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Abstract: The present study aimed to analyze factors associated with the equipment failures of 
the sugarcane harvester, whose machineries has high importance in the harvest process and 
cost involved. Part of the data was originally provided by a company located in the countryside of 
Sao Paulo State, from two machines, collected from January 2015 to August 2017, corresponding 
to 2.5 crops. The overall dataset was obtained from three different sources: a stop-tracking 
system, which provides the track of a preventive and corrective maintenance historical of the 
analyzed equipment; telemetry data of the equipment, captured through embedded computer 
systems, installed in the machine’ type under study, which provide information on its operation; 
and meteorological data from the Brazilian National Institute of Meteorology. Multivariate 
analyzes were used such as principal components and multiple regression models, therefore 
creating a model for prediction considering the next equipment’ break, then pointing to causes of 
process failures. Thus, the results point to some improvements concerned with individualized 
reliability scheme in order to reduce the number of corrective stops given the equipment. 

Keywords: Reliability; Multivariate analysis; Optimization in maintenance planning. 

Resumo: O presente estudo teve como objetivo analisar os fatores associados às falhas dos 
equipamentos da colheitadeira de cana-de-açúcar, cujas máquinas têm grande importância no 
processo de colheita e nos custos envolvidos. Parte dos dados foi originalmente fornecida por uma 
empresa localizada no interior de São Paulo, de duas máquinas, coletadas de janeiro de 2015 a 
agosto de 2017, correspondendo a 2,5 culturas. O conjunto geral de dados foi obtido de três fontes 
diferentes: um sistema de rastreamento de parada, que fornece o rastreamento de um histórico de 
manutenção preventiva e corretiva do equipamento analisado; dados de telemetria do 
equipamento, capturados através de sistemas de computador embarcados, instalados no tipo de 
máquina em estudo, que fornecem informações sobre sua operação; e dados meteorológicos do 
Instituto Nacional de Meteorologia do Brasil. Análises multivariadas foram usadas, como 
componentes principais e modelos de regressão múltipla, criando, assim, um modelo de previsão 
considerando a próxima interrupção do equipamento e apontando as causas de falhas no processo. 
Assim, os resultados apontam para algumas melhorias relacionadas ao esquema de confiabilidade 
individualizado, a fim de reduzir o número de paradas corretivas dadas ao equipamento. 

Palavras-chave: Confiabilidade; Análise multivariada; Otimização no planejamento de 
manutenção. 
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1 Introduction  
Since the Brazilian colonial period, the sugarcane industry is a relevant factor in the 

economic development. As such, the first exportation product was the sugarcane 
(Goes et al., 2011), and its industry emerged/structured itself on a large scale 
production focused on the global market (Furtado, 1986). Despite centuries of 
stagnation, this industry has not collapsed, in fact, was benefited from limited periods 
of growth due to foreign investments and government initiatives, as its reemergence in 
the 19th century due to ethanol production. 

The Gross Domestic Product (GDP) originated from the agribusiness sector 
reached the amount of R$ 896 billion in 2016 (USP, 2017), In 2017, from January till 
August the GDP of sugarcane industry chain reached an important record of 
R$ 156 billion (USP, 2017). Another important fact was its contribution to the economy 
itself which its behavior was positive given the farming industry. 

The number of sugarcane mills in Brazil grew by 171% between 2000 and 2013 
with a total processing capacity of 3.6 million metric tons of sugarcane per day, said by 
Sant’Anna et al. (2016). From the economy perspective, the sugarcane production 
generates nearly 700,000 direct jobs and 200,000 indirect jobs (Almeida et al., 2007; 
Sant’Anna et al., 2016). The mechanization process in the sugarcane industry 
accelerated early in the 70’s, as the result of the ethanol’ emergence, as an energetic 
alternative to fossil fuels and, later, the increasing of the international demand for sugar 
market during the 90’s. As a result of this development, between 2000 and 2012, Brazil 
and United States were responsible for over 85% of the world’s annual supply of 
ethanol (Sant’Anna et al., 2016). According to the Center for Advanced Studies on 
Applied Economics (CEPEA-Esalq), the sugar prices in the international market 
indicated a grew of 5% per year in the last 14 years (USP, 2017). The land costs raised 
and strong growth of ethanol and sugar markets made it imperative to increase 
investments in productivity and cost reduction. 

