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Resumo: A construção de grades horárias dos cursos de uma universidade é um problema que deve ser enfrentado 
no início de todos os semestres e, por mobilizar quantidades significativas de recursos, se constitui numa importante 
tarefa administrativa. É classificado, em termos de complexidade computacional, como NP-hard, o que implica 
grande exigência de capacidade de processamento. É modelado de maneiras muito diversas, no intuito de se obter 
adequação quanto ao contexto educacional do país, às regras específicas da instituição ou aos objetivos específicos 
dos gestores, entre outros. Neste artigo, propõe-se um modelo matemático para construir grades de horários, 
otimizando a utilização de salas de aula. Para resolver o modelo proposto, desenvolveu-se um algoritmo que divide 
o problema para viabilizar o uso de programação linear inteira mista. Experimentos computacionais aplicados a 
uma base de dados real de uma universidade pública brasileira confirmaram o bom desempenho da abordagem 
proposta, reduzindo consideravelmente a quantidade de salas de aulas alocadas.
Palavras-chave: University Timetabling Problem; Programação inteira; Programação matemática; Decomposição; 
Grades horárias.

Abstract: Creating timetables for courses is a problem that universities face at the beginning of every semester. 
This activity represents an important administrative task because it consumes significant amount of resources. In terms 
of computational complexity, this is classified as NP-hard, as it demands a huge amount of processing capacity. 
Timetabling is modeled in a number of different ways, aiming to fit the country’s educational context, meet specific 
rules of institutions of higher education or specific goals of managers, among others. In this paper, we propose 
a mathematical model to solve the University Course Timetabling Problem and optimize classroom utilization. 
To solve the proposed model, an algorithm that divides the problem was developed, solving it with mixed integer 
linear programming tools. Computational experiments applied to a real database of a Brazilian public university 
confirmed the good performance of the proposed approach, which greatly reduces the amount of assigned classrooms.
Keywords: University Timetabling Problem; Integer programming; Mathematical programming; Decomposition; 
Timetable.
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1 Introduction
Creating timetables for their courses is a problem 

that universities must face at the beginning of every 
semester and, as it consumes significant amounts of 
resources, it represents an important administrative 
task. This problem consists in assigning certain 
resources, in a manner that some material and 
pedagogical constraints are respected. The most 
common constraints are physical (classrooms, 
laboratories, auditoriums, gymnasiums), people 
related (teachers, students), intangibles (days, 
periods, semesters, courses, lectures), among others.

Real cases could contain hundreds, or thousands, 
of these types of resources. Moreover, any feasible 
solutions must respect equally large amounts of 
constraints, and must fulfill, in the best way possible, 
certain demands (regarding teachers, educational 
institution, cost reductions, among others). Thus, 
building a good timetable is a very difficult task.

Known in the literature as University Course 
Timetable Problem (UCTP), according to Schaerf 
(1999), this problem concerns the scheduling of a 
course’s lecture set in a limited quantity of classrooms 
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and periods. The author also notes that the main 
difference to the school timetabling problem is that, 
in universities, different courses can have students 
in common.

Solutions for this problem are usually obtained 
through the involvement of a lot of people for 
several days. Besides, some of those solutions could 
not be satisfactory in some aspects, for instance, a 
student who wishes to enroll in two courses that 
are scheduled in the same period (Schaerf, 1999).

Previous studies present a variety of models and 
approaches. However, even if there are common 
objectives, some concepts and definitions do not 
apply to all educational institutions and systems, 
which are closely related to the country on which 
they’re applied.

Some of these models were implemented in real 
cases, such as: Virginia Tech (USA), by Sarin et al. 
(2010); Chile University, by Miranda (2010); 
Spanish University System, in particular University 
of Valencia, by Alvarez-Valdes  et  al. (2002); 
Purdue University (USA), by Rudová et al. (2011); 
Università degli studi di Udine (Italy), developed 
by Burke et al. (2010); Greek educational system, 
by Daskalaki et al. (2004); and Sydney University 
(Australia), by Beyrouthy et al. (2007).
There are also solutions applied to Brazilian 

instances, such as a heuristic formulation to the 
Exact and Geosciences Institute of Passo Fundo 
University, developed by Kripka et al. (2011), and 
a model, to the Production Engineering course 
of Paraná University, solved by mathematical 
programming, presented by Andrade et al. (2012).

