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Abstract: Proximity movements between vehicles transporting materials in manufacturing plants, 
or “interfaces”, result in occupational injuries and fatalities. Risk assessment for interfaces is 
currently limited to techniques such as safety audits, originally designed for static environments. 
A data-driven alternative for dynamic environments is desirable to quantify interface risks and to 
enable the development of effective countermeasures. We present a method to estimate the Risk 
Prioritization Number (RPN) for mobile vehicle interfaces in manufacturing environments, based 
on the Probability-Severity-Detectability (PSD) formulation. The highlight of the method is the 
estimation of the probability of occurrence (P) of vehicle interfaces using machine learning and 
computer vision techniques. A PCA-based sparse feature vector for machine learning 
characterizes vehicle geometry from a top-down perspective. Supervised classification on sparse 
feature vectors using Support Vector Machines (SVMs) is employed to detect vehicles. Computer 
vision techniques are used for position tracking to identify interfaces and to calculate their 
probability of occurrence (P). This leads to an automated calculation of RPN based on the PSD 
formulation. Experimental data is collected in the laboratory using a sample work area layout and 
scale versions of vehicles. Vehicle interfaces and movements were physically simulated to train 
and test the machine learning model. The performance of the automated system is compared 
with human annotation to validate the approach. 

Keywords: Risk assessment; FMEA; Machine learning; Work safety. 

Resumo: Os movimentos de proximidade entre os veículos que transportam materiais nas 
fábricas, ou interfaces, resultam em ferimentos e mortes no trabalho. Atualmente, a avaliação de 
riscos para interfaces está limitada a técnicas como auditorias de segurança, originalmente 
projetadas para ambientes estáticos. Para ambientes dinâmicos, uma alternativa baseada no 
uso extensivo de dados é desejável, de maneira a quantificar riscos e possibilitar o 
desenvolvimento de contramedidas efetivas. Apresentamos um método para estimar o Número 
de Priorização de Risco (NPR) para interfaces de veículos móveis em ambientes de fabricação, 
com base na formulação Severidade-Ocorrência-Detecção (SOD). O Método se destaca pela 
estimativa da probabilidade de Ocorrência (O) de interfaces de veículos utilizando machine 
learning e técnicas de visão computacional. Um vetor de recursos esparsos baseado em PCA 
para machine learning para caracterizar a geometria do veículo de uma perspectiva top-down. 
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A classificação supervisionada em vetores de recursos esparsos utilizando SVMs (Support 
Vector Machines) é empregada para detectar veículos. Técnicas de visão computacional são 
usadas para rastreamento de posição para identificar interfaces e calcular sua probabilidade de 
ocorrência (O). Isso leva a um cálculo automatizado de NPR com base na formulação do SOD. 
Os dados experimentais são coletados em laboratório utilizando um layout de amostra da área 
de trabalho e versões em escala de veículos. As interfaces e os movimentos do veículo foram 
fisicamente simulados para treinar e testar o modelo de machine learning. O desempenho do 
sistema automatizado é comparado com a anotação humana para validar a abordagem. 

Palavras-chave: Avaliação de risco; FMEA; Aprendizagem de máquina; Segurança do trabalho. 

1 Introduction 
This study presents a methodology for automated detection and risk assessment 

for interactions between vehicles engaged in material movement in manufacturing work 
areas. The manufacturing sector is particularly vulnerable from a safety perspective: 
it ranked sixth in the US for number of fatal occupational injuries in 2011 (Bureau of 
Labor Statistics, 2011). The economic impact of manufacturing safety is also 
significant. For example, a European Union report in 2008 estimated that 143 million 
workdays and over 55 billion euros were lost because of workplace accidents 
(Directorate-General for Employment Social Affairs and Equal Opportunities, 2009). 
We focus on material movement because of the prevalent role of vehicles such as 
forklifts in manufacturing accidents in factories (Saric et al, 2013). The rapid growth of 
autonomous ground vehicles (AGVs) in manufacturing environments (Kusiak, 2018) 
further highlight the importance of vehicle risk assessment and risk mitigation in 
material movement. 

We choose quantitative risk assessment methods (Marhavilas et al., 2011) as the 
basis for risk assessment. The metrics designed for these methods signify the risk level 
of an interface, thereby enabling safety managers to prioritize and mitigate high-risk 
interfaces. We specifically select a metric called the Risk Prioritization Number (RPN), 
which has been used in combination with Failure Modes Effects Analysis (FMEA) 
(Liu et al., 2013). The caveat in using RPN and similar metrics is that their fidelity 
depends on the volume of data and sampling techniques used for assessment 
(Marhavilas et al., 2011). The volume of data depends on the practical availability of 
human teams for data collection and analysis. A significant contribution of this study is 
to eliminate this restriction on the data collection for risk assessment using automated 
techniques. Our approach, hereafter called AutoRisk, automatically identifies the type 
and location of vehicles moving materials in a work area and estimates the RPN value 
of an interface between vehicles at intersections in the work area. This approach is 
operationally feasible for two reasons. First, security cameras and camera networks 
are prevalent in manufacturing (Hanoun et al., 2016) and this setup can be leveraged 
to allow manufacturing plants to easily incorporate the automated risk assessment 
approach. Second, there are several precedents for the use of machine learning 
algorithms to automatically detect vehicles using video feed from cameras, for example 
(Brilakis et al, 2011; Chernousov & Savchenko, 2014). 