Additionally, Brazilian’ governmental initiatives as the Environment Protocol for the 
Sugar and Energy Sector (Green Ethanol), which was adopted by main sugarcane 
producers in Sao Paulo State, created a framework for better practices regards to the 
mechanization implementation in replacement of crop burning and manual harvesting. 
Currently, 92% of sugar and ethanol production in Sao Paulo State is the signatory of 
the Protocol. 

The mechanical process in the sugarcane harvesting uses basically 2 types of 
equipment: harvesters and tractors for transportation. Among them, harvesters are the 
most important equipment not only because of its embedded high technology and cost 
but also due to its sensitive function through the whole production chain. The production 
flow must be stable and constant since the factory amount of production is settled at 
the beginning of each day infeasible of changes. The unavailability of the harvester due 
to a corrective maintenance breaks, creates production’ fluctuation given a sugarcane 
required for manufacture, jeopardizing plant’s productivity as well as rising production 
costs. Silva et al. (2011) discusses the importance of planning and operations’ 
management in the agricultural area as fundamental to guarantee the supply of raw 
material to the industrial unit. 

Based on the following scenario, the development of a predictive model for 
mechanical failure’ reduction will optimize the availability of the harvester, contributing 
for the machines’ productivity increase and stability of its supply of raw material 
(sugarcane) for productions plants. The basic principle is to keep the harvester in 
operation for the longest period possible and the main objective of this work is to 
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evaluate the variables related to corrective maintenance and develop and predictive 
model to mitigate those maintenances. As for the development of this predictive model, 
multivariate techniques such as Principal Components Analysis and Multiple 
Regression were used. 

This article is distributed as; the following section presenting the theoretical 
foundation considering the principal topics listed in this works supported upon the 
applied field and brief descriptions of the used techniques. Dataset and Methodology 
will be later depicting, in details, the origin, and formation of the database. Finally, 
sections designated to empirical results and conclusion will be also presented in order 
to synthesize the contributions of this work. 

2 Theoretical foundation 

2.1 Agribusiness 
Brazil is a global power in the agribusiness industry. Currently, it is the third largest 

exporter of agriculture products with an estimated volume of 80 billion dollars (WTO, 
2016). Sugar accounts for 10 billion dollars of exports and is the second most important 
exported product followed by animal protein (6 billion dollars). The dynamism of the 
Brazilian agribusiness is noticed not only on its share of the global commodities 
markets but its importance to the Brazilian GDP. The agribusiness sector is responsible 
for 20% of the Brazilian GDP or 1,25 trillion of reais in 2016 (USP, 2017). 

The Brazilian agribusiness success in the international market is due to strong 
competitive advantages as the vast fertile soil and adequate climate for extensive 
crops. Besides natural conditions, the agribusiness sector has been investing for 
decades on mechanization and technological improvements on existing crops. 
According to the U.S Department of Agriculture (USDA), Brazil has one of the highest 
productivity growth rates in this sector, 4.28% between 2006 and 2010 (Gasques, 
2017), followed by China (3.25%), Chile (3.08%) e Japan (2.86%). 

2.2 Preventive and corrective maintenance 
During the harvesting period, the sugarcane harvesters are submitted to two types 

of maintenance: the preventive (or revision) and the corrective. Both actions have the 
objective of prolonging the useful life and providing good working conditions to the 
machines, in view of their critical working conditions. 

The preventive maintenance is related to a set of actions that aim to reduce the 
probability of machines failures for a certain period of time and also to restore the ideal 
conditions of their operation. This planning helps to reduce unforeseen events’ 
occurrence and improves equipment’s operational quality. On the other hand, the 
corrective maintenance occurs after any of the machine’s components has failed. Such 
intervention is performed to ensure that the harvester is unavailable in the shortest 
possible time, but it is subject to logistic restrictions such as the existence of spare parts 
in stock, the need for long-distance movement, and the availability of maintenance 
personnel. It is also worth mentioning that this work is usually performed in full time 
since the harvesters operate on a 7×24 regime (twenty-four hours a day, seven days a 
week; constantly). 
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Harvesters are still subject to another type of maintenance: a general overhaul that 
occurs in the off-season. It is characterized as a type of corrective maintenance that 
aims to make the machine completely renewed. Although it is not addressed in this 
paper, this type of maintenance is important to understand the life cycle of agricultural 
machinery. 