Nevertheless, some authors claim that few papers 
applying models and methods using instances of 
real-world data (Carter & Laporte, 1998; McCollum, 
2007; Murray et al., 2007) can be found. These authors 
note that many articles concentrate on developing 
solutions to simplified problems, or that they use 
artificial data sets, and rarely extend their solutions 
to large scale formulations.

A large number of techniques and approaches to the 
solution are in the literature (Gunawan et al., 2012). 
For the authors, exact algorithms can solve small 
data instances but hardly find the ideal solution for 
large data sets, due to its computational complexity. 
According to McCollum (2007), Operations Research 
techniques to model real data instances can support the 
decisions of Higher Education Institution managers.

Regarding teaching space use, Beyrouthy et al. 
(2007) split these studies in two types: “management” 
and “planning”, engaged with short and long term, 
respectively. In this sense, both management and 
planning of teaching spaces can have important 
contributions from Operations Research. The model 
solution indicates the teaching space needs, supporting 

decisions concerning construction, renting or selling 
such places, and better management of available 
ones, designating people and other resources to 
teaching spaces.

We consulted a manager of a large Brazilian public 
university concerning the use of teaching locations 
and rental costs. In 2012, this university had spent 
1.6 million dollars to rent 29 spaces. According 
to him, these spaces were probably underutilized.

Thus, this study aimed to develop a decision 
support model to help university managers construct 
timetables, and, more specifically, optimize teaching 
space use, respecting the constraints established by 
the educational institution.
The paper is organized as follows. Section 2 

briefly discusses a literature review on timetable 
construction problem. Section 3 describes the 
problem and its mathematical formulation in details. 
Section 4 provides computational results with the use 
of real-world data. Section 5 presents conclusions 
and perspectives for future research.

2 Timetable construction in 
universities
Burke  et  al. (2003) proposed a definition to 

the timetable construction problem. According to 
these authors, it is composed of four parameters: 
T, a finite set of time intervals (days, weeks); R, a 
finite set of resources (classrooms, teachers); M, a 
finite set of meetings (combination of time intervals 
and resources); and C, a finite set of constraints. 
The problem consists of assigning time intervals and 
resources to meetings, in such a way that constraints 
are satisfied in the best manner.

Timetabling problems have been studied since 
the 1950’s (Tripathy, 1984), by utilizing a variety 
of methods, according to De Werra (1997), due to 
its combinatorial nature, this problem still draws 
attention, mainly from Operations Research community, 
because a great number of combinations must be 
checked in order to find at least one feasible solution.

School (STP) and University Courses (UCTP) 
Timetabling Problems have received lot of attention 
in the Educational Timetabling Problems (ETP). This 
division is due to important differences between 
the problems. Carter & Laporte (1998) note that 
in schools, classes are predefined, there are few 
courses, few options for students, and teachers have 
high workload, while in universities, students have 
more freedom of choice, and teachers have lighter 
workload. Besides, in UCTP, classes share students, 
something that does not occur in STP.

Carter & Laporte (1998) divide the problem in two 
types: master timetabling and demand-driven systems. 
In the first case, courses, teachers, classrooms, other 
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material, and pedagogical resources are combined, 
and, after that, students choose which courses to 
enroll, according to a previously built timetable. 
In the second, students choose which courses to 
enroll and then, teachers, classrooms, and courses 
are combined to construct the timetables. From this 
division, the institution can adopt the better strategy 
to create their timetables.

Generally, UCTP formulation involves a great 
number of constraints, and preferences of students, 
and teachers. There are two kinds of constraints: 
hard and soft. While the hard constraints must 
be met, the soft constraints are characterized by 
penalizing the objective function, and therefore 
only contribute to evaluate the solution’s quality. 
Pongcharoen  et  al. (2008) classify the problem 
as NP-hard, which implies a great demand for 
computational resources. According to Cormen et al. 
(2002), problems of this class cannot be solved by 
any algorithm in polynomial time, and big instances 
demand approximate algorithms to solve them.

UCTP models have diverse objectives: maximization 
of student and teacher preferences, minimization of 
teachers and students idle time, better distribution 
of classrooms’ use, among others. Besides that, 
Alvarez-Valdes et al. (2002) point out that timetable 
structure and specificities vary according to countries, 
mainly due to educational systems and university 
particularities, which explain why the problem is 
studied so much. This article models the problem 
considering physical space optimization, particularly 
classrooms. Data was collected from a Brazilian 
federal university, which initially showed a potential 
for better usage of space and, saving money on rents, 
cleaning, maintenance, and security.