AutoRisk employs computer vision and machine learning techniques to achieve its 
objectives. The highlights of the approach are: 1. Computer vision and machine 
learning techniques based on Principal Component Analysis (PCA) and Support Vector 
Machines (SVM) are developed for detection of vehicles in the work areas, 2. RPN 
calculations are automated to quantify and prioritize interfaces based on risk, 



Automated risk assessment for... 

Gestão & Produção, 27(3), e5424, 2020 3/24 

3. The potential for long term data collection is demonstrated for vehicular traffic 
intersections in manufacturing areas, and 4. A proof-of-concept setup validates the 
potential for risk prioritization using FMEA metrics and compares automated risk 
assessment with risk assessment performed by humans. 

One of the important potential consequences of this study is its impact on the safety 
of humans in material movement operations in manufacturing work areas. 
The interaction between material handling equipment and humans is responsible for 
more than half of all material handling accidents (Saric et al, 2013). Collaboration or 
unstructured work area sharing between humans and material handling equipment is 
expected to expand in future work areas as the use of AGVs becomes more prevalent 
(Pradalier et al., 2008). Efforts have largely focused on the mitigation of risk – for 
example, the design of a natural language interface between a forklift and pedestrian 
(Walter et al, 2014) – rather than an improved assessment of risk. The presented study 
can extend to detection of pedestrians in the work area and improve safety for people 
and vehicles that cohabit high-risk manufacturing environments. In doing so, it will 
derive inspiration from person and equipment detection efforts from other high-risk, 
high-clutter workplaces, e.g. construction industry (Memarzadeh et al., 2013; 
Mosberger et al., 2015). 

The paper is organized as follows. Section 2 motivates the need for research in 
workplace safety and highlights related studies on automated safety and risk 
assessment. Section 3 explains PCA-based machine learning for vehicle detection and 
FMEA. Section 4 details the validation of the approach relative to human annotation. 
Section 5 provides insights for the approach for use by safety managers. Section 6 
summarizes the results and provides a discussion of the potential future directions for 
the study. 

2 Background 

2.1 Workplace safety 
The high incidence rate of work-related accidents, injuries, and fatalities are the 

primary motivation for this paper. An analysis of occupational fatality trends in the United 
States from 1992-2010 (Marsh & Fosbroke, 2015) shows that a total of 14,625 deaths 
occurred over this period at an annual average of 770. Machinery (mobile and stationery) 
related injuries were the second leading cause workplace fatalities in the Unites States 
between 1980 and 1989 (Pratt et al., 1996). The Bureau of Labor Statistics (2014) 
revealed that close to 4000 employees in the United States were fatally injured at work 
due to machine related incidents. Worldwide, over 5300 people die every day and close 
to 960,000 people are affected by work-related diseases or accidents (Hämäläinen et al., 
2009). The high fatality and injury rates have direct consequences to organizations, 
including employee turnover, absenteeism, and legal repercussions. This compels 
organizations to place justifiably high emphasis on workplace safety. De Vries et al. 
(2016) provide an example of a top-down, management-driven model called safety-
specific transformational leadership (SSTL) to improve workplace safety.   

Manufacturing is one of the most adversely affected industry sectors from the safety 
perspective. Marsh & Fosbroke (2015) found that, between 2003 to 2010 in the U.S., 
manufacturing (776 deaths or 14%) and the service industry (725 or 13%) were ranked 
at 3rd and 4th respectively in terms of the occupational deaths, trailing only 
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agriculture/fishing/forestry and construction. Mobile machinery and industrial vehicles 
aggregated at total of 7% of all the occupational injuries that occurred in the 
manufacturing sector between 2003 and 2010. In Finland (2003-2007) out of the total 
807 fatal accidents, 202 (25%) fell under the category of material transfer (Perttula & 
Salminen, 2012). For the same data set, manufacturing was responsible for 
145,816 (27%) nonfatal injuries of the total count of 538,159 accidents. Bureau of Labor 
Statistics (2007) reports that out of the total 5488 occupational deaths in the US in 
2007, the highest number of fatalities (1423 fatalities) were caused due to 
“transportation and material moving occupations”. Our study therefore focuses on 
methods that can contribute to mitigation of risks related to movement of mobile 
vehicles and machines in manufacturing work areas. 

Our study focuses on three types of vehicles: forklifts, trucks, and utility vehicles. 
Of these, forklifts have an especially checkered history in material movement. On one 
hand, forklifts are the single most versatile piece of material handling equipment used 
in manufacturing and warehousing; on the other, their physical characteristics pose a 
great threat to people which can result in trauma or death (Collins et al, 1999a). 
The movement risks from forklifts have serious consequences for humans sharing the 
work area. In a study conducted at 54 plants operated by a major automobile 
manufacturer over a period of 3 years, Collins et al (1999b) found that forklifts caused 
a total of 913 non-fatal and 3 fatal injuries. The most common incident involved a 
pedestrian (321 injuries or 35%) being run over by a forklift or a powered industrial 
vehicle (PIV), resulting in 41% of the employees missing work contributing to 22,730 
lost workdays. The California Department of Industrial Relations reported that out of 
the total 3041 injuries that happened due to forklifts in 1980, 31% of the cases involved 
pedestrians being run over by forklifts and another 23% of the cases where the worker 
was run over, caught in, under or between a forklift and another nearby object 
(California Department of Industrial Relations, 1982). The German Social Accident 
Insurance (DGUV) reported that nearly 11000 accidents in 2015 involved forklifts (vom 
Stein et al, 2018). Bureau of Labor Statistics (2007) data showed that between 2011-
2017, there were 614 fatal accidents involving forklifts, out of which 18% (113) of the 
deaths were a direct result of forklift-pedestrian collision. Marsh & Fosbroke (2015) 
reported that forklifts were the third highest causes of death in the United States from 
1992 to 2010, preceded only by tractors and excavators. 

