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Resumo: Este artigo aborda um estudo de caso em uma indústria de bebidas relativo ao Problema de Roteamento 
de Veículos Assimétrico com Frota Heterogênea Limitada (PRVAFHL). O objetivo é definir as rotas dos veículos 
de modo a reduzir os custos de distribuição. O PRVAFHL pertence à classe NP-difícil, isto é, sua resolução por 
meio de métodos exatos é uma tarefa extremamente árdua. Problemas desta natureza são geralmente tratados na 
prática de forma heurística. Dentre as diversas abordagens existentes, optou-se por realizar uma adaptação de uma 
heurística da literatura que se mostrou eficiente, sendo capaz de gerar soluções de qualidade elevada em um tempo 
de execução aceitável. Experimentos computacionais foram realizados em um conjunto de 7 instâncias obtidas 
junto à empresa em questão. Os resultados obtidos mostram que houve uma redução considerável no número de 
veículos utilizados e na distância total percorrida em relação às soluções adotadas pela empresa.
Palavras-chave: Otimização; Indústria de bebidas; Iterated Local Search; Logística.

Abstract: This article deals with a case study in a beverage industry concerning the Asymmetric Vehicle Routing 
Problem with Heterogeneous Limited Fleet (AVRPHLF). The objective of the present paper is to define the vehicle 
routes so as to reduce distribution costs. The AVRPHLF belongs to the NP-hard class, that is, its resolution through 
exact methods is an extremely hard task. In practice, problems of this nature are generally treated via heuristics. 
Among the various solution approaches, we decided to perform an adaptation of a heuristic from the literature that 
has proved to be efficient, capable of generating high-quality solutions in a reasonable execution time. Computational 
experiments were conducted in a set of seven instances obtained from the company in question. The results obtained 
show that there was a considerable reduction in the number of vehicles used and in the total distance traveled with 
respect to the solutions adopted by the company.
Keywords: Optimization; Beverage industry; Iterated Local Search; Logistics.
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1 Introduction
The Vehicle Routing Problem (VRP) is one of the 

most well-known and studied logistic distribution 
problems in the field of combinatorial optimization 
due to its applicability and importance, especially 
in the supply chain. In view of its high complexity, 
solving the VRP is regarded as NP-hard, that is, the 
difficulty in finding the optimal solution increases 
exponentially as the number of customers also increases.

In its classic form, the VRP can be defined as follows. 
Let G = (V,E) be a graph where V = {v0,v1, ...,vn} is 
the set of vertices and E = {(vi, vj):vi, vj ∈ V i<j} is 

the set of edges. The vertex v0 denotes the depot 
where a fleet of m identical vehicles with capacity Q 
are placed, whereas the remaining vertices represent 
the customers. Each customer vi has a non-negative 
demand qi. A non-negative travel cost cij, which can 
be interpreted in terms of distance, time and travel 
costs, is associated with each edge {vi, vj}. The VRP 
consists in determining a set of routes (each of them 
associated with a vehicle), so that each customer is 
visited exactly once and by a single vehicle, in such 
a way that the sum of travel costs are minimized and 
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each customer’s demand is met. Each vehicle must 
start and finish the route at the depot v0 and the sum 
of the demands of each route must not exceed the 
vehicle capacity. Such problem is known as Capacited 
Vehicle Routing Problem. A graphical representation 
of a VRP solution containing 3 routes is depicted 
in Figure 1.

When the travel cost from customer i to the customer 
j is different from the cost in the opposite direction, 
we have the Asymmetric VRP (AVRP) which, in 
contrast with the VRP, is defined over a directed 
graph G = (V, A), where A = {(vi, vj):vi, vj ∈V, i ≠ j} 
is the set of arcs of G.

For the case in which there is a set of K types of 
vehicles with different Qk capacities, we have the 
Heterogeneous Fleet VRP (HFVRP). In this variant, 
two situations can occur: when the number of vehicles 
of each type is known, the fleet is limited; otherwise, 
it is unlimited. Furthermore, fixed and/or variable 
costs associated with each type of vehicle may or 
may not be considered.

By combining the asymmetric case with a limited 
fleet of vehicles that have distinct capacities, we 
have the Asymmetric Heterogeneous Limited Fleet 
Vehicle Routing Problem (AHLFVRP).