3 Mathematical modeling
In this section, we describe the problem, entity 

sets, parameters, mathematical formulation, and the 
approach used for searching solutions.

3.1 Problem details
According to the discussion in Section 2, our 

problem is classified as master timetabling. Therefore, 
the model does not have student sets. We assumed 
that each class already has a teacher assigned to 
it, and so, the model considers the set of teachers 
only to avoid time conflict between classes with 
the same teacher. Regarding the physical spaces, 
the model considers only the classrooms, excluding 
special locations such as laboratories, gymnasiums, 
auditoriums, among others. This decision was based 
on the university’s case studied in this research. They 
needed to rent classrooms to meet their demand 
for space, but there’s no need for special locations. 

In addition, the classrooms are managed centrally, 
while the course coordinators attribute the special 
locations to events.

To model this problem, it is important to identify 
the hard and soft constraints. Hard constraints are 
those that must be satisfied, so that any violation 
implies in infeasible solutions. Soft constraints 
are requirements that are not essential to produce 
feasible solutions, but they are desirable (Kahar 
& Kendall, 2010). Therefore, we present the hard 
(HC) and soft (SC) constraints:

HC01	 Exact number of meetings in each subject 
must be assigned

HC02	Classes can only be assigned to periods 
allowed by the educational institution

HC03	Minimum and maximum daily meetings 
in each subject must be respected

HC04	 Classes cannot have meetings in consecutive 
days

HC05	Meetings of the same class, in the same 
day, must be consecutives

HC06	Mandatory subjects of the same semester of 
curriculum cannot have schedule conflicts, 
if they have only a single class offered

HC07	Teachers can be assigned to meetings 
in periods designed by the educational 
institution

HC08	Teachers cannot teach more than one 
meeting at the same time period

HC09	Classrooms can host at most one event in 
a given time period

HC10	 Classrooms can host only events permitted 
by the educational institution

HC11	 Classroom capacities must be respected

HC12	Class meetings in the same day must be 
assigned to the same classroom

HC13	 Teachers can only teach in one academic 
unit (e.g. building), in a given shift

SC01	 Minimize academic unit utilization costs

3.2 Mathematical formulation
Initial tests show the impossibility of optimally 

solving the real data sets. Therefore, we propose 
a viable approach to solve it. We divide the main 
problem in two subproblems:
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(1)	Creation of weekly timetables, aiming to 
uniformly distribute meetings among all time 
periods, and

(2) Assignment of classrooms to events, aiming 
to minimize the SC01 soft constraint.

The aim of this strategy is to separate the resources 
that will be assigned to events: days and periods 
in the first subproblem, and classrooms on the 
second subproblem. Furthermore, we identified an 
important characteristic: in the previous academic 
school years, all the meetings were assigned in the 
same shift for a given class, which allowed us to 
solve the problem in each shift separately. From 
these two division strategies (of the problem, and 
of data sets), it was possible to find solutions.
We present the parameters and data sets for 

the first subproblem. Data sets represent modeled 
entities, and parameters represent the conditions 
which must be respected.

Sets:

C: courses, { }0,1, , 1c C C∈ = … −

D: days, { }0,1,2,3,4d D∈ =

E: events, { }0,1, , 1e E E∈ = … −

S: subjects, { }0,1, , 1s S S∈ = … −

T: teachers, { }0,1, , 1t T T∈ = … −

Es: subject’s events s S∈ , sE E⊆

Et: teacher’s events t T∈ , tE E⊆

G: semesters, { }0,1, , 1g G G∈ = … −

P: time periods, { }0,1, , 1p P P∈ = … −

Scg: mandatory subjects that have only one event,

cgS S⊆ , ,c C g G∀ ∈ ∈

Parameters:

SM ∈: vector indicating the number of weekly 
theoretical meetings of a subject, as required 
by the curriculum, where sM  indicates the 
number of weekly theoretical meetings of 
subject s S∈

SDMmin ∈: vector indicating the minimum number 
of daily meetings acceptable for subject s S∈ , 
where sDMmin  indicates the minimum number 
of daily meetings of subject s S∈

SDMmax ∈: vector indicating maximum number 
of daily meetings acceptable for subject s S∈ , 
where sDMmax  indicates the maximum number 
of daily meetings of subject s S∈