These statistics clearly indicate that material movement vehicles pose a significant 
threat to pedestrians in a manufacturing environment. Though the risks associated with 
these vehicles are known, risk mitigation techniques have majorly focused on operator 
training and protection (Marsh & Fosbroke, 2015). Attempts have been made to modify 
the risk environment to counter the ill-effects caused by operating vehicles in proximity 
to pedestrians but has not been effective enough to significantly reduce workplace 
accidents. As cited by Bostelman (2009), Occupational Health and Safety 
Administration (OSHA) estimates that 70% of the accidents are avoidable with stringent 
and proactive measures. There is therefore a need to investigate innovative 
approaches to risk assessment and mitigation. 

2.2 Remote camera-based monitoring of vehicles 
Computer vision techniques for vehicle detection have been applied to intersection 

monitoring for pedestrian collision detection or prediction (Gandhi & Trivedi, 2006). 
Veeraraghavan et al. (2003) used an approach that combines low-level image-based blob 
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tracking and a high-level Kalman filtering for detecting pedestrians at an intersection. 
To assist this approach in real-time monitoring, motion segmentation was done by using a 
mixture of Gaussian models to help in robust outdoor tracking scenarios. Cortes & Vapnik 
(1995) presented one of the early applications of a combined computer vision and machine 
learning approach to the vehicle detection problem. Their study used a visible light camera 
to capture the field of view and shape-based approaches to extract characteristic features 
from the captured images. A trained Support Vector Machine (SVM) classifier is used to 
extract the foreground (pedestrian) from the background. Papageorgiou & Poggio (2000) 
showed that pedestrian detection is possible using cameras as sensors and SVM for 
classification. Aoude & How (2009) showed that objects can be classified at an intersection 
using support vector machines and Bayesian Filtering (SVM-BF). They tested the SVM-BF 
classification for 60 different scenarios with a “coverage” or recall of 100% along with a 
precision of 77%. A modified version of the SVM-BF that is based on a discounted BF 
further improved the precision to 93% at the expense of decreasing the coverage to 93%. 

2.3 Onboard sensing systems for manufacturing 
Computer vision and machine learning has been employed in combination with 

onboard cameras primarily for collision avoidance, but also for navigation. The type of 
sensors commonly used in these applications include rear view cameras, bird’s eye 
vision system, stereo cameras, time-of-flight cameras and radar and ultrasonic sensors 
(Cao et al., 2019). Behrje et al. (2018) used a 3D time-of-flight camera as the primary 
sensor for localization and navigation of an automated forklift, using Monte Carlo 
Localization with particle filters. Lai et al. (2018) use real-time object detection in 
conjunction with deep learning to motivate a vehicle collision avoidance system. vom 
Stein et al. (2018) assessed the impact of four different visual warnings on brake 
reaction timings and perceived workload in forklifts. The study based on real-time 
experiments confirmed that peripheral display warning signs triggered the fastest mean 
reaction times when compared to the others (vom Stein et al, 2018). Lang & Günthner 
(2017) developed the “PräVISION” system aimed at warning the forklift drivers of an 
imminent collision using time of flight cameras to capture input 2D and 3D data and 
used Diamler and INRIA datasets for SVM classification of pedestrians. Lang (2018) 
applied a version of the PräVISION system in an industrial setting for pedestrian 
detection and observed that the accuracy for this application fell by 25% compared to 
collision avoidance systems. These successes and failures highlight the following 
challenges for our future studies: 1. Transitioning from proof-of-concept experimental 
tests to real manufacturing environments, and 2. Application of detection and 
classification techniques to pedestrian-vehicle risk mitigation systems. 

Quan et al. (2013) applies onboard sensing to navigate autonomous guided vehicles 
(AGVs) in manufacturing facilities and to predict the movement of other vehicles in the vicinity. 
The vision-based driving algorithm uses two monocular cameras – one forward-facing and 
one downward-facing – for navigation and path tracking with the help of floor signs. The author 
also develops an anti-collision algorithm to prevent any mishaps between AGVs sharing a 
single working space. The noteworthy features of this study are the successful use of low-cost 
cameras and the application of camera-based technology to workspaces for autonomous 
vehicles. Our study shares both characteristics, albeit with a change in camera perspective 
and the overall goal – risk assessment instead of collision avoidance. 

Non-camera sensors are used in material movement vehicles for localization, tracking, 
and collision prevention. Some of the commonly researched anti-collision proximity sensing 
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technologies are ultrasound, radar, RFID, UWB, Multipeer Connectivity (Groza & Briceag, 
2017), and GPS (Jo et al., 2019). Barral et al. (2019) presents a solution based on multiple 
ultra-wideband (UWB) sensors to locate and track forklifts to obtain highly accurate 
estimations in indoor scenarios. The accuracy of their results is dependent on a strong line 
of sight (LOS) between the tag and the anchor. Jo et al. (2019) develops an anti-collision 
system for heavy equipment at construction sites using UWB-based proximity warning and 
GPS sensors integrated using machine learning. The limitation of this system, called the 
Robust Construction Safety System (RCSS), is its decreased reliability under 
environmental and site-specific changes. Sun & Ma (2017) presents a prototype safety 
system for forklifts in indoor environments that uses UWB sensing technology for tracking 
and prediction of vehicle movements. They compare UWB with other sensing technologies 
and highlight its advantages including greater bandwidth, multi-path resolution, penetrating 
ability of the signals and low cost. The limitations of the UWB system is that the tags are 
energy-intensive, accuracy is limited to 15 cm, and the imaging simulation is limited to two 
dimensions. 

