Gest. Prod., Sao Carlos, v. 26, n. 4, 3421, 2019 Original Article
https:/ /doi.org/10.1590/0104-530X3241-19
[ ev |

Optimization in timetabling in schools using a
mathematical model, local search and lterated
Local Search procedures

GESIAO
PRODUCAO

.. ~ ~ .. , ISSN 0104-530X (Print)
Otimizacao na geracao de grade horaria escolar através de um ISSN 1806-9649 (Online)

modelo matematico e dos procedimentos busca local e Iterated
Local Search

Pedro Rochavetz de Lara Andrade’
Maria Teresinha Arns Steiner?
Anderson Roges Teixeira Goes®

How to cite: Andrade, P. R. L., Steiner, M. T. A., & Goées, A. R. T. (2019). Optimization in timetabling in schools
using a mathematical model, local search and Iterated Local Search procedures. Gestdo & Produgdo, 26(4), e3421.
https://doi.org/10.1590/0104-530X3241-19

Abstract: This paper addresses the school timetabling problem, which consists of defining the date and time in which
classes will be given by teachers in educational institutions. For this purpose, a tool that uses Operational Research
(OR) techniques was developed, focused on generating and optimizing Elementary and High School timetables,
taking into account teachers’ preferences for certain days or for sequenced (twinned) classes. Conductive to solving
the problem, a Non Linear Binary Integer Programming mathematical model (NLBIP) and Local Search (LS) and
Iterated Local Search (ILS) procedures were comparatively applied. A real problem with 14 timetables of public
schools in the city of Araucaria (in Parand State, Brazil) was analyzed. The results indicate that the computational
time required by the mathematical model is feasible for the problems in question. The ILS technique has the potential
for testing larger scale problems, as it presents a dispersion of 3.5% to 7.7% relative to the optimal solution (obtained
by the NLBIP) and a computational time that is 15 to 338 times faster.

Keywords: Timetabling; Iterated Local Search; Local search; Non-Linear Binary Integer Programming.

Resumo: Este artigo aborda o problema de otimizagdo na geragdo da grade horaria escolar. Tal problema consiste
em definir os dias e horarios das disciplinas a serem ministradas por cada um dos professores de institui¢oes de
ensino. Para isto foi desenvolvida uma ferramenta que faz uso de técnicas de Pesquisa Operacional (PO), com foco
na geragdo e otimizagdo de grade horaria de instituicées de Ensino Fundamental, considerando as preferéncias
dos professores, tais como, preferéncias por dias de aula e por aulas em sequéncia (geminadas). Para a resolugdo
do problema foi utilizado um modelo matematico de Programagdo Ndo Linear Inteira Binaria (PNLIB) e os
procedimentos Busca Local (BL) e Iterated Local Search (ILS), comparativamente. Foi aqui analisado um problema
real com 14 grades horarias de escolas publicas da cidade de Araucaria, PR. Os resultados indicam que o tempo
computacional demandado pelo modelo matemadtico é viavel para os problemas analisados. A técnica ILS possui
potencial para testes em problemas de maior porte, ja que apresenta uma dispersdo de 3,5% a 7,7% em relacdo a
solugdo otima (obtida pelo PNLIB), com tempo computacional de 15 a 338 vezes mais rapido.
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1 Introduction

The need to optimize the use of every type of
resource is as much a requirement in teaching
institutions as in any other type of institution. Among
the resources of schools that can be optimized are
the classrooms and the time available for teachers
to define the times of their commitments, in other
words, their timetable.

Timetabling involves a number of variables,
including preferences for times, days of teaching
(or not teaching), twinned classes (or not), daily
workload of subjects and, finally, minimization of
school days. Therefore, manual timetabling is often
highly complex, and merely achieving a feasible
solution is considered satisfactory, as is the case
in many schools nowadays. Thus, the creation of
a system capable of automating timetabling allows
schools to prepare their timetables more quickly and
with better quality.

Several works on this topic, some of which will
be discussed in more detail later, may be cited,
including Saviniec et al. (2018), Fonseca et al. (2017),
Soria-Alcaraz et al. (2014), Andrade et al. (2012),
Goes et al. (2010), Sousa et al. (2008), Cooper &
Kingston (1995), Souza et al. (2001) and Gotlieb (1963).

In this work, the development of a computer program
is presented that makes use of Operational Research
(OR) techniques, created to produce timetables with
maximum optimization for elementary schools. It is
based on three techniques: a mathematical model of
Non Linear Binary Integer Programming (NLBIP);
the Local Search (LS) heuristic; and the Iterated Local
Search (ILS) meta-heuristic. As ILS contains LS, the
gain that it provides in relation to the application
of isolated (pure) local search is analyzed, as is the
dispersion of techniques for the optimal solution.
To illustrate the use of this tool better, it was applied
to 14 timetables at three schools in the municipality
of Araucaria in Parana State, Brazil.

This article is organized into five section, including
this introduction. In Section 2, the timetabling problem
and the 14 case studies analyzed are described.
In Section 3, the methodology is described, i.e., how
each technique (NLBIP; LS; ILS) was applied to the
problem. The results are presented in Section 4, and
the conclusions in Section 5.

2 Description of the problem

Timetabling is a Combinatorial Optimization
problem, classified as NP-Complete (Cooper &
Kingston, 1995). According to Babaei et al. (2015),
the computational processing time required to
generate a timetable using exact methods increases
exponentially as the number of students increases.
This problem involves some factors that must be
respected for the timetable to be considered feasible
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(“hard constraints”). Of these, the following may
be mentioned: 1) a class cannot have more than one
teacher at the same time; 2) a teacher cannot teach
more than one class at the same time; 3) groups of
students must have a fully occupied weekly timetable;
4) ateacher’s weekly workload with each class must
be equal to the sum of the workload of subjects that
he teaches to this class.

Other factors are considered in different timetabling
problems, but only need to be complied with as far as
is possible, so-called “soft” constraints (Silva et al.,
2004). They are: 1) complying with teachers’ preferences
for twinned classes (or not); 2) complying with the
preferences of each teacher regarding the days when
they teach; 3) allocating the minimum possible number
of school days to each teacher.

