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Abstract: In a multiple stream process (MSP) a product is manufactured in a number of streams in 
parallel. The traditional tool for monitoring MSPs, the group control chart (GCC), does not take into 
account that typically the value of the quality variable in each stream is the sum of a component 
common to all streams and an individual component, of the particular stream. This may render the 
GCC ineffective in detecting shifts in the mean of individual streams. Based on this two-components 
model, we propose an exponentially weighted moving average (EWMA) GCC to monitor the means 
of the individual streams components. We optimize its design (minimizing the ARL for given shifts in 
the mean of a stream) and compare their ARLs with the ones of other existing charts devised for 
two-components MSPs. For this comparison, we needed to obtain optimal designs of these previous 
charts too, which were not available in the literature; this is an additional contribution of our work. 
The ARLs of the charts were obtained by simulation, with a number of runs sufficiently large to ensure 
precise results. The results show that the proposed chart outperforms the previous ones, becoming 
thus recommended for the statistical control of MSPs. 

Keywords: Multiple stream processes; Group control chart; Components of variance; Exponentially 
weighted moving average. 

Resumo: Em um processo de fluxo múltiplo (MSP) um produto é fabricado em vários fluxos em 
paralelo. A ferramenta tradicional para o monitoramento de MSPs é o gráfico de controle de grupo 
(GCG), que não leva em conta que tipicamente o valor da característica de qualidade em cada fluxo 
é a soma de um componente comum a todos os fluxos e um componente individual, do fluxo 
particular. Isso pode tornar o GCG ineficaz na detecção de mudanças na média de fluxos individuais. 
Com base neste modelo de dois componentes, propomos um GCG da média móvel ponderada 
exponencialmente (EWMA) para monitorar as médias dos componentes individuais dos fluxos. 
Otimizamos seu projeto (minimizando o ARL para determinados deslocamentos na média de um 
fluxo) e comparamos seus ARLs com os de outros gráficos destinados a MSPs de dois 
componentes. Para essa comparação, precisávamos obter os projetos ótimos também desses 
gráficos anteriores, que não estavam disponíveis na literatura; essa é uma contribuição adicional do 
nosso trabalho. Os ARLs dos gráficos foram obtidos por simulação, com um número de corridas 
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suficientemente grande para garantir a precisão dos resultados. Estes mostram que o gráfico 
proposto supera os anteriores, tornando-se recomendado para o controle de MSPs. 

Palavras-chave: Processos Multifluxo; Gráfico de Controle de Grupo; Componentes da variância; 
Médias Móveis Exponencialmente Ponderadas. 

1 Introduction 

Multiple stream processes (MSPs) are present in many industries, e.g. beverage, 
cosmetics and plastic industries, among others. They are characterized by the fact that 
the product, quality characteristics (quality variables) and specifications are the same in 
all streams, which ideally should have the same distribution, adjusted in the same target 
value and with the same spread. The first statistical process control (SPC) scheme 
specifically devised for MSPs was the group control chart (GCC), developed by the British 
during World War II and described by Boyd (1950). The idea behind a GCC is to aggregate 
in one control chart the information from all streams, making easier the assessment of the 
process state. Concretely: at every sampling time, n measures of a quality variable are 
made in each stream and the averages and ranges of the observations in each stream 
are calculated; in the group X  control chart only the smallest and largest averages are 
plotted and compared with the control limits; if they fall within the control limits the process 
is considered to be in control. The group R chart is similar (for small sample sizes there is 
no lower control limit and only the largest range is plotted). For several decades this was 
the only procedure in the literature for monitoring multiple stream processes. Nelson 
(1986) proposed a runs scheme to be used with group charts (with or without control 
limits): if a same stream yields the largest (or the smallest) reading more than r times in a 
row (where r is defined as a function of the number of streams of the process), this should 
be an indication that this particular stream has a higher (or lower) mean than the other 
ones. 