This work extends the one of Kramer  et  al. 
(2012), which refers to a case study concerning the 
AHLFVRP in a beverage industry considered to be 
the largest bottler of mineral water in Brazil, with 
various manufacturing units distributed throughout 
the territory. The objective of the present paper is to 
define the distribution routes and compare the results 
obtained with those usually adopted by the company.

As in many combinatorial optimization problems, 
such as packing, production scheduling, location, 

work scheduling, etc, VRPs are usually solved 
using heuristic methods, especially when applied 
to real-life and large-scale cases. A heuristic can 
be defined as a set of methods and rules, inspired 
by intuitive processes that lead to the resolution 
of problems. In contrast to exact methods, which 
find the best possible solution at the expense of a 
high resolution time, heuristic methods do not have 
this guarantee, but they are capable of generating 
near-optimal solutions in a relatively short amount 
of time. A  detailed explanation of heuristics and 
metaheuristics can be found in Souza (2007), Blum 
& Roli (2003) and Gendreau & Potvin (2010).

With a view of solving the proposed problem, we 
decided to use the ILS-RVND heuristic (Penna et al., 
2013), due to its flexibility, simplicity, robustness 
and its good computational performance. During 
data collection, we made use of the Application 
Programming Interface (API) of Google Maps to 
acquire the distance and time matrices between 
customers.

The remainder of the paper is organized as follows. 
Initially, Section 2 presents a brief description of 
some related works. Section 3 characterizes the 
company studied as well as the particularities of the 
distribution process. Section 4 describes the algorithm 
developed for the acquisition of the distance and 
time matrices. Section 5 presents the ILS-RVND 
algorithm along with the procedures for generating 
an initial solution and for performing local search and 
perturbation. Section 6 contains the results obtained 
and a comparison with those adopted by the company. 
Finally, Section  7  concludes the work.

Figure 1. VRP solution with 3 vehicles and 56 customers.
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2 Related works
The VRP was introduced by Dantzig & Ramser 

(1959) in the late 1950s in order to solve a gasoline 
distribution problem. In this work, the authors 
presented the first mathematical formulation and 
algorithmic approach for the problem. Since then, 
the number of studies and works related to the topic 
grew significantly. Some authors, such as Toth & Vigo 
(2002) and Golden et al. (2008), list a reasonable 
number of VRP applications in various branches 
of activity.

Given the high complexity in solving the problem 
and depending on the instance characteristics as well 
as on the difficulty in generating feasible solutions, 
the use of computational techniques may contribute 
to a reduction in the transportation costs in the order 
of 5-20%, as mentioned by Toth & Vigo (2002).

Many of the real-life applications of the VRPs 
in food industry, solid waste, beverage, dairy and 
journal distributions can be found in Golden et al. 
(2002). The authors demonstrate that when operations 
research techniques are used in distribution logistics, 
they can contribute to reducing costs and increasing 
productivity.

Gonçalves et al. (2005) studied the mineral water 
distribution problem in the city of Itu. To solve it, the 
authors defined customers’ clusters after determining 
medians and then performed the routing process using 
the savings heuristics of Clarke & Wright (1964) 
together with the nearest insertion approach and the 
Tabu Search metaheuristic.

The practical importance of HFVRP can be 
verified by the large variety of studies found in the 
literature. Tarantilis & Kiranoudis (2001), Prins 
(2002) and Tarantilis & Kiranoudis (2007) presented 
limited fleet applications in dairy, furniture, food 
and construction industries. Belfiore & Yoshizaki 
(2009) described an unlimited fleet application in 
a Brazilian retailer, in which each store had time 
windows and certain vehicle sizes constraints, and 
they could be served by more than one vehicle. 
Campos et al. (2006) solved a HFVRP with time 
windows constraints of one of Brazil’s largest 
retailers by means of genetic algorithms and parallel 
computing. The approach employed has proved 
capable of reducing the costs of the solutions adopted 
by the company by about 13%.

Marmion  et  al. (2010) proposed the first 
asymmetric version of HFVRP by developing four 
algorithms whose main objective was to compare 
the performance of two classic operators: swap 
and reinsertion.