2.1 Case study of schools in Araucaria,
Parana State

To gauge the efficiency of the proposed techniques
when it comes to optimizing timetabling, the
techniques were applied to 14 different scenarios
of public schools in the municipality of Araucaria,
Parana State, which differ from one another only in
the number of classes and teachers. Table 1, below,
illustrates for one of these scenarios the subjects
taught by teachers to each class, as well as their
workload and preferences in terms of their day off
and day for class preparation. A day off is the day the
teacher chooses not to have any commitments at the
school, and the day for class preparation is a day the
teacher sets aside for preparing lessons. The remaining
13 scenarios, containing all the data, are available
and illustrated in Andrade (2014).

As highlighted in Line 9 of Table 1, the first
geography teacher (GEOTEACH]1) teaches the three
seventh grade classes (7D, 7E and 7F) and the three
ninth grade classes (9D, 9E and 9F). Furthermore,
his day off is Monday and his class preparation
activities are on Fridays. Finally, his workload in
the classroom is 15 hours of teaching. It should be
noted that the sixth and eighth grade classes are
taught by the second geography teacher. It should
be highlighted that the names of the teachers are not
shown to protect their identities.

In the teaching network associated with Table 1, the
teachers have a workload of up to 20 hours per week
(up to 15 hours in the classroom and 5 hours for class
preparation). As each class lasts one hour, and teachers
can work up to five hours per day, their workload in
the classroom should preferably be distributed over
a period of up to 3 days, leaving two days without
classes, one for class preparation and one as their day
off. Thus, one of the aims in generating timetables
for this problem is to minimize the number of days
that teachers spend in the classroom.



Gest. Prod., Sao Carlos, v. 26, n. 4, 3421, 2019

Optimization in timetabling in schools...

“(#107) opeIpUY :201N08

Sl vC S X X X asongnyrog pyoBaIIIOg
Sl v 9 X X X asongnyiog €O 110d
Sl v o X X X asangniiog 7yoea10d
cl eC 9 X X X oson3miog 1yoBa10d
Sl S € X X X SOIIRWAYIBIA PUOBSLYIBIA
Sl S 9 X X X SOIIRWAIBIA CUOBSIBIA
Sl S 9 X X X SONBWAYIRN TYoRIL YR
cl S € X X X SONBWAYIRIA [YoBIL YIBIA
01 vC N4 X X X X X ysi3uyg ZyoearSuyg
vl ol of X X X X X X X ystsug [yoea] Sug
6 o S X X X K103STH CYoOBQISTH
cl o S X X X X K101STH TUOBALISTH
Sl o 9 X X X X X K101STH [YoBdIISIH
S1 9 S X X X X X X Kyder3oon ZUOBAL090)
SI 9 4 X X X X X X Aydeagoan [YI83L095)

9 € o X X uoneonpd [eo1sAyd  €Yoedl pHAYd
Sl 3 S X X X X X uoneonpy [BOISAYJ Yo pIAUd
SI o€ oC X X X X X uoneonpy [edIsAyd  [YOrILPHAYJ

9 9 o X X SIOUDIS I pLEIRGIN
Sl 9 o X X X X X SIOUSIOS CUIBILIdS
Sl 9 € X X X X X SAJUAIDS [yoeaL 19§
01 o S X X X X X ny TUYIBRIMY
14! o € X X X X X X X uy [qoed1 1y

SISSE[D uonesedarg
30 JoquInN - JoLeq J6 46  d6 A8 48 as AL L a. A9 q9 a9 »alqng J9YdBIY,

'] W[qoId — $99u1dja1d J19Y) pue sIoyoed) oy} Aq Jysne; s102[(qng *1 dqeL,

3/23



Andrade, P. R. L. et al.

Gest. Prod., Sao Carlos, v. 26, n. 4, 3421, 2019

In this problem, no teacher exceeded the limit of
fifteen hours of teaching per week (last column in
Table 1). However, this did not occur in all 14 case
studies, as in 11 problems there is at least one teacher
with a heavier workload, exceeding 15 hours of
teaching per week. Of these, in eight problems,
there is at least one teacher with over 20 hours of
teaching per week. In these cases, depending on the
workload, the teacher will not have a day off or a
day for preparing classes. However, he will be paid
more for working overtime.

Considering the specific features of the teaching
network in question and current legislation, other
hard constraints were added: 1) every subject must
be taught by only one teacher; 2) each group of
students cannot have more than two classes on
the same subject per day, whether twinned or not;
3) specific subjects, selected by the user cannot have
more than 50% of their workload concentrated in a
single day. The latter constraint is intended to make
specific subjects with a light workload (2 or 3 hours
per week) be taught at a maximum of one hour per
day, when this is the preference.

Table 2. Selected articles with timetabling.

3 Correlated works

Here, an analysis will be presented of some
correlated works in the literature, in chronological
order, which are summarized in Table 2. Two Linear
Binary Integer Programming (LBIP) mathematical
models, in addition to a Taboo Search (TS) associated
with a Random Local Search (RLS) were presented
in the study conducted by Sousa et al. (2008) to
generate school timetables. The approaches are
compared in real cases of Brazilian state schools,
and the processing time of the exact techniques was
limited to 6 hours. The authors conclude that the three
techniques had a similar performance with regard to
small problems. However, for large problems, the
meta-heuristics outperformed the exact approach with
a lower computational time. The school timetabling
problem was solved by Soria-Alcaraz et al. (2014)
through a learning hyper-heuristic. The proposed
technique is based on an ILS procedure with autonomy
to combine diverse statistical and dynamic operators.
The approach was tested on 44 problems of the
International Timetabling Competition (ITC), showing

Researchers (Year)

Problem Addressed

Techniques Used

Sousa et al. (2008)

Soria-Alcaraz et al. (2014)

Babaei et al. (2015)

Lewis & Thompson (2015)

Veenstra & Vis (2016)

Jardim et al. (2016)

Bucco et al. (2017)
Fonseca et al. (2017)

Ghiani et al. (2017)

Lindahl et al. (2018)

Liu & Dessouky (2019)

Saviniec et al. (2018)

School timetabling.
School timetabling.
Timetabling and classroom

distribution in universities.

University timetabling.

Reprogramming school timetabling.

Timetabling for a department of the
UFF

University timetabling.

School timetabling.

Course timetabling for remedial
education in high schools.
University timetabling.

Railway timetabling.

School timetabling.

TS with RLS and two LBIP
mathematical models.