2.3 Regression analysis 
The regression analysis plays an important role in statistical methods. Such analysis 

try to find the best relationship between a dependent variable and the predictors. 
A multiple linear regression analysis is commonly described as: 

1 1 2 2 k kY X X Xα β β β= + + +…+ +  (1) 

where: Y is the dependent variable; α is the intercept; β are the slopes; Xi the i-th 
predictor variable; and ϵ is a random variable (usually assumed to be normally 
distributed).  

A simple application of this approach is to predict future values by replacing the 
predictor variables into equation (1). For an overview of regression techniques, the 
reader is referred to Draper & Smith (2014). 

Here, there is the presence of categorical variables that need to be included in the 
model. Such characteristic can be easily considered during the modeling as they are 
already implemented in standard statistical software such as R (see Faraway, 2002) 
for a detailed discussion). 

The regression analysis is sensible to the number of variable in the model. The main 
goal is to find a parsimonious model that has the better predictive response without too 
many parameters. In this case, a common approach is to consider a technique known 
by stepwise (see Bendel & Afifi, 1977), such approach sequentially adds variables to 
the model until find the best model to represent the response. Finally, in many cases 
the assumption that the errors follow a normal distribution are not satisfied. For these 
cases, generalized linear models can be easily considered (see McCullagh, 1984) and 
the references therein). 

2.4 Principal component analysis 
The Principal Component Analysis (PCA) is an important multivariate technique that 

aims to reduce the redundancy of many of the variables without losing information. 
Following Morrison (1976) the principal components ( ), ,1 pY Y= …Y from a data set of p 
variables ( ), , ,1 2 px x x= …X' are defined as the linear combination i i1 1 i2 2 ip pY a x a x a x= + +…+ , 
where the coefficients ika  are the elements of the eigenvector 1a associated to the 
covariance matrix’s eigenvalue from variables 'X , the linear combination can also be 
represented by equation (2): 

1 1 11 1 12 2 1p p
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where: ( ) ( )= ='
i iVar Y a Var X a λ , ( ), 0= ∀ =i jCov Y Y  then  i j . 

The PCA transform the available variables of a certain database to a combination 
of p non-correlated variables. This technique allows the selection of k variables (k ≤p) 
that explain most of the data variability. 

The following relationship holds   1 2≤ ≤…≤ pλ λ λ , that is, ( ) ( ) ( )1 2 pVar Y Var Var Y≤ ≤…≤Y . 
Therefore, first principal component ( 1Y ) is associated with the highest eigenvalue of 
the covariance matrix. This is followed by the second principal component ( 2Y ) whose 
eigenvectors are associated to the second highest eigenvalue, then followed by 2−n
principal components that explain the total variability of the analyzed data. Therefore, 
the first principal component is considered the most important variable Y variable as it 
represents a major share of the total variation of the data set. 

From a geometric point of view, the chosen linear combinations make the principal 
components represent a new set of coordinates obtained from data rotation to the 
direction of greater variability. The rotation process provides clearer covariance 
structure of the analyzed data. In practice, usually two or three principal components 
are selected as they represent a major portion of the variability. 

2.5 Survival analysis 
Survival analysis is an area of the statistical methods that focus on estimating the 

lifetime of the event of interest. In this case, the event of interest is the failure of 
mechanical and electronic components of the harvesting machine. An important 
characteristic in the survival analysis is the possibility to include partial observations 
related to the lifetime of the components. This occurs commonly in practice as in many 
cases we cannot perform the study until all components have failed. Such characteristic 
is usually referred as censoring (or censored data) and removing such data may include 
unnecessary bias in the lifetime estimation. 

One of the major interests in survival analysis is the survival function , often called 
S(·). It is defined as the probability of the event (death) occurring after a given point in 
time and is represented by equation (3): 

( ) ( )S t P T t= >  (3) 

The survival function is assumed to start at 1 at time zero, i.e., S (0) = 1 and 
decreases as the time increase tending to zero at some point. In our context, every 
component is working at the beginning of the experiment and they are expected to fail 
after some period. For an overview of survival analysis, the reader is referred to 
Lawless (2011) and Tableman& Kim (2016). 