In addition to the methodology used to solve the 
routing problem, the way in which the information 
is collected is a crucial factor to ensure the quality 
of the solutions. Given that the metric used to 

assess the VRP solutions are mostly based on the 
total distance traveled by the vehicles, the precise 
definition of the location and distance between 
customers is an essential prerequisite to increase the 
reliability of the quality of the solutions. In view of 
this, Galvão et al. (1997) investigated the integration 
of routing models and Geographic Information 
Systems (GIS) applied to a simulated soft drinks 
distribution problem in Rio de Janeiro. Tarantilis 
& Kiranoudis (2002) proposed a decision support 
system (DSS) which combines GIS with heuristic 
methods to solve VRPs in Athens.

Due to the aforementioned practical importance 
of VRPs, there are various softwares available in 
the market capable of solving them. Baker (2002) 
compared different softwares focusing his attention 
on the optimization algorithms used. More recent 
studies regarding prices, computational performance, 
algorithms used and solvable variants, among other 
aspects, can be found in Partyka & Hall (2010).

3 Description of the company and its 
distribution process
The manufacturing plant under analysis is located 

in the state of Paraíba, Brazil, and has thousands 
of customers, ranging from small retailers to large 
supermarket chains, spread over the Brazillian Northeast 
region. In addition to the bottling of mineral water, 
the company produces soft drinks, juices and energy 
drinks. The company is responsible for the distribution 
of the products to the customers and in order to do 
so, it relies on the aid of a routing software.

The fleet available to perform the distribution 
is composed of 37 vehicles, where 36 of them 
are outsourced and they have distinct capacities; 
whereas the remaining one is owned by the company 
itself and it has a capacity of 25 tons. This fleet is 
responsible for delivering customer’s orders from 
all over the state of Paraiba as well as from some 
other states of the Northeast region. Table 1 presents 
the characteristics of the vehicles.

The data associated with the customers orders 
were restricted to region of the Greater João Pessoa 
(GJP), which consists of 5 cities: João Pessoa, 
Cabedelo, Santa Rita, Bayeux and Lucena. On average, 
300 customers are served per day in this area.

Table 1. Vehicle Fleet.
Vehicle Quantity Capacity (Kg)

3/4 14 4000
Toco 7 8000

Truck A 9 12000
Truck B 6 13000

Cart 1 25000



Kramer, R. H. F. R. et al.168 Gest. Prod., São Carlos, v. 23, n. 1, p. 165-176, 2016

The sales orders are delivered daily to the distribution 
sector once they are collected by the retailers. Since 
nearly all vehicles are outsourced and their payment 
is directly proportional to both the distance traveled 
and the use of the vehicles, it is in the company’s 
interest to reduce them.

4 Obtaining the distances and travel 
times between customers
The data used to solve the problem was provided by 

the company studied. However, while collecting such 
data, it was not possible to obtain the distance and travel 
time matrices between customers. This information 
belongs to the companz that developed the routing 
software, which was not contacted due to financial 
issues. As a result, we decided to use Google Maps 
to obtain the referred data.

Google Maps is a Google service that offers a 
powerful and friendly mapping technology. Among 
many of its features, it allows users to find addresses 
and obtain routes between two or more locations, 
giving a description of the path as well as the distance 
and time necessary to perform it.

The Google Maps JavaScript API is a free service 
and available to any free access site. However, 
some functions are restricted to a certain amount 
and frequency of requests. For instance, when 
demanding a route from one place to another, we 
have a requisition. At the time that the research was 
conducted, this service was limited to 15000 daily 
requisitions. Once this limit is reached, the user’s 
Internet Protocol (IP) address is temporarily blocked 
for a period of 24 hours.

Assuming that 300 customers, on average, place 
orders daily to the company, the distance and travel 
time matrices will have 90.000 elements each, 
respectively. Therefore, in order to completely fill the 
matrices, the number of requisitions would exceed 
the limits established by Google, in case they were 
requested point by point. Nevertheless, instead of 
sending a route request providing the location of 
2 customers at a time, we developed an algorithm that 
provides a path (restricted to 25 points) as requisition. 
Hence, when taking a path that contains 25 points 
(customers), it is possible to obtain 24 distances and 
24 times per requisition, making it feasible to obtain 
the matrices without exceeding the service limits. 
For instance, when taking a path with 5 points, 
A-B-C-D-E, it is possible to obtain 4 distances (d) 
and 4 times (t) between customers: dAB, dBC, dCD, dDE 
and tAB, tBC, tCD, tDE.