2.4 Summary and research questions 
Research studies and industry statistics underscore the severe risk levels for material 

movement in manufacturing. However, risk assessment strategies for workplace risks 
such as FMEA based on the RPN metric tend to focus on location-specific activities, such 
as working in a specific area or manufacturing cell. This unintentionally excludes the 
formal assessment and mitigation of risk related to material movement in manufacturing. 
The research question is to study the use of RPN in risk assessment for material 
movement in manufacturing. 

Methods to mitigate material movement risk in manufacturing focus on onboard 
sensing for vehicles. This is a well-developed research area, with diversity in the type 
of sensors and techniques used to identify, track, and safely move forklifts and other 
vehicles inside manufacturing plants. Onboard sensors allow vehicles to be safe 
regardless of their location, which is especially useful in large facilities. However, 
onboard sensing limits the line of sight of the safety system. We identify the use of a 
fixed mount system such as a ceiling-mounted camera to resolve this limitation. The 
research question is to assess the effectiveness of this system in detection and tracking 
of vehicles and to use the data to quantify vehicle interface risks. 

3 Research methods 
The AutoRisk system is developed using the following methodological steps: 

1. Data collection: A camera system is identified and an experimental setup is 
designed for data collection, 2. Data filtering and sample generation: Computer 
vision techniques are used to isolate areas of the image which contain vehicles. 
3. PCA-based shape representation: A novel PCA-based shape descriptor is 
developed to characterize vehicle appearance and to serve as input to machine 
learning, 4. Classification: The data collected and filtered in the previous steps is 
input to several supervised learning algorithms to classify vehicle types and the 
best performing algorithm is selected, 5. Interface detection: Computer vision 
heuristics augment the classification output from machine learning to detect close 
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proximity movements between vehicles, and 6. Risk assessment: FMEA is used 
in estimation of RPN to identify the highest priority risks. 

3.1 Data collection 
A top-down view of the work area is chosen for setting up the camera. The top-down 

perspective has several practical advantages. It simplifies shape representation since the 
most common transformations in appearance of the object are scale and in-plane 
rotation. Occlusions are rare and typically only manifest because of columns and other 
structural elements of the work area. These occlusions can be handled in future studies 
by creating a network of top-down perspective cameras with overlapping fields of view or 
by relying on tracking continuity methods such as particle filters (Kim & Davis, 2006) or 
Kalman filters (Li et al., 2010). 

3.1.1 Objectives 

Data collection methods are designed with the following objectives: 
1. The experimental setup must approximate a manufacturing facility. For reference, 

the plant layout for a heavy manufacturing facility was used. 
2. The perspective and scale of the camera in the experiment must approximate a 

high-ceiling perspective typical to a manufacturing facility. 
3. The data must support the proof of concept for vehicle detection, tracking, and risk 

assessment. 

3.1.2 Assumptions 

Multiple assumptions about the work area are made to set up the experiment: 
1. The layout of the work area is known and the traffic intersections within the facility 

are known. 
2. All vehicle types in the work area are known. There may be multiple vehicles of the 

same type within the field of view of the camera. 
3. More than one vehicle from a single category may occupy the work area at any 

moment. 
4. Risk assessment is performed offline, that is, the current version of the study is not 

set up for real-time risk assessment. 

3.1.3 Setup 

A rectangular boundary was used to identify the region of interest for the 
experiment. Rectangular regions inside the work area were marked as being the 
locations of prohibited areas for vehicular traffic, for example: stationary equipment, 
control rooms, break areas, welding and tooling zones. The spaces outside prohibited 
areas are the material movement routes for vehicles. Vehicles in material movement 
routes could potentially interface at multiple locations within the work area. These 
regions in the work area were identified as intersections, a term borrowed from road 
traffic terminology (Messelodi et al., 2005). Each interface at an intersection is treated, 



Automated risk assessment for... 

8/24 Gestão & Produção, 27(3), e5424, 2020 

in the language of FMEA, as a “failure mode” or “event”. Figure 1 shows the layout 
diagram and a real image of the experimental work area, with prohibited areas (filled 
areas), intersections (rectangular outlines with numbers), and the work area boundary. 

 
Figure 1: Work area layout with prohibited areas, intersections with numbers, and work area 

boundary marked. 

3.1.4 Method 

Radio-controlled scale models of vehicles (1:24 scale) were used for simulating the 
movement of vehicles and for creating interfaces by moving them along traffic lanes. 
Three categories of vehicles were used in experiments: 1. “Truck” – an 18-wheeler, 
2. “Forklift”, and 3. “Car”. A total of 29 videos of vehicle interfaces were recorded, each 
approximately one-minute duration. All vehicles were present in the work area in each 
video. The starting location of the vehicles was modified for each video and the motion 
of vehicles was controlled using joystick controllers. A total of ninety-one interfaces 
between vehicles were generated at different intersections. 

Images of the vehicles were extracted from video for training and testing the 
machine learning algorithms for vehicle detection. Two varieties of cars were used to 
test the robustness of the machine learning algorithm to intra-class variation. The model 
vehicles used in the experiment are shown in Figure 2. 
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Figure 2. Radio-controlled scale models used for experimental data generation. 

