activities and nine C-activities. 
The memory issue in simulation is dealt, normally, 
through modeling using B and C activities, as well 
as using attribute values to decide the state in which 
the product was. The A activity or time advancement 
is a task related to the simulation executive and it is 
not a model concern.

The values for the input parameters and the product 
arrival rate are shown in Table 3. Ten replications of 
the simulation were executed, and each execution 
lasted ten thousand units of time. Each simulation 
had a different product arrival rate. Hence, eighty 

Table 3. Input values of the Model of Figure 9.

Ma Mb Robot

Production rate β
a
 = 50 β

b
 = 10

Failure rate λ
a
 = 1 λ

b
 = 1 λ

r
 = 0.5

Repair rate μ
a
 = 10 μ

b
 = 10 μ

r
 = 10

Prob. of losing a product p
a
 = 0.05 p

b
 = 0.02

Loading Ma γ
a
 = 100

Unloading Ma δ
a
 = 100

Loading Mb γ
b
 = 100

Unloading Mb δ
b
 = 100

Table 4. Performance measurements – Markov approach.

Ma Mb Robot

Average production rate 6.803 6.789

Average rate for product loss 0.007 0.014

Availability 98.6% 93.1% 98.6%

Table 5. Performance Measurements – Simulation approach: with 7 Products arrival rate.

Ma Mb Robot
Mean StdDev Mean StdDev Mean StdDev

Average product rate 6.999 0.024 6.984 0.024 - -

Average rate for product loss 0.007 0.001 0.014 0.001 - -

Availability (%) 98.537 0.051 92.935 0.153 98.547 0.052

Figure 10. Queue size variations of machine B.
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7 Conclusions
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and maintenance system, engineers and analysts 
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of interest. The software PerformCharts has been 
used in order to obtain performance measurements 
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this feature is essential to improve the representation 
and deal with performance models.

The present study described a solution to 
automatically bring the “past” to the present based 
on an elegant Statecharts representation. When 
specifying the models (when they are simple enough) 
directly as Markov chains, usually the same solution 
of bringing the “past” to the present is applied. 
The solution (just as it occurs when systems are 
modeled directly as Markov chain) proposed in this 
paper, leads to a computational effort that increases 
proportionally to the number of History symbols 
present in the model. This study also shows how 
to deal with this issue by adopting the simulation 
approach. The simulation approach is also based 
on Statecharts representation. The representation of 
memory within the simulation approach was much 
easier since the information about the memory is 
directly embedded into the model specification and 
implementation.

The analytical solution using Markov chains is 
a much faster approach as long as the exponential 
distribution of stochastic information (events on 
transition arcs) is guaranteed. However, this may 
not always be true in real world cases. Therefore, 
simulation is an alternative since there are no 
restrictions with respect to stochastically distributed 
times. Nevertheless, the drawback is the computational 
effort since simulation requires lot of preparation 
such as data collection, sampling, and several runs 
and statistical measurements.

Currently, PerformCharts deals only with analytical 
approach. It is expected to incorporate simulation 
solution to the tool. The tool has a textual interface 
based on eXtensible Markup Language (XML), and 
this language is converted into C++ main program. 
This has brought a reasonable advantage of specifying 
a complex system since most of the specification is 
based on pointers. A graphical interface is in progress, 
and due to one-to-one correspondence of a Markov 
chain to a Finite State Machine (FSM), this tool has 
also been used to generate test case sequences.
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