The Algorithm 1 shows the method developed 
to obtain the distance and time matrices between 
customers. The geographical coordinates of the 
customers were provided by the company.

5 The ILS-RVND algorithm
The proposed algorithm consists of and adaptation 

of the ILS-RVND heuristic presented in Penna et al. 
(2013). ILS-RVND is based on the Iterated Local Search 
(ILS) metaheuristic (Lourenço et al., 2002) which 
makes use of a Randomized Variable Neighborhood 
Descent procedure (RVND) (Hansen et al., 2010) in 
the Local Search phase. In order to contribute for the 
diversification of the search space, ILS-RVND employs 
more than one type of procedure for generating initial 
solutions, as well as for performing local search and 
perturbation. The original ILS-RVND algorithm was 
adapted to take into account the particularities of the 
case study, such as the route duration constraints 
and the asymmetrical distances between customers.

The pseudocode of the ILS-RVND heuristic is 
illustrated in Algorithm 2. The input parameters of 
the algorithm are MaxIter, MaxIterILS and v, where 
the latter represents the total number of vehicles 
available. MaxIter represents the number of restarts 
of the algorithm (lines 4-21) and an initial solution is 
generated at each restart. After the generation of the 
initial solution, the main loop of the ILS algorithm 
is executed MaxIterILS times (lines 8-16), as an 
attempt to improve the initial solution by means 
of local search (line 9) and perturbation (line 14) 
procedures. In case the best solution found after the 
ILS loop (MaxIterILS times) is better than the initial 
solution generated, this becomes the current solution 
and the algorithm is restarted from line 3.

Algorithm 1. Obtaining the distance and time matrices 
between customers.
1: Procedure GetMatrices()
2: i = 1;
3: j = 1;
4: while i ≤ n do
5:    while j ≤ n do
6:       add address of i to the path;
7:       add address of j to the path;
8:       if size of the path = 24 or j = n then
9:          add address of i to the path;
10:          sends path as a route requisition;
11:          empty path;
12:       end if
13:       j = j + 1;
14:    end while
15:    i = i + 1;
16:    j = 1;
17: end while
18: end GetMatrices.
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5.1 Generation of the initial solution
The procedure for generating initial solutions 

makes use of two insertion criteria, more precisely, 
the Modified Cheapest Feasible Insertion Criterion 
(MCFIC) and the Nearest Feasible Insertion Criterion 
(NFIC). In addition, two insertion strategies were 
applied: the Sequential Insertion Strategy (SIS) and 
the Parallel Insertion Strategy (PIS).

The pseudocode of the procedure for generating 
an initial solution is represented in Algorithm  3. 
Initially, the vehicles are sorted in descending order, 
with respect to their capacity, in such a way that each 
vehicle serves a route with a single customer, chosen 
according to the largest demand (lines 4-8). Next, an 
insertion criterion and strategy are randomly selected 
(lines 9-10). An initial solution is then built, using 
the criterion and the strategy selected (lines 11-15). 
If an infeasible solution is generated, the procedure 
is restarted from line 3. In the case of the AHLFVRP, 
an infeasible solution is obtained when the available 
vehicles are not capable of serving all customers or the 
duration of one or more routes exceed the maximum 
limit. If it is not possible to produce a feasible initial 
solution after a certain number of consecutive attempts, 

Algorithm 2. ILS-RVND.
1: Procedure ILS-RVND(MaxIter, MaxIterILS, v)
2: LoadData();
3: f* ← ∞;
4: for i = 1, ..., MaxIterdo
5:    s ← GenerateInitialSolution (v, MaxIter, seed);
6:    s’ ← s;
7:    iterILS ← 0;
8:       while iterILS ≤ MaxIterILSdo
9:          s ← RVND(s);
10:          if f(s) <f(s’) then
11:             s’ ← s;
12:             iterILS← 0;
13:          end if
14:          s’ ← Perturb(s’, seed);
15:          iterILS ← iterILS + 1;
16:       end while
17:       if f(s’) < f*then
18:          s* ← s’;
19:          f* ← f(s’);
20:       end if
21:    end for
22: return s*;
23: end ILS-RVND.