Another important information is obtained from the hazard function, the hazard rate 
is defined as the rate of occurrence of the event (death or failure) conditioned to the 
survival until a given time t, i.e., it is the instantaneous risk in t that an individual will not 
survive further. The hazard rate is obtained from equation (4): 

( ) ( )( )dh t log S t
dt

= −  (4) 
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The hazard function can also be represented in its cumulative form, where the value 
at time t represents the sum of the risk over the entire period of time prior to t. 

3 Materials and methods 
The dataset available contains nearly 60,000 occurrences, during the collection 

period of 30 months, corresponding to 2.5 harvests. The crops start in April 2015 until 
March 2017. The harvest period occurs between April and November, approximately. 
During the harvest’ months, the harvesters work twenty-four hours over the seven 
days weekly (24x7). During the off-season, from December to March, the equipment 
has a general revision, considering renewable of the machines. Even though, in this 
work the defaults will be considered time-invariant. Therefore, this paper evaluated data 
coming from the following three-part datasets totalizing in 22 variables. The first informative 
part of the dataset contains the equipment’s maintenance history (stop-tracking system), 
presenting the maintenance dataset as corrective and preventive historical data. The second 
part holds the equipment’s telemetry data which, captured through embedded computer 
systems, installed in the harvesters providing information about its operation. Also, a 
meteorological data provided by the Brazilian National Institute of Meteorology (INMET), 
was added to verify relations between clime information and maintenance occurrence. 
Tables 1-3 show what data was available for evaluation respectively 

Table 1. Variables related to maintenance and failures. 

Variable Explanation 
Equipment Equipment code 
Problem Problem category 

Failure start Date and time of failure occurrence 
Unavailable Time Unavailability time 

Table 2. Telemetry variables in database. 

Variable Explanation 
Vehicle Number of equipments 
Begin Beginning of the data recording 
Length Time measured during data recording 
Activity Activity executed by the machine 

Operator Conductor of the machine 
KM Kilometer 
VM Average Speed 
REV Number of motor rotation 
RPM Rotation per minute 
TRE Time - reverse mode 
TER Time - elevator in reverse operation 
TCB Time - cutting in operation 
TEL Time - elevator in operation 
TML Time - engine in operation 
TMO Time - engine idle 
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Table 3. Variables related to meteorological data. 

Variable Explanation 
Rainfall Daily quantity of rain (in mm3) 

Temperature Daily maximum temperature 
Relative humidity Daily average relative humidity 

The evaluation process followed the following work-flow for each new cycle 
accomplished: 1) categorize the failures cause; 2) raking the failures category 
(duration, occurrences and recurrences); 3) compare the equipment performance; 
4) identify the relationship between failures and variables; 5) calculate the time between 
failures. This work-flow is plotted in Figure 1. 

 
Figure 1. Working flow process chain. 

The following session will discuss the statistical analysis and empirical results under 
the adopted methodology. 

4 Empirical results 
Initially, a descriptive analysis was performed in order to structure the data analysis. 

During 30 months (2.5 years’ harvests), harvesters A and B had operated between 8,600 
and 9,000 hours per equipment. Both machines had a total maintenance dedication time, 
including corrective and preventive, corresponded to 26% to 28% compared with the total 
time in operation. Figure 2 shows the relationship between total time under maintenance 
and operation. Hence, the first analysis was related to the unavailable versus operation 
time. Around 63% of the stop-tracking time was related to corrective maintenance, and 
only 37% was a programmed stop (preventive maintenance). 

 
Figure 2. Preventive and corrective maintenance proportion between working time relation. 
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On average, the preventive stops are scheduled every 7 days, they present a pattern 
in interval and duration. The occurrences of the preventive versus corrective stops’ 
distribution can be verified in Figure 3. Moreover, it is possible to verify visually a greater 
occurrence of non-programmed interventions (correctives) then preventives stop. 

 
Figure 3. Histogram - preventive and corrective maintenance. 

Based on the assumption of the machines become new after submitted to 
preventive maintenance, new corrective maintenance may not be expected close to 
the preventive action. Figure 4 also presents the defaults’ frequency, in both machines, 
which events occur between 83% and 89% before 7 days. Corrective maintenances 
occurred frequently within a week before the preventive maintenance comes. 

 
Figure 4. Occurrence of corrective maintenance. 