ILS-based hyper-heuristics.

Multiple agents based on hybrid
techniques with graph coloring and
LS.

Own meta-heuristic with operators to
increase solution space connectivity.

ILP mathematical model; Simple
general rule; and Heuristic.

ILS meta-heuristic.

MILP model.

ILP model with new cutting
algorithms.

ILP mathematical model; and
Heuristic.

e-constraint algorithm applied to
bi-objective MILP mathematical
models.

B&B with hybrid heuristic in the
solving of a mathematical model.

Parallel LS algorithms, ILS, TS, SA.

B&B = Branch-and-Bound; LS = Local Search; RLS = Random Local Search; TS = Taboo Search; ILS = Iterated Local Search;
ILP = Integer Linear Programming; LBIP = Linear Binary Integer Programming; MILP = Mixed Integer Linear Programming;
SA = Simulated Annealing. Source: The authors (2019).
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that the dynamic operators exceed the statistical ones,
as they are competitive with other techniques applied
in the literature, since this approach generated the
best-known solution for one of the cases.

Babaei et al. (2015) introduced a new approach
to solving the timetabling problem in universities, a
multiple agent technique based on multiple hybrid
meta-heuristics with LS graph coloring. Tests were
performed to compare different techniques in instances
from the literature with diverse characteristics.
The authors conclude that exact approaches do not
have good efficiency in solving this problem because
of the growing complexity with a higher number of
students. Furthermore, they highlight the advantages
of using multi-agent approaches, such as greater
independence in the allocation of classes between
different departments of the university. Lewis &
Thompson (2015) proposed a two-stage meta-heuristic
for the university timetabling problem. The first stage
is intended to achieve a feasible solution without
considering soft constraints. The second stage,
considering hard and soft constraints, seeks to improve
the solution by increasing solution space connectivity
using a neighborhood operator. The approach was
tested in instances of the ITC 2007, and the authors
found that the quality of the solution is generally
better with increased solution space connectivity,
as the technique generated better results than the
methods in the literature for most of the instances
that were analyzed.

Veenstra & Vis (2016) analyzed the performance
of three proposed techniques to reprogram a school
timetable: an exact method of Integer Linear
Programming (ILP) method, a simple general rule
and a heuristic technique. The techniques were tested
with the data of five schools in the Netherlands in
two scenarios (minor or major alterations to the
timetable). The results show that, for minor alterations,
the heuristic achieved the optimal solution in 50%
of the tests. When major alterations were required,
the ILP method could not find the optimal solution
in the established computational time (12 hours).
Jardim et al. (2016) solved and optimized the
timetabling problem of a department of the Federal
Fluminense University (UFF) using the ILS heuristic,
which had better results than those of the tool used
by the department at the time when the study took
place. In the article written by Bucco et al. (2017), a
Mixed Integer Linear programming (MILP) model
was applied to the timetabling problem of university
courses, focusing on optimizing the use of classrooms.
To enable the processing of the proposed approach,
the problem was divided into two sub-problems.
The first addressed the generation of the timetable,
while the second focused on classroom distribution.
Tests were conducted with real data from a Brazilian
university, demonstrating that the proposed approach
could reduce the number of classrooms required.

Fonseca et al. (2017) studied ILP techniques
to generate school timetables, proposing cutting
techniques and new formulations for the problem.
The authors achieved notable results in the solving
of diverse instances, including the ITC 2011, as the
optimal solution, hitherto unknown, was obtained
for two instances. Furthermore, the approach found
the best-known solution for some instances, and
for the linear relaxation of 14 instances, it found
the best upper and lower bounds. The problem
of course timetabling for remedial education was
analyzed by Ghiani et al. (2017), deciding which
courses should be offered and at what time. An ILP
mathematical model and a heuristic technique were
compared based on randomly generated instances.
The authors concluded that the heuristic achieves a
balance between execution time and solution quality.

The timetabling and classroom distribution problem
in universities was studied by Lindahl et al. (2018),
analyzing the relationship between three factors
that influenced the solution: teaching period; room
distribution; and quality. The authors proposed three
bi-objective MILP models and an algorithm to solve
them called the e-constraint method. The models and
solution method were evaluated based on the solution
of the instances of the ITC 2007. The authors positively
evaluated the techniques, as they are applicable to
almost all the instances, enabling an analysis of the
relationship between each of the factors and their
influence on solution quality. Liu & Dessouky (2019)
used a mathematical model to optimize the timetable
of a passenger and cargo railway network. The authors
proposed a solution based on Branch-and-Bound (B&B)
with hybrid heuristic procedures to solve the nodes
in the search tree and to return to a feasible solution.
Computational experiments with real data show the
feasibility of the proposed technique, outdoing other
heuristics in the literature. Saviniec et al. (2018)
solved the school timetabling problem using the
parallel processing of LS heuristics with an exchange
of information between agents. The solutions were
compared with the solution of the instances by the ILS
meta-heuristics, TS and Simulated Annealing (SA), in
addition to techniques from the literature. The most
efficient parallel algorithm was considered promising,
as it achieved good quality solutions consistently,
outperforming the state-of-the-art algorithms in the
literature in two variants of the problem.

4 Description of techniques applied
to the timetabling problem

In this section, the techniques applied to the
14 problems described in Section 2.1 are described:
the NLBIP mathematical model and the ILS and LS
procedures.
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4.1 Mathematical model

In the proposed model, the aim is to maximize
the satisfaction of teachers’ preferences for the days
that they teach and for twinned classes, as well as
to minimize the number of days that each teacher
gives classes. The terms used in the modeling will
now be defined:

Indexes:

t=1, ..., T: Tis the total number of teachers;

4, = 'y t' e t',0 2, 18 @ subgroup of ¢, with ¢,
representing the ¢ index of the last teaching that does
not have a preference for twinned classes;

Ly = 1" "y ey 1", 2, 18 @ subgroup of ¢, with ¢,
representing the ¢ index of the last teacher with a
preference for twinned classes;

g=1, ..., G: G is the number of groups;

d=1, ..., D: D is the number of school days in
a week;

h=1, ..., H: His the number of teaching periods
in a school day;

Parameters:

CD, 4: Coefficient of preference of the teacher ¢
to teach each day d,

cr;: Coefficient of the hierarchy of the teacher ¢;

CT, : Coefficient of the hierarchy of a teacher with
preference for twinned classes;

CT, : Coefficient of the hierarchy of a teacher
without a preference for twinned classes;

pMm,: Minimum number of day of teaching that
teacher # may have;

K, ;- Workload of the subject that the teacher ¢
teaches to the group g;

Variables:

X, ¢4 Binary variable representing whether a
teacher ¢ teaches the group g on day d, time 4, or not;

D: Penalty in the case of a teacher having more
days of teaching than the minimum;

pp,: Number of days of teaching designated to
the teacher ¢.