Algorithm 3. Generation of the Initial Solution.
1: Procedure GenerateInitialSolution(v, MaxIter, seed)
2: ConsecutiveTrials ← 0;
3: Initialize CL;
4: Let s = {s1, ..., sV} the set composed of v empty routes, sorted in descending order according to the capacity;
5: for v’ = 1, ..., v-1 do
6:    sV’ ← k associated with maxk∈CL{qk};
7:    Update CL; {CL ← CL – {k}}.
8: end for
9: InsertionCriterion ← MCFIC or NFIC (selected at random);
10: InsertionStrategy ← SIS or PIS (selected at random);
11: if InsertionStrategy = SIS then

12:    s ← SequentialInsertion(s, v, CL, InsertionCriterion);
13: else
14:    s ← ParallelInsertion(s, v, CL, InsertionCriterion);
15: end if
16: if s is infeasible then
17:    ConsecutiveTrials ← ConsecutiveTrials + 1;
18:    if ConsecutiveTrials = MaxIter then
19:       v ← v + 1;
20:       ConsecutiveTrials ← 0;
21:    end if
22:    Go to line 3;
23: else
24:    return s;
25: end if
26: end GenerateInitialSolution.



Kramer, R. H. F. R. et al.170 Gest. Prod., São Carlos, v. 23, n. 1, p. 165-176, 2016

an extra vehicle is added in order to facilitate the 
process of generating a complete initial solution (this 
vehicle cannot be used in the final solution).

MCFIC consists of inserting, in a given route, a 
customer k belonging to the Candidate List (CL) that 
has the cheapest insertion cost denoted by Expression 
(1), in which the first part computes the insertion cost 
of customer k between two adjacent customers i and 
j, while the second one is a mechanism used to avoid 
the late insertion of customers located far from the 
depot, representing a reduction of the insertion cost 
as a function of the distance from the depot (back 
and forth).The parameter γ can assume any value in 
the following set: {0.00, 0.05, 0.10, ..., 1.65, 1.70} 
(Subramanian et al., 2010).

	 ( ) ( )0 0–  –{ | } ik kj ij k kmin c c c c c k CLγ + ∈+ 	 (1)

In NFIC, one should include in the route a customer 
k ∈ CL with the shortest distance with respect to a 
given customer i already inserted, as represented in 
Expression (2). In this case, k is always inserted after i.

	 { | }ikmin c k CL∈ 	 (2)

In SIS, only one route is considered for insertion at 
each iteration. If MCFIC is the insertion criterion, the 
γ value is then chosen at random from the set already 
specified. While the CL is not empty and there is at 
least one customer k ∈ CL that can be added to the 
current solution without violating any constraint, a 
customer is inserted in each route according to the 
insertion criterion selected.

As opposed to the previous case, PIS takes all routes 
into consideration when computing the insertion costs. 
Therefore, one evaluates the insertion of customer 
k in every possible position of all routes. The best 
possible insertion, that is, the one associated with the 
smallest cost and that does not violate the constraints 
of the problem is then performed (lines 7-12).

5.2 Local search
One of the main characteristics of the ILS-RVND 

metaheuristic is the ability to perform a randomized 
ordering of the neighborhood structures (RVND), in 
contrast to the usual VND approaches that employ 
a deterministic order, thus avoiding both the use of 
parameter tuning and the premature convergence to 
poor-quality local optimal solutions.

The pseudocode of the RVND procedure is shown 
in Algorithm 4. Initially, a inter-route neighborhood 
structure is selected randomly from a Neighborhood 
List NL (line 4). Next, the best solution is determined 
from the set of moves of the neighborhood selected 
and, in case the solution found is better than the 
current solution, this becomes the current solution 

and then, an intra-route local search is performed 
(lines 6-9). If the inter-route neighborhood search 
leads to an improvement, the NL is repopulated 
with all neighborhoods (line 9). In case the solution 
found with the use of inter-route neighborhood is not 
better than the current solution, such neighborhood is 
removed from NL (line 12) and the same procedures 
(from line 4) are repeated until the list becomes empty.

Similarly to the inter-route, the intra-route local 
search algorithm consists of randomly choosing a 
neighborhood contained in a list NL2, determining the 
best solution by applying moves of the neighborhood 
selected and, in case it is better than the current 
solution, it becomes the new current solution. In case 
of no improvement, the neighborhood is removed 
from NL2 and the same procedures are repeated 
until the list becomes empty. The NL2 list is always 
restarted after the inter-route neighborhood search 
leads to an improvement.