Some further works on the monitoring of MSPs are Mortell & Runger (1995), 
Runger et al. (1996), Amin & Li, (2000), Lanning et al. (2002), Liu et al. (2008), Xiang & 
Tsung (2008), Meneces et al. (2008) & Epprecht et al. (2011a). For a comprehensive 
literature review of this topic, which describes these works with some detail & includes 
other references, see Epprecht (2015). 

Mortell & Runger (1995) were pioneers in acknowledging the fact that many (if not 
most) MSPs have two separate sources of variation and thereby in such processes the 
value of the quality variable measured in time t in each stream should be represented by 
the sum of two random variables: a “mean level” common to all streams (and which may 
be stable or present some dynamics over time) plus an individual component responsible 
for the difference between the stream value and the common component value. This 
component will consist only of random variation about the common value, having null 
mean, in the case the process is in control and all streams are centered on the same 
value; on the other hand, a special cause affecting a stream may make the mean of its 
individual component differ from zero. An example of such a process is a filling process 
with a filling machine with many heads. The functioning of a common reservoir, pump 
and/or characteristics such as the density of the fluid are responsible for the common 
component level, while a clog or a fissure in some tube of one of the heads will affect only 
the output of that head. Mortell & Runger (1995) have shown the inefficiency of the 
traditional GCCs (and of Nelson’s runs scheme) in signalling special causes affecting the 
mean of a particular stream. They proposed then a statistic ( tR ) that is sensitive to such 
kind of changes: the difference between the largest and the smallest stream averages in 
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time t. They have shown the effectiveness of this statistic and its superiority relative to the 
previous control schemes for MSPs. They also proposed and analyzed runs rules, 
CUSUM and EWMA versions of the chart. 

For monitoring the means of the individual streams components under the two-
component model Runger et al. (1996), based on a multivariate model and principal 
components decomposition, proposed a so-called S2 chart on a statistic which turns 
out to be proportional to the sample variance between streams: S2 equals m 1−  times 
the sample variance of the streams averages, where m  is the number of streams; it 
can also be interpreted as the squared norm of the orthogonal projection of the multi-
stream vector on the complementary subspace of the first principal component (which 
is the sample mean of all streams). This chart showed similar performance to the tR  
chart in the case of shifts in one stream but outperforms the tR  chart when more than 
one stream shifts. A MEWMA version of the chart was also proposed and briefly 
analyzed. 

Other work based on the two-component model of MSP was Epprecht et al. 
(2011a). They proposed a residuals GCC where, in contrast with the classic GCC for 
the mean, the points plotted at each sampling time t are the smallest and the largest 
estimates of the individual streams components in time t rather than the smallest and 
the largest averages among all streams. This is a Shewhart-type GCC, and was 
shown to outperform the Shewhart-type versions of Mortell & Runger (1995) tR  chart 
and Runger et al. (1996) S2 chart in the detection of mean shifts in one individual 
stream. 

However, as mentioned, Mortell & Runger (1995) and Runger et al. (1996) had 
proposed and analyzed also EWMA versions of their charts, which were much faster in 
signalling shifts of small and moderate sizes ( 2≤  standard deviations) than their 
Shewhart-type counterparts. The fact that the residuals GCC proposed by 
Epprecht et al. (2011a) outperformed the Shewhart-type versions of the charts of those 
authors raises the question whether an EWMA version of the residuals GCC might 
outperform the EWMA versions of those charts as well. This directly motivates the 
proposal and analysis of such an EWMA version of the residuals GCC, that is, an EWMA 
GCC on the smallest and the largest estimates of the individual streams components. 
The definition, optimization and performance analysis of such chart is the object of the 
present paper. 