Broadening previous analysis, the accumulated time of corrective maintenance was 
performed to evaluate principal defaults currently presented during the harvests cycle. 
Table 4 summarizes the principal failures by its number of occurrences, resulting in a 
ranking of the most important failures. The top five types of failure correspond more 
than 60% of the total number of occurrences and will be the main focus of this study. 
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Table 4. Main Failures Rank - Time and Number of Occurrences.  

Component Failure Count Time % Count(cum.) % Time(cum.) 
1 Crop Divider 150 344.7 16.1 15.1 
2 Diesel Motor 135 492.9 30.5 36.8 
3 Elevator 116 239.9 42.9 47.3 
4 Pricker 113 241.1 55.0 57.9 
5 Transmission 84 189.91 64.0 66.2 
6 Electric 79 207.9 72.5 75.4 
7 Roller 74 170.4 80.4 82.9 
8 Final Drive 60 156.0 86.8 89.7 
9 Base Cutters 53 118.3 92.5 94.9 
10 Primary Extractor 43 80.2 97.1 98.4 
11 Air Conditioning 27 35.9 100.0 100.0 

Cum. represents cumulative. 

Operation variables (telemetry) analysis was performed in order to evaluate the 
homogeneity of both machines. Figure 5 demonstrates some equipment not only 
similar performance but the analyzed data points to similarity of its variations. 
Therefore, it should be evaluated the possible implications of those variations on the 
overall failure study. 

 
Figure 5.BoxPlot - Some Telemetry Sample Variables. 

In order to support the assumption that both machines operate in a similar manner, 
and can be considered just as one equipment, the operation variables’ averages 
obtained were initially submitted to the t-test. Considering a significance level higher 
than 10%, there is no statistical evidence that machine A and B operate differently from 
each other. 
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4.1 Multivariate analysis of defective parts 
Initially, the distributions associated with the top three main stops were analyzed 

individually, as well as their relationships with the use of the machines. The database 
considering the corrective stops was divided by its type, calculating the intervals 
between the stops, and the given sensors (measurements to determine the use of the 
machines). For these intervals, the operational data were added, with the exception of 
the variables “Average Speed” and “RPM” whose mean is a better indicator. 

Discussing empirical distribution, variables related to operation time and kilometers 
have exponential distribution decay. Thus, this perception reinforces the equipment’ 
operation limit preceding the next maintenance. Moreover, other variables like Average 
Speed and RPM have normal distributions, presenting low variance (but fat tails), as 
depicted in Figure 6. 

 
Figure 6. Frequency Distribution of some telemetry variables. 

Figure 7 shows a strong correlation between most of the telemetry variables, 
presented on the dataset. The visual analysis of the variables exhibits linear 
correlations between 7 out of 10 independent variables. Most of these variables were 
directly, or indirectly, related to the operating time of the equipment. 

 
Figure 7. Scatter Plot - Relation among Independent variables. 
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This feature relates directly to the possibility of the data reduction under multivariate 
technique such as Principal Component Analysis. Figure 8 bring forward the 
explanatory concentration in the first three principal components, responsible for about 
94% of the total dataset variance, which only the first component is responsible for 64% 
of the total variance. 

 
Figure 8. Variance Proportion corresponding to the Principal Component explanation. 

According to PCA results, the first principal component relates the variables from 
the operating time and kilometers, responsible for most of the variance of the data. 
The second principal component composed of RPM and Average Speed, whose 
distributions diverge from the other variables. Finally, the third principal component is 
composed of a single variable, which has very few observations, known as TER 
(Reversing Elevator time). There is a strong evidence of the relationship between 
principal components and variables’ features in practice. Table 5 presents the % of 
each variable per eigenvector (component). 

Table 5. Principal Components - Breakdown (in %). 

Variables Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 
KM 14.2 0.0 0.0 0.6 4.9 
VM 0.4 51.0 0.0 46.6 1.4 
REV 14.4 0.1 0.0 0.0 0.4 
RPM 0.8 45.6 3.6 49.6 0.3 
TRE 13.7 0.8 0.2 0.8 23.5 
TER 0.3 1.8 96.0 1.9 0.1 
TCB 13.8 0.1 0.0 0.3 48.2 
TEL 14.3 0.1 0.0 0.2 1.6 
TML 14.4 0.2 0.0 0.0 0.3 
TMO 13.9 0.5 0.1 0.1 19.3 

TOTAL 100.0 100.0 100.0 100.0 100.0 
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After obtaining good results with space rotation and problem dimension reduction, 
conditions were created to develop a regression model since the dependent variables 
related to telemetry are now independent. This result is guaranteed by the definition of 
PCA in which its components are orthogonal, that is, independent. 