In both inter-route and intra-route local search 
procedures, only moves that do not violate the vehicle 
capacity and the route duration constraints are accepted. 
The algorithm verifies if the move is feasible or not, 
always after ascertaining the improvement in the 
current solution. Hence, it is possible to reduce the 
runtime of the algorithm.

The verification of the vehicle capacity constraint 
can be performed in a constant time by comparing 
the sum of the customers’ demands with the vehicle 
capacity of a given route. As for performing the 
verification of the route duration constraint in constant 
time, one needs to keep track of the duration of each 
route during the whole local search procedure. Some 
auxiliary structures are employed by the ILS-RVND 
algorithm in order to yield an improvement of the 
computational performance. A detailed description of 
these structures can be found in Penna et al. (2013).

Algorithm 4. RVND.
1: Procedure RVND(s)
2: Initialize the inter-route Neighborhood List NL;
3: while NL ≠ 0 do
4:    Select a neighborhood N(Η) ∈ NL at random;
5:    Find the best neighbor s’ of s ∈ N(Η);
6:    if f(s’) < f(s) then
7:       s ← s’;
8:       s ← IntraRouteSearch(s);
9:       Update NL;
10:    else
11:       Remove N(Η) from NL;
12:    end if
13: end while
14: return s;
15: end RVND.
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5.2.1 Inter-route neighborhood structures

In order to solve the AHLFVRP, six inter-route 
neighborhood structures were used. Five of them are 
based on the λ-interchanges scheme (Osman, 1993), 
which consists of exchanging up to λ customers 
between two routes; while the remaining one is 
based on the Cross-exchange operator (Taillard et al., 
1997), which consists of exchanging two segments of 
different routes. To limit the number of possibilities, 
we considered λ=2. A description of each structure 
is presented as follows.

1.	 Shift(1,0) – One customer is moved from a route 
to another one.

2.	 Shift(2,0) – Two customers k1 and k2 are moved 
from one route to another one. In this case, both 
arcs (k1, k2) and (k2, k1) are considered.

3.	 Swap(1,1) – Interchange between one customer 
of a route and a customer from another route.

4.	 Swap(2,1) – Interchange between two adjacent 
customers k1 and k2 from a route and one customer 
k3, from another route. In this case, both arcs 
(k1,k2) and (k2,k1) are considered.

5.	 Swap(2,2) – Interchange between two adjacent 
customers k1 and k2 from one route and two 
adjacent customers k3 and k4, from another 
route. In this situation, all the four possible 
combinations of the interchanging arcs formed 
by the two pairs of customers are considered.

6.	 Cross – Interchange between a segment of a 
route and a segment of another route. A segment 
of route is determined by the set of customers 
located along the path between two customers. 
For the proposed algorithm, only the segments 
of route ending at the depot are considered.

A graphic illustration of the inter-route neighborhoods 
implemented is depicted in Figure  2, in which 
σ represents the segment of route containing one or 
more customers and ⊕ represents the concatenation 
operator between two segments of route.

5.2.2 Intra-route neighbourhood structures
This set of neighborhoods consists of rellocating 

customers of a same route. In this case, it is not necessary 
to verify the vehicles’ capacities constraints, as long 
as the previous solution is feasible, the exchange of 
positions between customers in a same route will not 
affect its total demand. However, since the exchange 

Figure 2. Inter-route Neighborhoods.
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of positions between customers will modify the path 
traveled and, consequently, the time of the duration of 
the route, verifying the total duration time of the route 
becomes necessary. Four intra-route neighborhood 
structures were adopted and their description is as 
follows.

1.	 Reinsertion – One customer is removed and 
inserted in another position of the route.

2.	 Or-Opt2 – Two adjacent customers are removed 
and inserted in another position of the route.

3.	 Or-Opt3 – Three adjacent customers are removed 
and inserted in another position of the route.

4.	 Exchange – Permutation between two non-adjacent 
customers.

A graphic illustration of the intra-route neighborhoods 
implemented can be observed in Figure 3.

5.3 Perturbation mechanism

According to Lourenço et al. (2002), the perturbation 
mechanisms are considered to be key aspects for the 
high performance of the ILS metaheuristic, as well 
as the local search.

In contrast to the local search procedures, the 
perturbation mechanisms are not intended to improve 
the solution. They are, however, useful in performing 
modifications in the current solution, as an attempt to 
escape from local optima.