We give expressions for computation of the EWMA statistics and of the control limits 
for such control chart, detail its operation, and optimize its design (that is, we find the 
values of the control limits and of the EWMA smoothing constant that minimize the out-of-
control ARL of the chart) for a variety of cases (combinations of number of streams, 
sample size and size of shift in the mean of a stream for which the average run length — 
ARL — should be minimized); we optimize, as well, in the same sense, the EWMA 
versions of Mortell & Runger (1995) tR  chart and Runger et al. (1996) S2 chart, for the 
sake of a fair performance comparison. To our knowledge, there was no optimization of 
the designs of the EWMA tR  and MEWMA S2 control charts in the literature. Then we 
obtain the ARL profiles (ARLs for a range of shifts in the mean of an individual stream) of 
the three control schemes, for comparing their performances. The ARLs were obtained 
through simulation, due to the prohibitive complexity of an analytical approach, but with a 
number of runs large enough to yield precise results. As will be seen, the proposed chart 
outperforms its predecessors. 

The stages for achieving the objectives of this research are in Table 1. 



An EWMA control chart... 

4/17 Gestão & Produção, 28(3), e062, 2021 

Table 1. Stages of the research and objetives of each one. 

number description of the stage objective 

1 Determine the expression of the EWMA statistics and control limits 
for the GEWMA- d , chart chart definition 

2 
Build and code a simulation model for computing the ARLs of the 
GEWMA- d , EWMA tR  and MEWMA S2 charts. Do the same for 

the residuals GCC of Epprecht et al. (2011a) 

model and 
program for 

computing ARLs 

3 

For different combinations of *δ  (specified size of shift in the mean 
of one stream), m (number of streams) and n (sample size: 

number of observations per stream at each sampling time), do a 
search to determine the optimal design, i.e., the value of the pair  
( λ , k) that minimizes the ARL1 for the shift *δ  in the individual 

component of one stream, keeping at the same time the ARL0 on a 
specified value. For each point ( λ , k) in the search, the ARL1 is 

computed with the simulation program. Do this for the three 
EWMA-type charts. For the Shewhart-type residuals GCC, just find 

the control limts that yield the specified ARL0 

optimization 

4 

For all the cases in Stage 3 above, run the simulation program with 
the optimal parameters of each chart to obtain their ARL profiles: 
their ARL1 values for a range of shift magnitudes δ  different from 

*δ ; tabulate these profiles for comparing the performances of the 
charts and interpret the results 

performance 
analysis and 
comparison 

The rest of this paper is organized as follows: Section 2 describes, as a background, 
the two-component model proposed by Mortell & Runger (1995) and the statistics and 
charts proposed by them, by Runger et al. (1996) and by Epprecht et al. (2011a). Next, 
the EWMA chart we propose is described in Section 3. Then, in Section 4, we detail how 
the simulation was used for computing the ARLs of the three EWMA schemes considered. 
The design optimization problem is formally defined in Section 5, which also gives the 
optimal designs (the ones that give the minimum out-of-control ARL) found for the cases 
considered. Finally, the ARL profiles (ARL values for a range of shifts from 0.5 to 4 
standard deviations) of the optimized charts and also of the residuals GCC are presented 
and compared in Section 6. Section 7 summarizes the conclusions of the analysis. 

2 Background 

As Mortell & Runger (1995), Runger et al. (1996) and Epprecht et al. (2011a), we 
consider here MSPs well represented by the following model: 

tij t tijx c e= +  (1) 

where 

tijx  is the j-th observation of the quality variable x  in the i-th stream in sampling time t; 

i 1,  2,  ,  m= … , where m  is the number of streams of the process, j 1,  2,  ,  n= … , where n  is 
the sample size (number of observations taken from each stream at sampling time t), and 
t = 1, 2, 3, ... are the indexes of the successive samples of the process in the monitoring 
phase; 
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tc  is a common component which represents the mean level of the process at time t; it 
may either be a constant value of have some dynamics, exhibit autocorrelation, and 
therefore in the greatest generality its evolution over time is a stochastic process; 

tije  is the j-th observation of the individual i-th stream component in sampling time t; we 
assume that when the process is in control, ( )2

tij 0e  ~  N 0,   σ ; 
and, as implicit in this definition, we assume that the values of tije  are iid; independent 
between themselves and over time; we also assume that the variables c  and e  are 
independent. Still according to this definition, when the process is in control, at any time t 
all streams have the same expected value (they are either centered in a same fixed value, 
or the expected value wanders but at any given time it is the same for all streams), so the 

tije ’s can be seen as realizations of the random noise at stream i. On the other hand, 
when one of the streams goes out of control, its mean shifts and its tije ’s have no longer 
null mean. 