4.2 Regression analysis 
Once the space rotation was proceeding, a regression model was conducted to 

evaluate the dependence of the machines working hours (the time) between failures’ 
type and the predict variables such as telemetry data transformed with PCA technique, 
the accumulated failure number (of the same case and of the all cases), the 
meteorological data (rainfall, temperature and relative humidity), the failure cause, the 
equipment, and the crop. The chosen regression method was the multivariate 
regression method. 

For the multiple regression analysis, it was calculated only the five most common 
failure types. The failures times does not follow a normal distribution as can be checked 
in the Figure 9. This is expected as the failure times are only positive values, a powerful 
alternative is to consider a regression model that follows a Gamma distribution. 

 
Figure 9. Hours of operation equipment’s variable distribution. 

According to the empirical distribution linear regression models are not suitable, 
therefore, the generalized linear models (GLM) are considered, in particular the 
dependent variable is assumed as a Gamma distribution, with an inverse link function, 
using an implemented package in R. The theoretical model is represented by Y 
∼Gamma and the link function g(·) = Inverse with. 

( ) ( )( log # log # .0 1 2 3 4 5Y g Failures Failure Cause PC1 PC2 PC3β β β β β β= + + + + + +  

. . *6 7 8 9OccurenceType Equipment OccurrenceType Equipment Cropβ β β β+ + + + +  

. * . * .10 11 12OccurrenceType Crop OccurrenceType Failures Cause Rainfallβ β β+ + + +  (5) 

. )13 14Relative Humidity Temperatureβ β+ +  
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The estimates of the regression parameters are presented in Table 6, and the 
selected parameters can be seen in final model available in Equation 5. 
The significance of the parameters estimates helps us to identify the best explanatory 
variables. The principal components related to operating time and kilometers, as well 
as RPM and Average Speed showed to be statistical significant. It seems to have a 
difference, captured by the model, among the defaults’ type, additionally among them 
considering the crops and its cumulative numbers of stops per crop. Additionally, the 
meteorological variables showed to be significant for Precipitation and Maximum 
Temperature averaged in the working time affecting the performance of the machines. 

Table 6. Generalized Linear Regression Results. 

 Estimate Standart Error t-value  

Intercept -0.0041 0.0020 -20.405 * 

Total num stop (per crop) 0.0000 0.0000 -0.1267  

Stop num given its problem (per crop) 0.0000 0.0000 0.5841  

PCA 1 0.0062 0.0005 121.715 *** 

PCA 2 -0.0022 0.0008 -26.014 ** 

PCA 3 0.0009 0.0010 0.8453  

Problem - Elevator -0.0002 0.0007 -0.3026  

Problem - Motor 0.0014 0.0007 18.560  

Problem - Pricker 0.0000 0.0007 0.0034  

Problem - Transmission 0.0018 0.0007 26.391 ** 
Machine A vs B -0.0005 0.0004 -10.202  

Crop 2016 0.0007 0.0006 11.487  

Crop 2017 0.0008 0.0006 14.346  

Problem (Elevador): Machine B 0.0000 0.0006 -0.0529  

Problem (Motor): Machine B 0.0000 0.0006 -0.0519  

Problem (Pricker): Machine B 0.0007 0.0006 12.599  

Problem (Transmission): Machine B 0.0001 0.0006 0.1569  

Problem (Elevator): Crop 2016 0.0014 0.0007 19.670  

Problem (Motor): Crop 2016 -0.0006 0.0007 -0.9446  

Problem (Pricker): Crop 2016 -0.0012 0.0008 -15.989  

Problem (Transmission): Crop 2016 -0.0008 0.0008 -0.9693  

Problem (Elevator): Crop 2017 0.0001 0.0008 0.1550  

Problem (Motor): Crop 2017 -0.0021 0.0008 -27.521 ** 
Problem (Pricker): Crop 2017 -0.0004 0.0008 -0.5380  

Problem (Trasmission): Crop 2017 -0.0022 0.0008 -27.002 ** 
Stop num: Problem (Elevator) -0.0001 0.0000 -10.976  

Stop num: Problem (Motor) -0.0001 0.0000 -18.756  

Stop num: Problem (Pricker) 0.0000 0.0000 -0.6498  

Stop num: Problem (Transmission) -0.0002 0.0001 -35.968 *** 
Preciptation -0.0019 0.0004 -44.227 *** 
Air Humidity 0.0015 0.0011 12.994  

Max Temperature 0.0042 0.0010 39.656 *** 

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. PCA: Principal Component Analysis. 