As in the previous procedures, two perturbations 
were used, and they are randomly selected by the 
algorithm. Such procedures are described as follows:

1.	 Multiple-Swap(1,1) – Multiple Swap(1,1) moves 
are executed between different pairs or routes 
selected at random.

2.	 Multiple-Shift(1,1) – Multiple Shift(1,1) moves 
are executed randomly.

6 Computational results
In this section, we present a description of the 

instances (daily orders) concerning the fleet of vehicles 
and the demand. Next, we compare the results achieved 
by ILS-RVND with those adopted by the company 
in question. In this section, we present a description 
of the instances concerning the fleet of vehicles and 
the demand. We then compare the results achieved 
by ILS-RVND with those adopted by the company.

The proposed algorithm was coded in C++ and 
executed in an intel Core i5-2410M 2.3 GHz with 
4 GB of RAM memory running Ubuntu Linux 10.10.

After conducting some preliminary experiments, 
we considered the value of parameter MaxIter to 
be 10 in all instances, while we set the MaxIterILS 
parameter, according to the characteristics of the 
instances, more precisely, as the number of customers 
plus the number of vehicles available. Each instance 
was executed 10 times.

In spite of the 12-hour limit on the route duration 
adopted by the company’s software, the instances were 
solved by ILS-RVND considering an 8-hour limit, 
so as to be within the limits established by Brazilian 
labor legislation.

6.1 Instances
The quantity and the types of vehicles considered in 

the instances were the same adopted by the company 
when serving only the customers located in GJP 
(according to the routes generated by the software). 
The tests were performed on a set of 7 instances, as 
shown in Table 2.

Regarding the solutions generated by the company’s 
software, it was verified that occasionally some 
vehicles were overloaded. Such practice is required 
in cases where the customer’s demand exceeds the 
vehicle’s capacity.

The KSP4, KSP5 E KSP6 instances refer to the 
orders of a single day. Such division was done due to 
the existence of customers’ orders located in a region 
outside GJP, so that one of the routes generated by 
the company’s software have customers from GJP 
as well as customers from another region. The KSP4 
instance has all the customers. In the KSP5 instance, 
we removed both the customers located outside GJP 
and the vehicle used in this route. As for the KSP6 
instance, we disregarded all the customers of this 
route, including the vehicle (based on the company’s 
solution). Another reason for dividing this instance 
was to try to solve the AHLFVRP in such a way that 
it would be suitable for all GJP customers without 
requiring a vehicle responsible for serving customers 
from another region. The solutions found by ILS-RVND 
for the instance KSP5 could not be compared because 
the company did not have a solution available for this 
situation.Figure 3. Intra-route Neighborhoods.
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6.2 Comparison of results
The comparison of results was performed with respect 

to both the total distance traveled by the vehicles and 
the number of vehicles used.

The best solutions found by the ILS-RVND heuristic 
are shown in Table 3, as well as the averages and the 
standard deviations concerning the 10 executions. 
The  results are expressed in terms of the distance 
traveled and the execution time of the algorithm.

A considerable reduction in the total distance traveled 
was achieved for all instances, as observed in Table 4. 
Such reductions can be regarded as reductions in variable 
costs since both fuel costs and vehicle depreciation 
increase with the distance traveled.

When comparing in terms of vehicles, the use of 
the ILS-RVND heuristic contributed to the reduction 

of the number of vehicles in 3 out of 6 instances, as 
pointed out in Table 5. Since all vehicles used by 
the company are outsourced, reducing the number 
of vehicles leads to a reduction in the company’s 
fixed costs.

The best solutions achieved by ILS-RVND for the 
instances presented were illustrated with the aid of 
Google Maps, as can be observed in Figure 4. Each 
polygon represents a route and each vertex of the 
polygon represents a customer (or the depot).

6.3 Convergence Graphs

With a view of evaluating the ILS-RVND performance 
and comparing it with the results obtained by the 
company’s routing software, we have generated 

Table 2. Instances.