In the particular case of only one observation per stream at each sampling time ( n 1=  ), 
the index j  is dropped. 

From this model, it follows that 

( ) ( ) ( ) ( ) 2
tij t tij t 0V x V c V e V c= + = + σ  (2) 

So, the classic X  group control chart (the traditional SPC tool for monitoring the mean 
of multiple stream processes), based on the m averages over j of the tijx ’s of each stream, 
would have control limits width proportional to a total standard deviation of ( ) 2

t 0V c / n+ σ . 
Then, unless the variance of the mean level, ( )tV c , is small relative to the variance of the 
individual components (intra-stream variance) 2

0σ , this chart would be quite insensitive to 
shifts in the mean of one (or some) of the individual stream components ie . 

To overcome this problem, the three works cited that are based on this model of MSP 
propose monitoring separately the two components, c  and e , with separate control charts. 
They also concurr in that, for controlling the mean level, tc  should be estimated by the 
average of all the tijx ’s in time t, and that this statistic should be monitored using an 
appropriate SPC technique according to the nature of tc  — for example, a Shewhart, 
EWMA or CUSUM chart in case it exhibits no serial correlation, or some technique for 
monitoring autocorrelated processes otherwise. In any case, tc  is treated as one variable 
and hence will be monitored using some established (well-known) univariate process 
control scheme. For this reason, all these works focus (as we do) exclusively on the 
monitoring of the individual streams components ie , i 1,  2,  ,  m= … . 

Mortell & Runger (1995), considering individual observations per stream, proposed the 
statistic 

( ) ( )t ti tiR max x min x= −  (3) 

and analyzed a Shewhart-type control chart on tR , as well as EWMA, CUSUM and runs 
rules versions of it. In case of more than one observation per stream at each sampling 
time, tix  in Equation 3 should be replaced by the average (over j) of the n observations 

tijx  (j = 1, 2, ..., n) in the stream. It is easy to see that in the second member of Equation 3 
the mean level components ( tc ) of ( )timax x  and of ( )timin x  cancel out, so the in-control 
standard deviation of tR  (and so the upper control limit for the tR  chart) is proportional to 

0σ , making the chart sensitive to shifts in the mean of a particular stream. 
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Runger et al. (1996) proposed an 2S  chart based on the statistic (in the notation of the 
present paper) 

( )
m 22 2

0 ti ti
i 1

S x x−

=
= σ −∑  (4) 

where tix  is the average of the m streams in time t and 2
0σ  is the in-control variance of tix  

(the same for all i), which, if not known, should be estimated from preliminary samples of 
the in-control process. Similarly to tR , 2S  filters out the mean level component and is 
sensitive to shifts in the mean of one or some streams. Runger et al. (1996) also analyzed 
a MEWMA (Lowry et al., 1992) version of it. In this one, the values of each stream are 
separately smoothed (m EWMA values) and then combined in a 2S  statistic (similarly to 
the usual MEWMA procedure for multivariate processes). The case of more than one 
observation per stream at each sampling time is also accomodated in a similar way as in 
Mortell & Runger (1995), by considering the averages of the n observations in stream i in 
time t, and replacing 2

0σ  in Equation 4 by 2
0 / nσ . 