W Total coefficient of twinned classes;

W', : Coefficient of satisfaction of preferences for
not héving twinned classes;

", : Coefficient of satisfaction of preferences for
twinned classes;

Thus, the Objective Function (OF) is represented
by Equation 1, below.

MaxZ(X)= CD, g CT, Xy g |-D+W (1)

M=~
oﬁMQ
Mo
M=

t=1g=ld=1h

1

To define the values of the coefficient CD, ,, the day
off has a value of 1; the class preparation day “4”’; and
for the other days the value is “10”. Meanwhile, the
hierarchy of teachers represented by c7,, is defined by
the decision maker using a list of teachers, with the
first teachers on the list being those higher up in the
hierarchy, i.e., more likely to have their preferences
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satisfied, while those at the bottom of the list have
fewer chances of having their preferences met.
Therefore, the value of the coefficient c7; is “10” for
the teacher lowest down in the hierarchy. The next
teacher has a weight equal to “11”, and so forth, up
to the first teacher in the hierarchy, who will have
the highest value for this coefficient.

D is calculated based on the workload allocated
to each teacher. The minimum number of school
days is calculated: up to 5 hours a week (inclusive),
the minimum is 1 day of teaching; between 6 and
10 hours a week (inclusive), the minimum is 2 days;
between 11 and 15 hours a week (inclusive), 3 days;
between 16 and 20 hours a week (inclusive), 4 days;
and from 21 hours a week (inclusive), the minimum is
5 days of teaching. Thus, the difference is calculated
between the minimum number of teaching days and
the days allocated, as shown in Equation 2.

D:§10 . CT, (DD, -DM,) ()
t=1

The multiplication of the number of days over by
the weight of the teachers’ hierarchy prioritizes the
quality of the timetable of teachers higher up in the
hierarchy and makes the value of D adapt to the size
of each problem, given that c7; is also a function of
the number of teachers in the problem.

The coefficient ¥ is defined by the sum of the
coefficients ', and W', (Equations 3, 4 and 5).

r, ",

W= ZIW it ZIW " €)
n = tw =

G p ([(H-1 I
W' =2CL . % {H 2 X edi ~Xz,,,g,d,h+1]—*}~(—2)}, vi, (4)

e=1 " d=1|[\n=1 2

G D ([(H-1 ]
Wﬂzu = ZCTt“ . Z H Z th,g,d,h 'X[‘,,g,d,h+1jiz:|‘(2) s VIW (5)
d=1 h=1

g=I -

The product between a variable and the variable of
the following period, as shown in Equations 4 and 5,
despite making the model non-linear, in this case
does not significantly affect the complexity of the
model. As the variables are binaries, the result will
also be 0 or 1. The product results in 0 when the
teacher does not have twinned classes and in 1 when
he does. Therefore, in Equation 4, 1 is the result for
each day that the teacher does not have twinned
classes (in accordance with his preference), and the
result is “-1” if he is allocated to a twinned class on
the day. As the difference between Equations 4 and 5
is only a sign, the results will be opposites. Thus, it
can be said that in both cases, positive results are
achieved on the days when preferences are satisfied
and negative ones on the days when they are not.
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ForW', and W', , the sum of each teacher is multiplied
by the hienrarchy coefficient. Thus, the choices of the
first teachers are given priority.

The constraints developed in the mathematical
models are presented below in Equations 6 to 10.

T

XX gan=1 Vg Vd,Vh ©)
(=1

G

S X, gan <1, V,Yd,Vh e
g=1

D H

X XX gan=Ki g, V1,V ®)
d=1h=1

H

th,g,d,h <2, Vt,Vg,vd (9)
h=1
X, g =10:1} 10

The constraints in (6) ensure that all class times
are filled and that for each period only one teacher
will teach each group. The constraints in (7) prevent
teachers from teaching more than one group in the
same teaching period. The constraints in (8) guarantee
that one teacher will teach the whole workload of
the subject to which he was allocated for each group.
The constraints in (9) prevent groups from having
more than two classes in the same subject per day.
Equation 10 guarantees that the variables X, , , , are
binary.

All the hard constraints presented in Sections 2 and 2.1
are considered in Constraints (6) to (9) above, with
the exception of hard constraint 3, which is optional.
This constraint alters Equation 9: subjects chosen
come to have at most 1 lesson per day rather than 2,
like all the other subjects.

4.2 Local search and Iterated Local Search
procedures

For a better visualization of the techniques that will
be presented, LS and ILS, a fictitious problem was
created with only 3 groups of students (6A, 7A and 8A),
5 teachers (of Portuguese, Mathematics, Science,
History and Geography), 3 days of classes per week
and 3 teaching periods per day.

The aim of the LS, starting form an initial
solution, is to find the best solution for a restricted
search area (Resende & Silva, 2013). According to
Guersola (2013), Penna et al. (2013) and Ribeiro et al.
(2008), the ILS, starting from an initial solution, first
applies a perturbation to this solution so that it will
be displaced to another search area and then the LS
procedure will be applied, seeking the best solution
in this area. Analyzing several different search areas,
the ILS procedure increases the chances of finding
good quality solutions (Lourengo et al., 2002).

The heuristic created to generate the initial solution
used as a base for LS and ILS will now be explained.

4.2.1 Generation of the initial solution

The heuristic for generating the initial solution is
based on an order among the teachers. Thus, all the
classes for one teacher are allocated before moving
on to the next. To choose the next teacher for the
allocation of the teaching period, a draw is made.
In accordance with heuristic logic, the next teacher
on the list always has an 80% chance of being chosen,
and so forth, until when the last teacher is reached,
he has a 100% chance of being chosen.