Instance n
Total 

Demand 
(Kg)

Vehicles

v Types Quantity
(by type)

Capacities
(by type - Kg)

Total Capacity 
(Kg)

KSP1 299 96736.81 17 4 13, 2, 1, 1 4000, 8000, 8564, 24123 100687
KSP2 313 52520.43 14 4 11, 1, 1, 1 4000, 4390, 4621, 8000 61011
KSP3 294 62624.06 14 2 13, 1 4000, 14206 66206
KSP4 341 49381.47 12 3 10, 1, 1 4000, 8320, 8696 57016
KSP5 318 46827.40 11 3 9, 1, 1 4000, 8320, 8626 53016
KSP6 291 46142.22 11 3 9, 1, 1 4000, 8320, 8626 53016
KSP7 108 23486.33 6 2 5, 1 4000, 4093 24093

Table 4. Comparison of results in terms of distance traveled.

Instance
Distance (Km) Average Gap

(%)Company ILS-RVND
Best Solution

ILS-RVND
Average Solution

KSP1 1519.30 1394.48 1417.30 -6.71
KSP2 1342.70 1049.56 1054.01 -21.50
KSP3 1318.90 1157.02 1165.06 -11.66
KSP4 1288.90 1158.30 1168.89 -9.31
KSP5 1082.80 856.12 861.17 -20.47
KSP6 600.20 509.33 514.16 -14.34
KSP7 1519.30 1394.48 1417.30 -6.71

Average -14.00%

Table 3. ILS-RVND Statistics.

Instance
Total Distance (Km) CPU Time (s)

Best Solution Average 
Solution Std. Dev. Best Solution Average 

Solution Std. Dev.

KSP1 1394.48 1417.3 12.10 293.80 285.39 40.90
KSP2 1049.56 1054.01 2.24 360.86 335.46 31.04
KSP3 1157.02 1165.06 4.74 274.21 288.42 31.89
KSP4 1158.30 1168.89 6.79 637.06 599.74 84.05
KSP5 877.46 889.54 8.72 465.71 536.37 48.41
KSP6 856.12 861.17 3.40 277.40 318.95 33.37
KSP7 509.33 514.16 2.18 7.32 7.64 1.37
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Table 5. Comparison of results in terms of the vehicles used.

Instance No. of vehicles used ReductionCompany ILS-RVND
KSP1 17 17 0
KSP2 14 12 2
KSP3 14 14 0
KSP4 12 11 1
KSP6 11 10 1
KSP7 6 6 0

Figure 4. Best solutions.

convergence graphs for each instance in which the 
results found by the company were available.

The convergence graphs presented in Figure  5 
represent the time spent by the ILS-RVND algorithm 
to find a better or equal solution to the one achieved 
by the company. To this end, the ILS-RVND heuristic 
was executed 100 times for each instance, but this time 
using a different stopping criterion, more precisely, 
the algorithm stops once it finds a solution better or 
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of exact methods becomes prohibitive, especially 
when dealing with 300-customer instances, which 
is the average size considered in this work. Hence, 
it was verified that the use of heuristics revealed to 
be an adequate strategy to achieve the objective of 
this paper, that is, to generate good solutions for the 
problem in a reasonably short execution time.

As expected, the ILS-RVND heuristic proposed 
by Penna et al. (2013) proved to be very efficient, 
obtaining high quality solutions. The algorithm was 
tested on a set of 7 instances associated with the 
daily orders of the company, in which an average 
improvement of approximately 14% was achieved, 
when compared with the practical solutions adopted 
by the company in terms of distance traveled. There 
was also a reduction in the number of vehicles used 
to serve all customers. Such results can be regarded 
as possible reductions in fixed and variable costs, 
since the vehicles are outsourced and the company 
not only pays for their daily usage but also for their 
operation and maintenance costs.

equal to the one reported by the company’s software. 
For each execution, we stored the computational 
time required until the stopping criterion is met, so 
that it is possible to infer the probability of equaling 
or enhancing the company’s results for a given 
processing time.

From Figure 5, it can be observed that the maximum 
time required by the ILS-RVND algorithm to obtain 
the same results or to outperform the routing software 
was approximately 6 seconds (for an instance of 
341 customers). In general, such results were achieved 
in less than one second, which emphasizes the high 
performance of the ILS-RVND algorithm.

7 Conclusions
This article dealt with an Asymmetric Heterogeneous 

Limited Fleet Vehicle Routing Problem (AHLFVRP) 
with route duration constraints in the context of 
a large-scale beverage industry. Due to the high 
computational complexity of the problem, the use 

Figure 5. Convergence Graphs.
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