In contrast with the tR  and the 2S  charts, which are based on a single statistic, 
Epprecht et al. (2011a) proposed controlling the means of the individual streams 
components by a residuals group control chart, based on the differences (or residuals) 
between the subgroup averages and the estimate of the mean level rather than on the 
subgroup averages themselves. In sampling time t, n observations tijx  ( j 1,  2,  ,  n= … ) are 
made at each stream i, i 1,  2,  ,  m= … . Next, the common component (mean level) in time t 
is estimated by the average of all observations in time t: 



m n
t tij

i 1j 1

1c x
nm = =

= ∑ ∑  (5) 

and the differences (or residuals) 



tij tij td x c= −  (6) 

are calculated. Note that tijd  is an estimator of the individual component tije . Then the 
average difference in each stream i is computed as 

n
ti tij

j 1

1d d
n =

= ∑  (7) 

Alternatively, as can be seen by substituting Equation 6 in Equation 7, tid  can be 
computed by Equation 8 



n
ti tij t

j 1

1d x c
n =

= −∑  (8) 
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The maximum and minimum of the m values of tid  are plotted in a GCC with control 
limits appropriately set for the desired false-alarm rate. For details, the reader is referred 
to Epprecht et al. (2011a). 

3 The EWMA group control chart proposed 

We here propose an EWMA group control chart for the differences tid  (GEWMA- d  
chart). At each sampling time, the sampling occurs exactly like in the case of the residuals 
GCC just described at the end of the previous section, and each tid  is calculated following 
the same steps (Equations 5, 6 and 7, or, alternatively, Equations 5 and 8). Then, each 

tid  is smoothed using the recursive Equation 9 

( ) ( )ti ti t 1 iY d 1 Y −= λ + − λ  (9) 

yielding m EWMA values, one for each stream. The smoothing constant ( ]0,1 λ ∈  is an 
implementation parameter of the chart whose value has to be chosen by its user. Given 
the assumption that, with the process in control, ( )tijE e 0= , it follows, as shown in 
Epprecht et al. (2011a), that ( )tiE d 0=  and this is the initial value for the EWMA statistic: 

0iY 0= . The maximum and the minimum tiY  values in time t are plotted in a GCC with 
upper and lower control limits given by 

0
m 1UCL k

2 nm
λ −  = σ   − λ  

 (10a) 

0
m 1LCL k

2 nm
λ −  = − σ   − λ  

 (10b) 

where the control limit factor k is also an implementation parameter of the chart. A point 
outside the control limits is considered as evidence of a shift in the mean of the 
corresponding stream. Although only the extreme EWMA values are plotted, in case of a 
signal it is advisable to verify if the EWMA value of any other stream is outside the limits. 

The expressions for the control limits were derived as follows. Epprecht et al. (2011a) 
have shown that, when the process is in control, the assumption that ( )2

tij 0e  ~  N 0,   σ  implies 
that every tid  is normally distributed with null mean and standard deviation equal to 

( ) ( )0 m 1 / nmσ − . As a consequence (using the welll-known relation between the standard 
deviation of a normal variable and the standard deviation of its exponentially smoothed 
value), the standard deviation of every tiY  is Equation 11: 

0
m 1

2 nm
λ −  σ   − λ  

 (11) 

and the control limits (see Equations 10) are just set at k  standard deviations of the (null) 
expected value of the differences. Since the successive values of EWMA statistics exhibit 
serial correlation, k  cannot be determined simply as a quantile of the standard normal 
distribution but should rather be obtained by search as the value that, for the given number 
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of streams of the process (m), sample size (n) and value of the smoothing constant λ , 
makes the in-control average run length match a specified 0ARL  value. This will be 
explained in detail in the next section. 