3.2 Data filtering and sample generation 
Each video was decompiled into its constituent frames and the video data was 

filtered to remove noisy frames and those with experimenters present in the work area. 
After filtering, an estimated 50000 frames of data were available for analysis. 
Considering 50000 frames with four vehicles each (one truck, two cars, and one forklift), 
a total of 200000 observations were available over the entire dataset. 

The input data for supervised learning were fixed size image regions which 
contained a specific type of vehicle (positive sample) or an absence of the specific type 
of vehicle (negative sample). The multi-class classifier is required to distinguish 
between three classes of vehicles: truck, car, and forklift. The classifier was trained on 
25 percent of total data. Therefore, 12000 frames were randomly chosen for data 
filtering and sample generation for machine learning. 

The sample generation process was simplified using a combination of human 
annotations and automated labeling. The first frame of a video was loaded, and the 
experimenter was asked to label one vehicle at a time. For each vehicle, the experimenter 
selected seed points inside the vehicle area. Standard floodfill algorithm (Birchfield, 2016) 
is used to find similar pixels in the neighborhood of the seed point and generate the 
vehicle region, or foreground. This labeling approach works in a simplified setup in which 
all vehicles were all painted using the same color (see Figure 2) such that it creates a 
clear contrast with the background. In practical scenarios, foreground extraction may be 
accomplished using more sophisticated techniques, for example (Rother et al., 2004). 
Following this, the experimenter was asked to assign an identity to the foreground as 
shown in the user interface in Figure 3. The foreground has been extracted in this image 
for the truck in the top right corner. 
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Figure 3: Human labeling of data for supervised learning. 

The next step was to simplify the collection of samples for remaining frames in the 
labeling video. This was achieved by automatically identifying “good features to track” 
(Shi & Tomasi, 1994) from the initialization frame – see the annotation marks on the 
truck in Figure 3 as an example. The Lucas-Kanade feature tracking algorithm (Lucas  
& Kanade, 1981) was used to track the movement of features in subsequent frames; 
as an output, the feature tracker identified the updated locations of features that were 
tracked successfully. Floodfill was applied again using successfully tracked features as 
seed points to generate a positive data sample. The data sample was saved as an 
image which could then be processed by the feature extraction algorithm explained in 
the next section. Figure 4 shows automatically extracted foreground images for each 
of the vehicles in one frame of video. 

 
Figure 4. Extracted foreground images for vehicles. Top to bottom: forklift, car, truck. 
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The labeling implementation allowed experimenters to easily relabel frames in 
which tracking failed. Typical circumstances under which tracking can fail include: 
1. Missing or noisy intermediate frames. This results in discontinuity or jumps in vehicle 
position, which tracking algorithms are calibrated to ignore as tracking failures, and 
2. Tracker error. This results in the tracking algorithm incorrectly updating the position 
of features to a non-vehicle region of the image. Human supervision was therefore 
needed to ensure that the data samples were correctly isolated in labeling videos. 
Despite the need for supervision, the automated labeling approach requires only a 
fraction of the human interaction needed to manually process individual frames to label 
vehicle regions. 

3.3 PCA-based shape representation 
The next step is the representation of vehicle “features” for the machine learning 

algorithm. Sparse features were generated for using Principal Component Analysis 
(PCA) to reduce the size of the representation. This reduces the dimensionality of the 
classification problem and with it, the size of the training set for an accurate machine 
learning algorithm (Friedman et al., 2001). For example, even a low-resolution image 
(32x32) of a vehicle results in a 1024 element feature vector, compared to our PCA 
method which uses a 37-element vector. Reduced feature space in learning has the 
specific advantage of allowing the detection algorithm to become rapidly operational in 
a new environment. 

 
Figure 5. Feature vector generation for the object “truck”. The shorter vector indicates the 

orientation of the principal component. 

PCA is applied to a “region of interest” (ROI), which is the binary vehicle 
foreground extracted as explained in Section 3.2. Singular Value Decomposition 
(SVD) is applied to find the principal component of the object. P  rays spaced 
uniformly apart are considered for feature vector generation. For example, if the 
principal component is at an absolute angle principalθ , then each subsequent ray is 
360
P

 degrees from the previous ray. Each element i
shapeV in the feature vector 

1 36
shapeV Re ×∈  is computed as the count of the number of foreground pixels along 

the thi  ray radiating from the center to the boundary of the object, where i 1=  
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represents the principal component. This is visualized in Figure 5. The vector is 
normalized by the largest value in shapeV . The foreground area entityA  is added to 

shapeV  and normalized using a large number imageA . The normalization factor was 
chosen to be 0.01 times the area of the full image empirically. The final feature 
vector entityV  therefore has    P 1+  elements. This feature vector is rotation invariant 
because of the use of PCA to establish its initial orientation, and scale invariant 
because of the normalization with respect to foreground count and image area. 
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, 
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3.4 Classification 
A multi-class supervised classifier was trained to classify the input ROI as car, 

truck, or forklift. Several classifiers were compared after training, cross-validation, 
and testing routine for each technique. The classifier with the lowest test error was 
then chosen. The candidate classifiers were (Thrun & Pratt, 2012): (1) Complex 
decision trees, (2) Fine KNN (k-nearest neighbors), (3) SVM with medium Gaussian 
kernel, and (4) SVM with quadratic kernel. The strategy of this exercise was to test 
the computationally fastest classifiers and switch to slower classifiers should the 
accuracy of initial candidates be found unsatisfactory. 