This percentage choice criterion was defined so
that whenever the heuristic is applied to a problem,
there is a high probability of generating different
initial solutions. For each of the 14 problems solved,
10 initial solutions were generated, and to each of
these the LS and ILS techniques were applied. Thus,
the chances of achieving a better quality solution
increase in comparison with a method without a
random factor, in other words, that always generates
the same initial solution.

During the allocation of subjects, the tool attempts
to designate subjects to the preferred teaching times
of the teacher, which is more likely to be guaranteed
in the first allocations. Thus, the last teachers to be
allocated generally have few of their preferences
satisfied.

After all the teachers have been chosen, if subjects
remain unallocated due to conflicting times between
teachers and groups, there is an adjustment stage.
The lacking allocations are detected along with the
groups of students in question. The times of some
subjects already allocated to these groups are then
altered to make a new attempt at allocating subjects
to free teaching periods and finalize the process with
a feasible initial solution.

4.2.2 Local search applied to the problem

The LS, in the proposed problem, was structured in
accordance with the following sequence. At each LS
application, the procedure shown below is repeated
until it is no longer capable of improving the solution.

1. A teacher is selected with more teaching days
than the minimum (Teacher 1);

2. A subject allocated to Teacher 1’s day off or
class preparation day is found (Subject 1);

3. Afree teaching period of Teacher 1 is found, on
days when he has to teach (Teaching Period 1);
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4. The teacher that teaches in Teaching Period 1
is found so that the group of students can be
taught Subject 1 (Teacher 2);

5. If Teacher 2 is available for the time of Subject
1, he exchanges his subject with Subject 1. End
of process;

5.1. Otherwise, if there is an unanalyzed option
for Teaching Time 1, then return to Step 3;

5.2. Otherwise, if there is an unanalyzed option
for Subject 1, then return to Step 2;

5.3. Otherwise, if there is an unanalyzed option
for Teacher 1, then return to Step 1;

5.4. Otherwise, end of process.

Table 3 illustrates the Local Search process.

It should be noted that in Table 3, Teacher 1 is
the Portuguese teacher, as he has the opportunity
to improve his timetable. Subject 1 is Portuguese
for Class 8A, teaching time 3, day 3, as this subject
is in the teaching time to be exchanged. Teaching
Time 1 is the third of Day 2, as it is the teaching
period available on the teaching days of Teacher 1.
Teacher 2 is the History teacher, as he teaches the
first teaching period to Group 8A.

The greatest chance of the LS not succeeding
would occur if the history teacher were not available
for the third period on Day 3, as this would preclude
the improvement. In this case, if possible, other free

Table 3. LS applied to Fictitious problem.

periods of the Portuguese teacher within his preference
would be analyzed.

It is important to highlight that at each exchange no
hard constraints are violated and that the improvement
to the LS only occurs if, in the example provided, the
history teacher already had at least one class on Day
3. This prevents his timetable from being affected
to improve that of the Portuguese teacher, which
would not necessarily mean a real improvement
to the problem. Alterations that do not make a real
improvement may be important when it comes to
increasing the chances for improvement in future
changes. Therefore, in the perturbation of the ILS
explained below, within a limit, declines in solution
quality are accepted.

4.2.3 Iterated Local Search applied to the
problem

ILS first applies a perturbation to the solution, as
follows: A teacher with an opportunity to improve
his timetable is chosen. A subject is then selected
that he teaches on the days that he does not prefer
(Subject 1). The time of this subject (Perturbation
Time) will be changed to a new time (Destined Time),
decided at random within the teacher’s preferences.

For this change, two aspects are analyzed: the
time of the group of students who are taught this
subject (Group 1), and their teacher (Teacher 1).
These analyses are conducted in order to return to
a feasible solution at the end of the perturbation.

Math Teacher 1° 2° 3° 6A 1° 2° 3°
1° 8A 6A 1° Sciences History Mathematics
2° 8A 6A 2° Portuguese Portuguese ~ Mathematics
3° TA 7A 3° Geography Geography Sciences
Port Teacher 1° 2° 3¢ TA 1° 2° 3¢
1° 7A TA 1° Portuguese Portuguese History
2° 6A 6A 2° Geography History Sciences
3° 8A # $8A 3° Sciences Mathematics Mathematics
Sci Teacher 1° 2° 3¢ 8A 1° 2° 3¢
1° 6A 8A 1° Geography ~ Mathematics Sciences
2° 7A 2° Mathematics ~ Geography History
3° TA 6A 3° Portuguese History Portuguese
Hist Teacher 1° 2° 3°
1° 6A TA
2° 7A 8A
3° #8A $
Geo Teacher 1° 2° 3°
1° 8A
2° TA 8A
3° 6A 6A

Symbols # and $ help to identify that Portuguese and History teachers can change their classes as explained in the text.

Source: Andrade (2014).
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The changes required in the timetable of Group 1
are explained below:

1. The teacher of Group 1 at the Destined Time
is found (Teacher 2);

2. If Teacher 2 is free at perturbation time, his
subject changes times with Subject 1. Then,
end of process;

2.1. Otherwise, free teaching periods of Teacher
2 are found (Free Periods);

3. Teachers of Group 1 are found in Free Periods
(Teachers 3);

4. If one of Teachers 3 is free at Perturbation
Time, the three times are exchanged: from
Teacher 1 to 2, from Teacher 2 to Teacher 3, who
changes with Teacher 1. Then, end of process;

4.1. Otherwise, a teacher of Group 1 is found who
is free at Perturbation Time (Teacher 4);

5. If no teacher is free at Perturbation Time, all the
draws are performed again. Then, return to Step 1;

Table 4. Changes in the group’s timetable — ILS (1).

5.1. If one of the Teachers 3 is free at the class
period of Teacher 4, the four times are
exchanged: from Teacher 1 to Teacher 2,
from Teacher 2 to 3, who exchanges with
Teacher 4, who exchanges with Teacher 1.
Then, end of process;

5.2. Otherwise, all the draws are made again.
Then, return to Step 1. The following tables
will enable a better understanding of the
steps involved in this process.

In Table 4, below, Subject 1 is at Perturbation
Time, and Subject 2 at the Destined Time. In other
words, the aim is to change Subject 1 to the time of
Subject 2. If Teacher 2 is free at the time of Subject 1,
the two subject are exchanged and the teaching period
for Group 1 is solved.