The residuals analysis presented in Figure 10 provides evidence of the goodness 
of the fit as the predictive values are closed to the theoretical ones. 
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Figure 10. Model’s Residuals Distribution. 

Given the presented results, the adopted generalized linear model shows 
satisfactory results explaining the causality in the working hours features influence. 
Predictions can be proceeding since the adjusted model is appropriated. 

4.3 Survival analysis 
The failure times of the three main types of corrective stops were studied under 

survival analysis. The components considered were: diesel engine, line divider, and 
elevator. Non-parametric techniques were used to study the empirical data allowing us 
to compare the obtained results with the ones under the regression approach. 

The event of interest is the occurrence of a break that leads to a corrective stop in 
the harvest machine. Further we assume that the corrective maintenance leaves the 
equipment in full working condition. Hence, the survival time is the time since the last 
stop that occurred due to a break of the same type of equipment. Here, we have 
complete data of the stops of the harvesters and no techniques were necessary to deal 
with censored observations. The survival curves for the three most common failures 
were calculated using the Kaplan-Meier estimator (see Figure 11). 

From Figure 11 we observe that as the time increase the probability of that the 
component has not fail decrease quickly, therefore, the failures occur in a small interval. 
Additionally, we drew a line that represent approximately the 25% of the failure of each 
component which correspond to 3 days. 
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Figure 11. Survival curve by type of stop. Median represented by red line points out the 

expected in 50% of the cases to recurrence in 3 days. 

The cumulative hazard curves for the three stop types were also calculated under 
the Nelson-Aalen estimator. They are presented in Figure 12. This nonparametric 
estimator is useful for analyzing graphically the cumulative intensity of occurrence of 
failure without the need to assume any kind of distribution or special characteristic of 
the data and is especially suitable for cases where the sample size is relatively small. 

 
Figure 12. Cumulative hazard curve by type of stop. 

It is remarkable how the curves for survival and cumulative hazard are similar 
among the failure types, indicating that there is no great difference in probability of 
failure among the most common types. It is also notable how survival probability falls 
quickly, reaching 50% of survival for all types in the period between 3 and 5 days after 
the last break. 
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5 Discussion 
In this study, we observed that during a significant amount of time the harvesters 

are unavailable due to corrective stops, that is, reactive actions are performed to 
overcome the problems of the machine breakdown. As we have many types of failure 
multivariate analysis was considered in which indicated a high correlation between the 
variables of telemetry base, indicating that some of them can be disregarded without 
significant losses when describing harvesters’ behavior. Further, regression analysis 
using generalized linear models are considered to proposed a model that is capable of 
planning an adequate preventive maintenance, able to reduce machine unexpected 
failure’s probability. 

Also, another possible approach was to consider the maintenance efforts on the five 
most frequent types of stops, which correspond about to 64% of the total. In this regard, 
the maintenance activities aim to increase the useful life and improve the machines 
operating conditions with simple preventive stops. Continuing with the findings, our 
results corroborate Ripoli&Ripoli (2008) that discussed the participation of factors such 
as agronomic, environmental and management conditions in the influence exerted on 
the mechanized harvesting operation. These factors can compromise the quality of the 
raw material, productivity, as well as the longevity of the cane field. 

This finding is in agreement with the result obtained in the survival model, which 
indicated that in a period between 3 and 5 days after the last break, the harvester 
presents a 50% chance of breaking again for the same reason. This points out the lack 
of planning during the harvester’s life cycle results in operational losses. Future works 
should concern on the implementation of this technology, in a form of an app developed 
for monitoring of and equipment’s failure predict. This app could implement the 
regression analysis model and estimate the amount of time until next failure, testing 
the hypothesis of reduction in the failure’s probability taking into account the founds in 
the PCA and meteorological data. 
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