{ }0,1E D PEA × × ∈ : event timetable availability 
matrix, where 1edpEA = , if event e E∈  might 
have a meeting at day d D∈  and time period 
p P∈ ; 0edpEA = , otherwise

{ }0,1T D PTA × × ∈ : teacher timetable availability 
matrix, where 1tdpTA =  if teacher t T∈  might 
work at day d D∈  and time period p P∈ ; 

0tdpTA = , otherwise

Our STP model is a mixed linear programming 
problem, with (0, 1) decision variables mapping 
events of students, teachers, and locations into a 
matrix of time slots within the week. Thus, we 
define the decision variables as:

1,
0,edpx 

= 


 if event e E∈  is assigned to day d D∈

and time period p P∈

otherwise
Constraints demand the following auxiliary 

variables:

1,
0,edb 

= 


 if event e E∈  have a meeting on day d D∈

otherwise

ede ∈ =  first time period assigned to event e E∈  
on day d D∈

edf ∈ =  last time period assigned to event e E∈  
on day d D∈

dpw ∈ =  number of meetings scheduled on day 
d D∈  and in period p P∈

y∈ =  value of the biggest element in variable 
set dpw

To uniformly distribute the meetings in the 
timetable, it is necessary and sufficient to compute 
the time slot with the highest amount of meetings. 
The objective of the model is to minimize the 
number of assigned meetings to the slot with the 
highest amount of meetings:

	  yMinimize  	 (1)

In order to follow hard constraints HC01 to HC08, 
and to compute y, which is used in soft constraint 
SC01, the Objective Function 1 is subject to the 
following equations:

               ,   
∈ ∈

= ∀ ∈ ∈∑ ∑ edp s s
d D p P

x M e E  s S  	 (2)

                , , ≤ ∀ ∈ ∈ ∈edp edpx EA e E  d D p P  	 (3)

                     , , 
∈

≤ ∀ ∈ ∈ ∈∑
t

edp edp
e E

x TA t T  d D p P  	 (4)
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. .    , ,   s ed edp s ed s
p P

DMmin b x DMmax b e E s S d D
∈

≤ ≤ ∀ ∈ ∈ ∈∑  	 (5)

                 , ,  ed edpb x e E d D p P≥ ∀ ∈ ∈ ∈  	  (6)

{ }, 1 1                 , 0,1, , 2  ed e db b e E d D++ ≤ ∀ ∈ ∈ … −  	 (7)

( ) ( )             1 1 . , ,     ed edpe P P p x e E d D p P≤ + − + − ∀ ∈ ∈ ∈  	 (8)

                 . , ,   ed edpf p x e E d D p P≥ ∀ ∈ ∈ ∈  	 (9)

0               ,ed ed ed edp
p P

f e b x e E d D
∈

− + − ≤ ∀ ∈ ∈∑  	 (10)

:
1              , , ,

s cg

edp
e E s S

x c C g G d D p P
∈ ∈

≤ ∀ ∈ ∈ ∈ ∈∑  	 (11)

                ,  
∈

= ∀ ∈ ∈∑dp edp
e E

w x  d D p P  	 (12)

           ,  edp
e E

y x d D p P
∈

≥ ∀ ∈ ∈∑  	 (13)

Constraint Set 2 satisfies HC01, ensuring that the 
required number of meetings is assigned. Equations 3 
and 4 ensure the allocation of the event in allowed 
timetables for their own event (HC02), and their 
teacher (HC07). Equation 4 also satisfies HC08 
constraint, which prevents allocating a teacher more 
than once on the same time slot ( ),d p . The model 
respects the minimum and maximum daily limit 
of meetings of one subject (HC03) through the 
Constraint 5, which uses the auxiliary variable  edb
calculated by Equation 6 through an implication 
constraint. Equation 7 ensures that there will be 
no assignments in consecutive days (HC04), an 
important pedagogical constraint. Equations 8 and 9 
compute the first and last meeting of a given event 
per day, respectively, as proposed by Santos et al. 
(2012), and adapted by Dorneles et al. (2012). Event 
meetings in a given day must be consecutive (HC05), 
according to Equation 10, which prevents idle times 
between meetings of an event. Equation 11 models 
the constraint HC06, which demands that subjects 
of a given semester of curriculum do not overlap, 
as long as they are mandatory and have only one 
event. This constraint is essential to not impair 
the students who wish to enroll in all subjects of 
the current semester of their curriculum. Finally, 
Equation 12 computes the value of the auxiliary 
variable dpw , which contains the number of classes 
of each time slot ( ),d p . Equation 13 calculates the 
variable y, which equals the highest amount of 
auxiliary variables dpw .