MATLAB’s Machine Learning Toolbox was used to implement and compare 
candidate classifiers. The cross-validation level was set to five – that is, data was 
divided into    k 5=  subsets, with each used once for training while the remaining 
k 1−  sets were used for validation. The advantage of cross validation is that an 
increase in the value of k  decreases the variance in the training estimate. All the 
labeled feature vectors from the sample generation phase were formatted into a 
CSV file in which each row had the input-response format: ,entity entityV C   , where 
Ventity was computed using Equation 1 and entityC  was the vehicle class. A total of 
48063 training samples were available. The approximate distribution of samples 
across the vehicle classes was, car (50 percent), truck (25 percent), and forklift 
(25 percent). This is because, of the 4 vehicles present in the work area, there 
were two types of cars and only one specimen each for forklift and truck. 

All classifiers were highly accurate on the training data, each giving a 
training and cross validation accuracy of more than 99%. A comparison may be 
seen in Table 1. The classifiers were tested on images containing 13550 
(Test 1), 7275 (Test 2), and 9982 (Test 3) samples respectively. The complex 
decision tree was less accurate in its predictions on the test data as compared 
to KNN and the two SVM classifiers. On average, the SVM classifier with the 
quadratic kernel (Q-SVM) (Scholkopf  & Smola, 2002), was most accurate on 
holdout data. Performance of this classifier on training data was similarly 
impressive. 
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Table 1. Results of classifier testing. 

Classifier Training time 
(seconds) 

Accuracy 
(percent)    

  Training 
(48603) 

Test 1 
(13350) 

Test 2 
(7275) 

Test 3 
(9982) 

Decision tree 
(complex) 32.91 99.8 96.37 94.03 98.98 
KNN fine 134.83 99.9 100 98.35 99.29 

Gaussian SVM 33.77 99.9 94.27 100 99.28 
Quadratic SVM 21.50 99.9 100 98.89 99.35 

Therefore, Q-SVM was determined to be the best performing classifier for the data. 
The confusion matrix for this classifier on the training and test data, seen in Figure 6, 
is similarly compelling. Q-SVM was therefore selected as the classifier of choice for the 
interface detection and risk assessment algorithm. 

 
Figure 6. Confusion matrix for SVM with quadratic kernel. 

3.5 Interface detection 
Prior to this step, we have established the methods for vehicle detection and 

classification. These methods are applied to experimental video data to detect vehicle 
interfaces at traffic intersections in the facility. 

3.5.1 Vehicle detection 

The first step towards interface detection is to identify the type and position of 
vehicles in the video. Foreground regions in the image are obtained by thresholding 
based on the L*a*b* (LAB) colorspace. The underlying experimental assumption was 
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that vehicle color is known. LAB was found to give the best response to the chosen 
vehicle color for our experimental environment; it consistently, under the low-variance 
lighting conditions of the work area, was able to separate the vehicle from the 
background. All frames of the video were transformed to the LAB colorspace according 
to the CIE 1976 standard (Robertson, 1977). The foreground threshold filters applied 
to the image to mark foreground pixels were (Equation 2): 

. .25 177 L 91 135≤ ≤   
. .15 248 a 65 639≤ ≤  (2) 

. .20 394 b 62 801− ≤ ≤    

The foreground areas in the binary image are further processed using basic 
morphological operations like opening and closing. This is followed by connected 
component analysis on the image to identify ROIs for classification. Sparse feature 
vectors are generated for each ROI based on the PCA-based technique. The Q-SVM 
classifier predicts the vehicle class based on the sparse feature vector. 

3.5.2 Interface detection strategy 

Intersections in the experimental setup are identified based on these rules: 
1. Two or more traffic paths must meet at an intersection, 2. Traffic flow is higher at 
intersections compared to other traffic junctions in the facility, 3. Intersections were not 
located at entry or exit points in the work area. Intersections labeled in the experimental 
work area are shown in Figure 7. Note that the intersections may not all be the same 
size. Furthermore, rules in establishing the locations of intersections are deliberately 
subjective to accommodate the unique preferences of every facility and safety team. 
For example, a facility in which forklifts move at relatively high speeds may prefer to 
assign a larger area to an intersection since higher speeds reduce the reaction time for 
vehicle drivers. The larger area accommodates a situation in which vehicles come 
temporally close but do not actually cross paths at a traffic junction. 

This study defines an interface as ‘an event during which two or more vehicles were 
present at an intersection at the same time’. An example interface can be seen in 
Figure 7, occurring at intersection 4 between a forklift and a truck. In computer vision 
terms, a vehicle crosses into an intersection when its ROI overlaps the ROI of the 
intersection, that is (Equation 3): 

  ^vehicle
intersection vehicle intersectionI ROI ROI=  (3) 

If the count of foreground pixels in vehicle
intersectionI 1≥  then the vehicle is inferred to have 

entered an intersection. Based on the definition of an interface, if two crossovers are 
observed at an intersection, an interface is identified. 
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Figure 7. Interface between a forklift and a truck at intersection 4 in the work area. 

It is possible that more than two vehicles enter an intersection at the same time. 
In this situation, we assign multiple interfaces to the event by considering interface 
pairs. In Figure 8, for example, three interfaces are recognized: car-truck, truck-forklift, 
forklift-car. The rationale for this is that it simplifies the accounting of interfaces in 
FMEA. For example, the assignment of severity and detectability in the RPN 
formulation (Marhavilas et al., 2011) becomes more complicated if multiple vehicle 
interfaces are considered as independent events compared to pairwise estimations. 
Resolving this complication is a valid research consideration for future versions of this 
study. 

 
Figure 8. An interface with more than two vehicles at intersection 5. 