In Table 5, Teacher 2’s free periods have been
filled and Teachers 3’ and 3” teach Group 1 at these
times. If one of them is free at the time of Subject 1,
the three subjects are exchanged: Subject 1 with 2,
then 2 with Teacher 3 (3’ or 3”), who in turn changes
with Subject 1.

Ifitis not possible to make the exchange described,
the process continues with a teacher who is free at the

Group 1 1° 2° 3°

10
2° Subject 2
3° Subject 1

Teacher 2 1° 2° 3¢
1°
2° Group 1
30

Source: Andrade (2014).
Table 5. Changes in the times of the group — ILS (2).
Group 1 1° 2° 3°

1° Subject 3”
2° Subject 3’ Subject 2
3° Subject 1

Teacher 2 1° 2° 3°
10
2° Group 1
3° Group X

Teacher 3’ 1° 2° 3°
10
2° Group 1
30

Teacher 3” 1° 2° 3°
1° Group 1
90
30

Source: Andrade (2014).
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time of Subject 1 (Teacher 4). If no teacher is free at
this time, the draws are made again and the process
reinitiated. It is then determined whether one of the
Teachers 3° and 3” is free at the teaching period of
Teacher 4. If no one is free, the draws are made again
and the process reinitiated. In Table 6, Teacher 3’
is available at the time of Teacher 4. Therefore,
the four subjects are exchanged: Subject 1 with 2,
Subject 2 with Subject 3°, which is exchanged with
Subject 4, which changes with Subject 1. Therefore,
the timetable of Group 1 is resolved.

At the time of Teacher 1, the time of Subject 1 will
change to the Destined Time. The changes necessary
to return to a feasible solution now follow:

1. If Teacher 1 is free at the Destined Time, no
change is necessary. Thus, end of process;

1.1. Otherwise, his free periods are found (Free
Periods), and the group that he teaches at
the Destined Time (Group 2);

2. The teachers of Group 2 in the Free Periods are
found (Teachers 2);

3. Ifone of Teachers 2 is free at the Destined Time,
the subjects of Teachers 1 and 2 are exchanged.
Then, end of process;

Table 6. Changes in the timetable of the group — ILS (3).

3.1. Otherwise, a teacher of Group 2 is found
who is free at the Destined Time (Teacher 3);

4. If no teacher is free at the Destined Time, the
draws are remade and the process returns to the
analysis of the time of Group 1;

4.1.1f one of Teachers 2 is free at the time of
Teacher 3’s class, the three subjects are
exchanged: from Teacher 1 to Teacher 2,
from Teacher 2 to Teacher 3, who changes
with Teacher 1. Then, end of process;

4.2. Otherwise, the draws are redone and the
process return s to analyzing the timetable
of Group 1. The following tables enable a
better understanding of the steps described.

In the example, the aim of the perturbation is to
allocate the subject of Group 1 to the Destined Time
(Table 7). If Teacher 1 is free at this time, the subject
of Group 1 is changed to the Destined Time, and the
process ends.

If Teacher 1 teaches another group at the destined
time (Group 2), the teachers who teach Group 2 in
Teacher 1’s free periods are found (as shown in Table 8,
Teachers 2’ and 2”). If one of these teachers is free at
the time of Subject 1, his subject is exchanged with
Subject 1 and the timetable of Teacher 1 is solved.

Group 1 1° 2° 3°
1° Subject 4
2° Subject 3’ Subject 2
3° Subject 1
Teacher 2 1° 2° 3°
I° ./ |
2° I - Gowpl
3 _ Gowx 0000000000000
Teacher 3’ 1° 2° 3°
10
20
30
Teacher 4 1° 2° 3°
10
0
30

Source: Andrade (2014).

Table 7. Alteration of teacher’s timetable — ILS (1).

Teacher 1 1° 2° 3°
1o
2° Destined T.
3° Group 1

Source: Andrade (2014).
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Ifitis not possible to make the exchange described
above, the process continues. A teacher (Teacher 3)
of Group 2 who is free on the day and at the time of
Subject 1 is found. If no teacher is available, the draws
are made again and the entire process is reinitiated.
Finally, a teacher is found between Teachers 2’ and 27,
who is free at the time of Teacher 3’s class. If neither
of these teachers is available, the draws are made
again and the process reinitiated. Table 9 shows
that Teacher 2’ is available, so the three subjects are
exchanged: Subject 1 with 2°, then 2’ with Subject 3,

Table 8. Changes to the teacher’s timetable — ILS (2).

which changes with Subject 1. Thus, the timetable
of Teacher 1 is resolved.

The outlined process illustrates one perturbation.
The perturbation is repeated until the OF varies
more than 5% (positively or negatively) or until
it is repeated by a number equal to 20% of the
total number of teachers. The first ILS iteration
ends when, after the end of the perturbation, it is
applied to LS. To end the ILS process, 100 iterations
are performed. The initial solution is always the
best-known solution so far.

Teacher 1 1° 2° 3¢
10
2° Group 2
3° Group 1

Group 2 1° 2° 3°

1° Subject 2’
2° Subject 1
3° Subject 2”

Teacher 2’ 1° 2°
1° Group 2
20
30

Teacher 2” 1° 2°
10
20
3° Group 2

Source: Andrade (2014).

Table 9. Changes in the teacher’s timetable — ILS (3).

° °© °

Teacher 1 1° 2°
r ]
> I
» _ Gowl
Group 2 1° 2° 3°
1° Subject 2’
2° Subject 3 Subject 1
30
Teacher 2’ 1° 2° 3°
X ez
> S Gowx
» I N
Teacher 3 1° 2° 3°
X - r ]
> S Gew2
> I N

Source: Andrade (2014).
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5 Achievement and discussion of the
results

The solutions of the developed program are
evaluated in accordance with their proximity to the
optimal solution. The LS and ILS results are also
compared. It should be highlighted that a mathematical
model was applied to the problems of the case study
considering the magnitude of these problems. In other
cases, which involved more groups and teachers, the
mathematical model may prove to be unfeasible. Thus,
it is essential to use other techniques, including LS
and ILS, as presented here.

The system was executed using a computer with a
Core i3 processor and 4GB of RAM memory. In all of
the cases, the processing time for the initial problem
and LS was less than one second.