The second subproblem aims to assign classrooms 
to each meeting. It needs the definition of the 
following sets and parameters:

Sets:

U : academic units, { }0,1, , 1u U U∈ = … −
R: classrooms, { }0,1, , 1r R R∈ = … −

uR : classrooms from academic unit u U∈ , uR U⊆
H: shifts, h H∈ , { }0,1  , 2H =

Parameters:

{ }0,1E D PX × × ∈ : event timetable matrix generated 
by first subproblem, where 1edpX =  if event e E∈  is 
assigned to day d D∈  and time period p P∈ ; and 

0edpX = , otherwise

RCap ∈ : classroom capacity vector, where 
rCap  indicates the capacity of students of a 

classroom r R∈ ,

ENS ∈ : event enrollment vector, where eNS  
indicates the forecast of students enrolled in 
event e E∈

{ }0,1R D PRA × × ∈ : classroom availability matrix, where 
1rdpRA =  if classroom r R∈  might be assigned 

to events at day d D∈  and time period p P∈ ; 
0rdpRA = , otherwise

Uα ∈ : utilization costs vector for academic 
unit u U∈

Second subproblem model must result in the 
decision variable values:

1,
 
0,

redpk

= 



if classroom r R∈  is assigned to event
e E∈  at day d D∈  and in period p P∈

otherwise

1,
0,um 

= 


if academic unit u U∈  is assigned to at
least one meeting

otherwise

Model constraints need the following auxiliary 
variable sets:

1,
0,redj 

= 


if classroom r R∈  is assigned to event
e E∈  at day d D∈

otherwise
1,
 
0,

tudhq

= 



 if teacher t T∈  is assigned to teach in the
 academic unit u U∈  at day d D∈  and
on shift  h H∈

otherwise
1,
0,euv 

= 


if event e E∈  has at least one meeting at
academic unit  u U∈

otherwise

The second subproblem aims to assign classrooms 
to events, according to SC01 constraint, in order to 
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reduce academic unit use. Equation 14 presents its 
objective function. Each academic unit has a penalty 
associated to its use, as expressed in Uα  vector.

	
∈

×∑ u u
u U

Minimize mα 	 (14)

Hard constraints HC09 to HC13 and soft constraint 
SC01 are expressed as follows:

           , ,
∈

= ∀ ∈ ∈ ∈∑ redp edp
r R

k X e E d D p P  	 (15)

          , , 
∈

≤ ∀ ∈ ∈ ∈∑ redp rdp
e E

k RA r R d D p P  	  (16)

            , , , ≥ ∀ ∈ ∈ ∈ ∈red redpj k r R e E d D p P  	 (17)

                    . , ,≤ ∀ ∈ ∈ ∈e red rNS j Cap e E r R d D  	 (18)

1                ,
∈

≤ ∀ ∈ ∈∑ red
r R

j e E d D  	 (19)

          , , , ,  
∈

≥ ∀ ∈ ∈ ∈ ∈ ∈∑
u

tudh red t
r R

q j e E t T u U d D h H  	(20)

1                , ,
∈

≤ ∀ ∈ ∈ ∈∑ tudh
u U

q t T d D h H  	  (21)

              , ,
∈

≥ ∀ ∈ ∈ ∈∑eu red
r R

v j e E u U d D 	 (22)

              ,≥ ∀ ∈ ∈u eum v u U e E  	 (23)

Equation 15 loads the first subproblem results to the 
second one, because its set of parameters expresses 
the decision variables of the first, guaranteeing their 
relationship. Equation 16 assures that a classroom 
receives only one meeting per slot (HC09), and 
also complies with the availability of classrooms 
(HC10). The implication Constraint 17 computes 
auxiliary variable redj , fundamental to compute 
other restrictions. Equations 18 and 19 ensure 
compliance with the constraints HC11 (classroom 
capacity) and HC12 (events with meetings in the 
same classroom on the day), respectively. Equation 20 
forces the variable tudhq  to take value ‘1’ if an event 
from teacher  t T∈  is scheduled in day d D∈ , and in 
the shift  h H∈ . The Equation 21 forces teachers to 
teach in one academic unit u U∈  on the same day 

d D∈  and shift h H∈  (HC13). It uses the variable 
tduhq  calculated from the implication Equation 20. 
Equation 22 calculates the auxiliary variable euv  
used to compute variable um  in the Equation 23. 
Variable um  indicates if an academic unit u U∈  has 
at least one classroom with a meeting assigned, thus 
allowing the evaluation of constraint SC01 on the 
Objective Function 14.