3.6 Risk assessment 
The identification of interfaces in videos results in an automated database of 

( ), ,1 2Vehicle Vehicle Intersection  combinations. Risk assessment techniques help address key 
questions based on this database: 1. What is the probability of occurrence of an 
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interface? 2. What is the severity and detectability attributed to an interface? 3. Based 
on the values for probability, severity, and detectability, what is the RPN score 
estimated for the interface? 4. Based on RPN scores for all observed interface 
combinations, what is the prioritized risk for vehicle material movement observed for a 
facility? 

The RPN metric is a product of three numbers for each event (Marhavilas et al., 
2011): 

RPN    P S   D= ⋅ ⋅  (4) 

where P  is the probability of occurrence of an event, S  is its severity, and D  is its 
detectability. The latter two numbers are obtained from work area heuristics based on 
specific facilities, usually by safety managers. We assigned ad-hoc S and D scores for 
our experimental data. An example detectability heuristic: “Vehicles approaching 
intersection 6 have poor detectability because of the presence of large equipment and 
high noise levels”, and an example severity heuristic: “Car and larger vehicle collisions 
are most severe for occupants because of the size mismatch”. 

Probability values were assigned, based on data, to each intersection and vehicle 
pair combination ( ), , ,    ,  i j kX E E i 1 Lintersections j 1 M entities= … = … . There were 

2N L M 7 9 63= ⋅ = ⋅ =  possible interface types. Of these, 35 combinations were eliminated 
since it was impossible for them to occur in our setup. For example, a truck-truck 
interface could never be observed because we used only one truck in the physical 
simulation. For the remaining 28 interfaces, the probability of occurrence was defined 
as ( )  , ,i j kP Prob X E E=  and calculated for each interface. The observed probability of 

occurrence for detected interfaces is given in Table 2. The value for P  ranged from 
.minP 0 0=  to .maxP 0 952= . This value was scaled between 1 and 10 to give the value P  

for the interface. 

Table 2. Probability of occurrence of detected interfaces. 

Intersection Car-Car Car-Forklift Car-Truck Forklift-Truck 
1 0.00% 8.33% 0.00% 0.00% 
2 2.38% 3.57% 7.14% 0.00% 
3 2.38% 3.57% 4.76% 0.00% 
4 0.00% 7.14% 3.57% 7.14% 
5 1.19% 4.76% 8.33% 9.52% 
6 0.00% 5.95% 0.00% 0.00% 
7 9.52% 9.52% 1.19% 0.00% 

The RPN value for each interface could be estimated using the above information. 
The riskiest possible event would be assigned a score of 1000 based on the formulation 
in Equation 4. Table 3 shows the results of risk assessment, the five highest risk events 
are highlighted in the table. 
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Table 3. RPN estimates of risk. Numbers in brackets are probability scores. The shaded cells are 
the highest risk events. 

Intersection Car-Car Car-Forklift Car-Truck Forklift-Truck 
1 35.0 (1) 567.0 (9) 90.0 (1) 8.0 (1) 
2 75.0 (3) 192.0 (4) 576.0 (8) 5.0 (1) 
3 90.0 (3) 252.0 (4) 420.0 (6) 10.0 (1) 
4 16.0 (1) 480.0 (8) 320.0 (4) 64.0 (8) 
5 50.0 (2) 324.0 (6) 630.0 (9) 90.0 (10) 
6 24.0 (1) 504.0 (7) 80.0 (1) 16.0 (1) 
7 360.0 (10) 810.0 (10) 180.0 (2) 32.0 (1) 

4 Analysis 

4.1 Interface detection accuracy 
The AutoRisk system is analyzed by comparing its labeling of interfaces and 

estimation of RPN values with those labeled and estimated by human supervisors on 
all videos recorded during the experiments. To begin, the supervisor was asked to 
validate interfaces identified by AutoRisk in the video. This interaction is outlined in 
Figure 9. The supervisor rated the AutoRisk annotation using one of three values: 
1. Correct: The interface was correctly detected, 2. Machine learning error (ML error): 
an interface was correctly detected, but one or both the vehicles were detected 
incorrectly, and 3. Marking error: The algorithm failed to identify an interface that was 
clearly perceived by the supervisor. 

 
Figure 9. Human validation of interface detection. 

Figure 10 shows examples of ML errors in data. A forklift is incorrectly identified as a 
truck at Intersection 7 and a truck is incorrectly identified as a forklift at Intersection 
4. Furthermore, an interface between a truck and car is missed at Intersection 5. 
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Figure 10. Examples of machine learning errors in interface detection. 

The outcome of supervisor validation for interface labeling is shown in Table 4. 
Out of 91 interfaces labeled by AutoRisk, 82 were correctly labeled, yielding a success 
rate of 90.1 percent. ML error accounted for 2 of 91 results, yielding a ML error rate of 
2.1 percent. The subjective Marking error accounted for 7 of 91 results, yielding an 
error rate of 7.7 percent. If machine learning accuracy was the only type of error being 
scrutinized, then it was found that of the 91 2 182⋅ =  vehicle detections under 
consideration, 180  were accurate detections, yielding a machine learning accuracy of 
98.9 percent. When not considering missed interfaces, the vehicles and intersection for 
82 of 84 interfaces were labeled correctly, yielding an accuracy of 97.6 percent. 

Table 4. Interface labeling accuracy for vehicle-pairs. The shaded row shows that the car-forklift 
interface was most common in the recorded data. 