As there is a random component in the initial
solution, the generated solutions mostly differ from
one another. For this reason, in each problem, 10 initial
solutions are generated. The results presented are
those that generated the best solution following the
application of the techniques.

5.1 Analysis of the results of problem 01

The results of the Exact Model, LS and ILS
applied to the data of the problem shown in Table 1,
Section 2.1 are presented here.

5.1.1 Result of the exact method

The mathematical model of this problem has
2,515 variables and 1,590 constraints. It was solved
using LINGO 12.0® software, and the processing
time was 1,066 seconds. The OF value was 75,003,
and the values of coefficients D and W were
290 and 9,973, respectively.

Table 10 shows the timetables generated using
the exact methods for 9 teachers, selected by
order of priority. The timetable generated by the
mathematical model is of much higher quality than
those generated by LS or ILS, which will be presented
in Sections 5.1.2 and 5.1.3, below. In this solution,
only 2 teachers did not have a fully optimized timetable:
Geography Teacher 2 and History Teacher 3.

Thus, it cannot be concluded that this is the feasible
solution with the lowest number of teaching days for
teachers. As the solution found by LINGO 12.0° is
the optimal one for this problem, it can be said that
if there is a feasible solution with fewer teaching
days, this will certainly have a lower OF value. This
occurs because the issue of minimizing teaching days
is not a hard constraint, influencing the OF through
coefficient D, which is the penalty for the case of
teachers not having an optimized timetable.

12/23

5.1.2 Result of the local search

The timetable of the same teachers shown in
Table 10, obtained through the application of LS, is
shown in Table 11. The value of the OF is 66,853,
with teachers giving classes in 21 days more than the
minimum. The values of the coefficients D and W
are 4,120 and 9,823, respectively.

There are 6 teachers giving classes on the minimum
number of teaching days, including Mathematics
Teachers 1 and 2, as shown in Table 11. With the
application of the initial solution, only 2 teachers
had optimized timetables. Analyzing Table 11 from
left to right and from top to bottom, the timetables of
the last teachers, i.e., those with less priority, are the
ones with the greatest opportunities for improvement.

5.1.3 Result of the Iterated Local Search

The results achieved by ILS are presented in
Table 12. There was an expressive improvement in
relation to that of LS, as 11 teachers have an optimized
timetable, and of those who do not, only 1 or 2 classes
are allocated outside of their preferences. The value
of the OF in this case is 70,234. The teachers give
classes on 13 days more than the minimum and the
values of coefficients D and W are 2,290 and 9.403,
respectively.

5.1.4 Comparison of the results

A comparison of the results obtained for the 10 initial
solutions generated following the application of LS
and ILS are shown in Table 13, below. The values of
the OF (Z(x)), teaching days more than the minimum
(Days), the coefficients D and /¥, and the processing
time required by the ILS (t(s)) are presented. In the LS
and ILS results, there are percentages of improvement
in relation to the previous solution, both for Z(x)
(AZ(x)) and the extra days (ADays).

Due to space limitations, the solution of the
mathematical model is not included in Table 13.
Therefore, it should be remembered that the value
of the OF of the exact solution is 75,003, with the
teachers giving classes on two days more than
the minimum necessary. Moreover, the values of
coefficients D and W are 290 and 9,973, respectively.

It should be noted in Table 13 that, in general, the
solutions with fewer extra days generate a better result
of Z(x). However, this is not a rule, as the solution with
fewer teaching days was achieved in the application
of ILS in Solution 1.4 (12 days), although the best
solution is that of the ILS in Solution 1.6 (13 days).
It may be concluded that Solution 1.6, compared with
Solution 1.4, generated more teaching days for less
preferential teachers, as the value of the penalty D
was 2290, in comparison with 2350 in Solution 1.4.
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Although the quality of the initial solution has a
considerable influence on the quality of the solution
obtained, the best initial solution does not always generate
better results in terms of LS and ILS. Solution 1.2,
for example, was one of the best initial solution, but
it generated one of the worst ILS results. This occurs
because the improved quality of the solution is not
only linked to the current quality of the solution,
but rather to more subtle and even random factors.
An example of these factors is a teacher being free
at a specific time, allowing for an exchange with
another teacher, resulting in a better quality solution.
Another example would be a random draw of this
teacher during the ILS process.

5.2 Analysis of the results of problems 01 to 14

The results of Section 5.1, above, were intended
to illustrate the application of each technique in more
detail and thus the results of only one problem were
explained. It is important to highlight that the data
for the other 13 problems are available and illustrated
in Andrade (2014). In this section, the summarized
results of all 14 problems are presented.

Initially, the results of the Exact Method for all
the problems are presented in Table 14, along with
the characteristics of the problems, such as number
of teachers (T), groups (G), and the ratio between
these values (T/G). Then, in Table 15, the results
of the initial solution and the LS and ILS solutions
are presented.

The values of Z(x), when analyzed in absolute
form, may distort the reality, given that a naturally
large problem will have a higher OF value, even if
its quality is worse. Therefore, to generate a base
for comparing the problems, a column of Table 14

Table 14. Results for all 14 problems — Exact Method.

illustrates the value of the OF divided by the number
of teachers (“Z(x)/T”).

In practice, the complexity of the problems is
inversely proportional to the value of the ratio
between the number of teachers and groups of students
(Column “T/G”, as shown in Table 14). This is
explained because it is easier for institutions with many
teachers available for few groups of students (high
value of “T/G”) to generate timetables. Meanwhile,
when there are few teachers to teach many groups
of students (low value of “T/G”), it is more difficult
to generate timetables.

For a deeper analysis of the results, in Table 15
there is a line with the best solution to the problem,
another with the mean of the 10 generated solutions
(), and the following line with the standard deviation
of the mean (o).

A pertinent issue is that the high “T/G” ratio
(illustrated in Table 14) in a problem generates more
dispersion in the initial solution, because in these
problems there are more possibilities of feasible
times. Therefore, it is natural for initial solutions to be
more varied. Problem 5, for instance, has the highest
“T/G” ratio, and generated a mean of 72,635, with a
standard deviation of 1,290, a high value compared
with the other initial solutions.

On the other hand, the opposite ratio is also true, as
Problem 14 has the lowest “T/G” ratio, with a mean
0f 52,461 and standard deviation of 191, a low value
compared with the other problems. This occurs because
this type of problem is highly constrained, with few
possibilities of feasible solutions and, therefore, with
less dispersion between them.