4 Computational results
The proposed model was implemented in C++ 

language using Microsoft Visual Studio 2010 
Professional IDE, and solved using IBM ILOG 
CPLEX Optimization Studio v12.5.1 with default 
configurations. Experiments were executed using 
an Intel Core i7-3520M CPU 2.9 GHz, 6GB RAM 
and Windows 8.1 Pro 64 bits operational system.

Data collected from the first semester of 2013 of 
a Brazilian federal university were used to test the 
model, and the timetables used in 2013 were compared 
with those produced by the model. The university 
has 120 curricula, 1,688 subjects, 2,674 events, 
1,083 teachers, 258 classrooms, and 48 academic 
units. Meetings were offered in five time periods in 
the morning from Monday to Saturday, six in the 
afternoon and four in the evening from Monday 
to Friday. In order to test the model’s robustness, 
time periods on Saturday were ignored. Therefore, 
timetables were generated using five days, with five 
periods in the mornings, six in the afternoons, and 
four in the evenings. Table 1 summarizes sets and 
variable sizes from the tested instance.

4.1 First subproblem results
The first subproblem model aimed to uniformly 

distribute meetings across the timetable, so that 
we could minimize classrooms demand and, 
consequently, academic units. The timetable used in 
the first semester of 2013 had an unbalanced meeting 
distribution, as shown in Figure  1a. The  greater 
meeting concentration occurred between Tuesday 
and Thursday mornings, and in the early afternoon 
periods of Monday to Thursday. Tuesday’s second 
morning period was the one with the largest number 
of meetings: 234. Therefore, the university demanded 

Table 1. Set and variable sizes.

Shift D P C S E T R U edpx redpk um

Morning 5 5 120 686 1,003 565 258 48 25,075 6,469,350 48
Afternoon 5 6 120 746 1,011 616 258 48 30,330 7,825,140 48
Evening 5 4 120 538 654 392 258 48 13,080 3,374,640 48
Total 5 15 120 1,688 2,688 1,083 258 48 201,600 52,012,800 48
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the same amount of classrooms, in order to assign all 
meetings. Figure 1b presents results obtained from 
the proposed model, which shows a more balanced 
distribution of meetings along the timetable.

The model was executed for each of the three 
shifts. Table 2 shows running time and objective 
function value for those shifts. The object function 
value indicates the greatest meeting concentration 
of all the time slots of shift.

We need to partially relax the HC03 constraint 
for the evening shift’s processing ( 2h = ), eliminating 
the minimum number of daily meetings. Despite 
the characterization as hard, this constraint is, 
practically speaking, only desirable. As most 
of the events demand a minimum of two daily 
meetings, and considering that evening shifts have 
only four periods, it is very hard to comply with 
this constraint, and also it does not allow overlaps 

Figure 1. Meeting distribution: (a) used by the educational institution, and (b) generated by the model.

Table 2. First subproblem results.

Shifts Running time  
(minutes)

Objective 
function value 

(Z1)
Morning (h = 0) 4.68 101
Afternoon (h = 1) 16.14 88
Evening (h = 2) 3.31 95

Table 3. Second subproblem results.

Shifts
Running 

time 
(minutes)

Objective 
function 

value (Z2)

Assigned 
units

Morning (h = 0) 2.13 730 0,1,2,3,4
Afternoon (h = 1) 3.82 490 0,1,2,3
Evening (h = 2) 1.27 536 0,1,2,4

between mandatory single event subjects of the same 
semester of curriculum. Therefore, processing time 
for this particular instance was short.

These results indicate that the university could 
use 101 classrooms in the worst case. It represents 
a 57% reduction in relation to the timetables used 
in the first semester of 2013 (234 classrooms in the 
most concentrated time slot).