 AutoRisk Actual 
Count Total % Count Total % 

Car-Car 13 14.29 13 14.29 
Car-Forklift 35 38.46 40 43.96 
Car-Truck 20 21.98 24 26.37 

Forklift-Truck 14 15.38 14 15.38 
Total 82 90.11 91 100.00 

4.2 RPN estimation accuracy 
Interface labeling results based on AutoRisk and human estimates are applied to 

RPN calculations. The severity and detectability scores for each interface are the same 
for AutoRisk and humans, since these scores are assigned in an ad-hoc manner. 
RPN prioritization results are compared in Table 5. The priority of risky interfaces 
identified by AutoRisk matched human labeling, although RPN values were different in 
some cases because of marking and machine learning errors. These differences are 
highlighted using shaded cells in Table 5. 
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Table 5. Comparison of human and AutoRisk RPN estimates. 

Prioritization 
Rank 

Automated 
Intersection RPN 

Value 

Human 
Labeled Intersection RPN 

Value 
Vehicle Pair Vehicle Pair 

1 Car – Forklift 7 810 Car – Forklift 7 810 
2 Car – Truck 5 630 Car – Truck 5 630 
3 Car – Truck 2 576 Car – Truck 2 504 
4 Car – Forklift 1 567 Car – Forklift 1 504 
5 Car – Forklift 6 504 Car – Forklift 6 432 

Figure 11 shows another comparative representation of RPN results, for car-forklift 
interfaces. The variation in assessed risk for all vehicle pairs by intersection was 
compared for three types of results: 1. Human-labeled (True) RPN [solid line], 
2. Detected RPN [dashed line], and 3. RPN for correct detections, without machine 
learning error [dotted line]. The vertices of each of these figures represent intersections, 
the concentric polygons represent RPN scores, and the lines represent the variation in 
RPN value from one intersection to the next. 

 
Figure 11. Analysis of car-forklift interfaces. 

5 Managerial implications 
The AutoRisk system supports manufacturing safety managers in assessing vehicle 

interface risks in three significant ways: 1. Reliable alternative to manual data collection 
and analysis for FMEA, 2. Automated and simplified visualization of RPN results, and 3. 
Leveraging existing infrastructure to set up the low-cost system. 

The reliability of the AutoRisk system has been demonstrated in Sections 4.1 
and 4.2. Therefore, it can be used as an alternative to manual implementation of FMEA 
for risk assessment of vehicle movements in manufacturing facilities. It provides a 
workaround to standard FMEA practices, including laborious data collection and 
annotation, categorization of interfaces, and estimation of the RPN score for each 
interface category. In doing so, the safety manager saves on labor costs and time 
associated with the manual safety auditing process. 
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The visual representation provided by the AutoRisk system will help safety 
managers prioritize their risk mitigation strategy. An example of the visualization is seen 
in Figure 11. The safety manager gains some immediate insights about car-forklift 
interfaces by reviewing this figure: Car-Forklift interfaces were regularly seen in data, 
and their severity value was high at each intersection, this category of interfaces had 
the highest median RPN value. Moreover, Intersection 1 and Intersection 7 had the 
highest RPN scores because of the higher P value at these intersections. 

Manufacturing facilities typically have existing infrastructure that can be leveraged 
to install the AutoRisk system at low-cost. For example, security cameras are often 
high-mounted, which is ideal for the camera perspective under which AutoRisk has 
been tested. Once the camera has been identified, an interactive process must be 
followed to train the classifier for the environment unique to the facility. The training 
itself requires only about 20 minutes of video, selected such that all vehicles in the 
facility are visible. Beyond this, the system does not procedurally require human 
assistance or intervention. 

In summary, AutoRisk provides a safety manager with work area data about the 
‘what’ and ‘where’ of risk. Looking ahead, this volume of data can provide clues to the 
‘why’ of that risk and assist in its mitigation. The understanding and mitigation of risk in 
a manufacturing environment is critical to productivity and manufacturing efficiency 
metrics. The AutoRisk method can become operational by integrating it with a facility’s 
early warning systems to prevent vehicle interface accidents. If installed at multiple 
facilities, it can generate datasets on material movement vehicle safety that will provide 
unprecedented insights on this risk category. 

6 Summary and future work 
The contribution of risk assessment to manufacturing safety is to identify ‘what’ is 

risky and ‘where’ the risk occurs. The AutoRisk approach achieves this using a 
combination of computer vision and machine learning. The former identifies candidate 
locations for mobile vehicles in the work area and the latter identifies the vehicle 
category: car, truck, or forklift. Data is collected by physically simulating a scale version 
of a manufacturing work area and using scale models of the vehicles to simulate 
interfaces at work area intersections. A PCA-based shape descriptor is generated to 
create a sparse  37 1Re × feature vector for vehicle classification. SVM with a quadratic 
kernel (Q-SVM) was found to be the most accurate classifier for the simulated data. 
Vehicle detection accuracy of over 98 percent and interface detection accuracy of 
90.1 percent to 97.6 percent was observed. 

Future iterations of the study can potentially address several challenges related to 
the problem: 1. Can the definition of intersections be standardized to minimize interface 
detection errors relative to human annotation? 2. What modifications are necessary to 
the machine learning approach for pedestrian detection and monitoring the risk of 
pedestrian-vehicle interfaces? 3. How can the fidelity of the physical simulation be 
quantified and improved? 4. What are the other application domains for this analysis, 
for example, can it be applied for redesigning facility layouts? 5. How can the study be 
extended to provide real-time warning for vehicle interfaces? 6. How can data from 
multiple sensors be integrated into the approach to create an integrated framework for 
risk assessment and mitigation? 
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