An analysis of Table 15 shows that the ILS results
are more stable for the larger problems, in terms of
number of teachers (this information is shown in

N T G T/G Exact Method
Z(x) Z(x)/T D w Days t(s)
1 23 12 1.92 75003 3261 290 9973 2 1066
2 14 8 1.75 37295 2664 170 5015 1 6767
3 22 12 1.83 70370 3199 310 9670 2 1530
4 22 13 1.69 75878 3449 0 10561 0 1622
5 26 13 2.00 85504 3289 470 11426 4 2738
6 35 20 1.75 158056 6079 250 21360 2 8808
7 22 12 1.83 70034 3183 110 10160 1 2174
8 23 12 1.92 72742 3163 110 9662 1 2104
9 22 12 1.83 68784 3127 120 10252 1 1754
10 23 13 1.77 79414 3453 410 11499 3 3609
11 22 12 1.83 70343 3197 330 10549 2 2020
12 22 12 1.83 71637 3256 260 10276 2 1447
13 22 13 1.69 74946 3407 190 10886 1 1094
14 18 12 1.50 60478 3360 0 9587 0 1809

Source: Andrade (2014).
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Table 14). For instance, Problem 6, which is the
largest of all, generated a mean of 145539, with a
standard deviation of 765 in the value of “Z(x)” of
the ILS process, a low value compared with the other
problems. The opposite is also true, because smaller
problems generate more variability in the ILS results.
This can be explained, since a small problem has a
more constrained universe of possibilities. Therefore,
any improvement achieved by ILS has a great influence
in terms of percentages on the result of the problem,
causing this greater variation in the results.

In Table 15, there were cases in which the ILS
processing time for the best solution was longer than
the average of the other solutions, and cases in which
it was shorter. Therefore, it may be concluded that
the ILS processing time is more closely related to
the size of the problem rather than the quality of the
result. This is because in general, larger problems in
terms of number of teachers require more processing
time for ILS. The graph in Figure 1 was created to
illustrate this, with the vertical axis of the graph
showing the average ILS processing time and the
horizontal axis presenting the number of teachers
involved in the problem.

It should be noted that in Figure 1 the greater the
problem, the longer the processing time, although
there are exceptions, such as Problems 10 and 14.
The exceptions occur due to other parameters that also
affect the processing time, such as the “T/G” ratio,
and other specific characteristics of each problem,
such as the distribution of workloads among teachers
and their days of preference.

Table 16, below, compares the best solutions of
each technique for each problem. The information
regarding the initial solution was not included in this
table, as it has already been shown in Table 15, and
because the techniques in question in this study are

Number of Teachers x
ILS Processing Time
110
100 410
90 + 6
80
70 ® 7
60
* 14 5
50
40 >
* 4
& "28
30
* 2 * 12
20

12 14 16 18 20 22 24 26 28 30 32 34 36
Figure 1. Graph of the number of teachers versus ILS
processing time. Source: The authors (2018).

the three that have been presented: Exact Method, LS
and ILS. The (AZ(x)) column shows the dispersion
between the technique and the optimal solution.
The last column (At) shows “how many times faster”
the processing of the ILS was compared with the
Exact Method.

An analysis of Table 16 shows that the best results
for all the problems were achieved by the Exact
Method, with a variation of 3.5% to 7.7% in relation
to the ILS solution, and 10.6% to 15.2% in relation
to the LS solution.

Problems with a low “T/G” ratio have a higher
“Z(x)/P” value. In these cases, teachers have a
fuller timetable, i.e., they generate a higher OF
value compared with others in which teachers have
emptier timetables (high “T/G” value). For example,
Problems 4, 6, 13 and 14 have the lowest “T/G”
ratios (Table 14), and generated the highest “Z(x)/T”
values, mainly in the columns of the ILS and Exact
Method (Table 16).

6 Conclusions

Through the study of real cases in this article, it may
be concluded that the aims of the work were achieved
in a satisfactory manner. OR techniques were used
to generate comparatively the optimized timetables
of Elementary and High Schools (Mathematical
model, LS and ILS).

The performance of the Exact Method was 3.5% to
7.7% better than that of ILS in the cases in question.
Furthermore, the computational time required is
feasible, as this activity generally takes place once
or twice a year in teaching institutions. Therefore, it
is clear that for problems that can be solved exactly,
even if the entire computational procedure lasts for a
few hours, this is how the solution should be found.

In the case of larger problems, which cannot be
solved exactly, ILS is a promising alternative, but
not conclusive. Therefore, for the larger problems,
LS and ILS procedures and others would have to be
tested, always attempting to achieve the best results
possible.

As for the performance of the heuristic and
meta-heuristic techniques applied here, the ILS
technique achieved the best results, providing a
successful differential over LS for the problems
in question. Moreover, it had good computational
performance, ranging from 15 to 338 times faster
than the Exact Method. With these results, the
application of ILS proved to be a promising technique
for testing in larger problems, in which, as verified
by Babaei et al. (2015), and Veenstra & Vis (2016),
the computational time for the exact solution may
be unfeasible.

The characteristics of the timetabling problem in
public schools are very similar to each other, and in
compliance with legislation, there appear to be no
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obstacles to using the developed program in other
Brazilian public schools. In private schools, the aim
is to reduce teachers’ intervals, given that they result
in higher costs for their employers. As the program
was projected to reduce teachers’ teaching days, the
focus is on the days, meaning that the solution will
also meet the expectations of private schools.

A suggestion for future works is the development
of an intergroup heuristic, similar to the one used
by Souza et al. (2001), which would complement
the adjustment stage of the initial solution and LS.
This would lead these techniques to analyze changes
between the subjects of different groups of students,
thus achieving better quality solutions.

Another suggestion would be to apply the tool
to other instances, i.e., schools whose realities
differ from the ones analyzed here. Furthermore, an
analysis of the sensitivity in the parameters of the
mathematical model and ILS is suggested. With this
analysis, it will be possible, for example, to gauge
whether the increase of the coefficient D in the OF
generates an optimal solution with fewer teaching
days, or the impact of the alteration of the coefficients
CD, 4 and c7;, on the optimal solution. Moreover, it
would also be possible to analyze the size limit of
problems to make the processing time of the exact
method feasible.
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