4.2 Second subproblem results

This second phase was responsible for assigning 
rooms to each scheduled meeting generated by 
subproblem 1. Similarly, the second subproblem 
was executed in each of the three shifts. Table 3 
shows running time, objective function values, and 
assigned academic units for each shift. Table 4 shows 
the available academic units, amount of classrooms, 
and related costs. These costs were assigned in 
decreasing order of preference, so that lower cost 
units were selected first. The academic unit costs 
have been assigned so that a combination of units 
was not equal to any other. Thereby, the possibility 
that the model produces different academic unit 
sets for the different shifts is reduced. In the first 
semester of 2013 this university rented buildings 
to use for teaching. So, the use of its own academic 
units was preferred in relation to rented ones that 
would only be used if necessary.

Timetables produced by the second subproblem 
resulted in five assigned academic units that, 
together, have 107 classrooms (sufficient amount 
to accommodate the 101 simultaneous meetings 
in the most concentrated time slot). Table 4 shows 
those academic units marked with an asterisk (*), 
together they have a combined cost of 730.
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5 Conclusions
This research proposed a model for the University 

Course Timetabling Problem (UCTP), aiming 
to support managers in creating timetables, and 
to reduce costs associated with physical space 
utilization. The model uses linear programming 
techniques.

Given the size of the problem, and consequently the 
impossibility to solve it in reasonable computational 
time with an optimization package, it was divided 
in two subproblems. In the first, weekly timetables 
were built disregarding classrooms, aiming to 
uniformly distribute meetings among the entire 
timetable. In the second, classrooms were assigned 
to the meetings of every event, aiming to reduce 
costs associated with academic units. Additionally, 
we processed each subproblem separately for the 
three shifts.

This work shows that it is possible to create 
feasible timetables that comply with pedagogical 
requirements, and reduce the classroom demands, 
decreasing costs. Besides creating feasible timetables, 
these results can support planning actions for utilizing 
available space in a university to help better respond 
to future demands that the educational institution 
may require.

We noticed that a more balanced distribution of 
meetings along the weekly timetable leads to classroom 
demand reduction. In other words, less concentrated 
time slots contribute to lower classroom demand. 
Therefore, we reached the main objective of this 
research, which is to create feasible timetables, and 

optimize the use of physical spaces. This reduction 
in classroom demand allowed the managers to avoid 
rented buildings.

Another important contribution of this study is 
developing a division strategy for the problem in 
two phases: timetable construction in the first, and 
classroom assignment in the second. As  shown, 
timetabling problems have large amounts of 
variables and constraints, which, depending on 
the data instance size, make the solution searches 
rather difficult. Thereby, resource assignment in 
separate phases – time in the first, and space in the 
second – is a promising strategy to solve big data 
instances to be used in other methods.

It was not possible to obtain information on the 
teachers schedule restrictions, so this study assumed 
that each teacher was available on all periods of 
the shift for all their events. Similarly we could 
not obtain information referring to the usage of 
physical resources for postgraduation courses which 
obviously require classrooms for their activities. Thus 
one could suppose that if the model was executed 
with all the data it would take longer processing 
time, and the final results would demand a higher 
amount of classrooms and units. However, taking 
into account the efficiency of classroom distribution 
was 57%, there is a margin so large that, even if 
these constraints were considered, the gains would 
remain high.

For future research, we consider the possibility 
of including the preferences of both teachers and 
course managers for units, classrooms, weekdays, and 

Table 4. Academic unit data.

Unit Cost # of 
classrooms Unit Cost # of 

classrooms Unit Cost # of 
classrooms

*0 50 43 16 714 4 32 5,490 8
*1 99 24 17 747 3 33 5,585 6
*2 147 11 18 779 3 34 5,679 5
*3 194 11 19 810 3 35 5,772 5
*4 240 18 20 840 3 36 5,864 3
5 285 12 21 869 2 37 5,955 2
6 329 8 22 897 2 38 6,045 2
7 372 7 23 924 2 39 6,134 1
8 414 7 24 950 2 40 6,222 1
9 455 6 25 975 2 41 6,309 1
10 495 6 26 999 2 42 6,395 1
11 534 5 27 5,000 2 43 6,480 1
12 572 4 28 5,100 1 44 6,564 1
13 609 4 29 5,199 1 45 6,647 1
14 645 4 30 5,297 1 46 6,729 1
15 680 4 31 5,394 11 47 6,810 1

*Necessary and sufficient units to allocate the meetings, according to the model.
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periods in the model. We would also suggest using 
heuristics methods for resolution of the full model 
(before subproblem division), and of the complete 
instance (before shift division), in a manner that 
better solutions could be obtained for the instance 
presented in this paper as well as for other possibly 
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