4 Design of the chart – performance measures and their computation 

The best choice of smoothing constant and control limits for the EWMA chart proposed 
depends on the number of streams of the process m, on the sample size n, on the value 
specified for the in-control average run length ( 0ARL ) and on the magnitude *δ  (specified) 
of the shift in the mean of an individual stream that it is important to detect with minimum 
delay. Given m and n, the criterion we adopt for the design of the chart is to choose the 
values of λ  and k  that, with fixed in-control average run length 0ARL  (specified), minimize 
the out-of-control run length (ARL1) for the relevant shift *δ  specified. Minimization of the 
ARL1 (when possible) for a relevant shift specified, under the constraint of a specified 

0ARL , is a popular criterion for the design of a control chart. 
In the case of charts with memory such as EWMA and CUSUM charts, there are two 

possible scenarios to be considered for the definition of the ARLs, especially regarding 
ARL1: in the zero-state scenario, the process is already out of control when the monitoring 
starts; in the steady-state scenario, when the monitoring starts the process is in control 
and only after some time a special cause brings the process to an out-of-control state. 
The scenario has an impact on the ARL1 because in the steady-state scenario when the 
special cause occurs the effect of the initial value of the EWMA statistic has already 
dissipated whereas in the zero-state scenario it is present. The result is that the zero-state 
ARL1 is larger than the steady-state ARL1. However, the differences are not usually 
substantial, as the great bulk of literature on the performance of EWMA charts has shown. 

We considered only the steady-state ARL1. The reason is that, even in case the 
monitoring starts with the process out of control, as soon as there is an alarm, the process 
should be investigated, the special cause eliminated, and when the monitoring is resumed, 
the process will be in control. The process should then be in control every time the 
monitoring is resumed after an alarm (including eventual false alarms), so the zero-state 
scenario is a transient situation, if it ever occurs. 

The analytical computation of the ARLs (either in control or out of control) of the 
proposed chart is not only quite complex but would be prohibitively computer intensive. 
For univariate EWMA charts it is still feasible to use, for example (and most often) Markov 
chain models. With multiple stream processes, however, the tid  values of different 
streams are correlated (the proof is given in Epprecht et al., 2011a), which makes the 
different tiY  values cross-correlated, too. The Markov chain model for more than two 
simultaneous EWMA charts of cross-correlated variables is extremely time consuming to 
compute (see, for example, Epprecht et al., 2011b). For this reason, we resorted to 
simulation. 

In order to guarantee accurate simulation results, we used 10,000 runs for obtaining 
each ARL estimate. This guarantees a standard error of less than 1% of the SDRL 
(standard deviation of the run length). The SDRL, in turn, is always smaller than the ARL. 
Indeed, in the case Shewhart-type charts, whose run lengths follow a geometric 
distribution, ( )SDRL ARL ARL 1 ARL= − < . The run length distributions of EWMA charts are 
less skewed and will have ( )SDRL ARL ARL 1 ARL< − < . This means that standard error of 
the ARL estimates would of less than 1% of the estimate. In each simulation run, values 
were generated for every tije  ( tc  was kept constant and equal to zero, without loss of 
generality, because the charting procedure filters it out completely; as a result, the 



An EWMA control chart... 

Gestão & Produção, 28(3), e062, 2021 9/17 

simulated tijx ’s coincide with the tije ’s; see Equation 1). At each simulated sampling time 
t, tĉ  was calculated by Equation 5; next, Equations 8 and 9 were applied for each stream 
i, and the EWMA values (

tidY ) were compared with the control limits. 
To obtain the steady-state ARL1’s, a “warm-up” period of 50 samples (from t 1=  to 

t 50= ) was allowed before inserting the simulated mean shift in one of the streams. In 
case of an alarm during the first 50 samples, the run was disconsidered and the “warm-
up” period restarted (with 0iY 0=  for all streams). 

The EWMA versions of the charts proposed by Mortell & Runger (1995) and 
Runger et al. (1996) were also simulated for purposes of performance comparison. The 
same series of tijx  values generated in each simulation run was used for all the three 
schemes. 

With EWMA charts, the 0ARL  constraint fixes the relationship between the smoothing 
constant λ and the control limits width factor k; so, given the former, the latter is uniquely 
determined (see for example Crowder, 1989, for curves of k × λ  — also called iso-ARL0 
curves — for the univariate EWMA chart for monitoring the process mean). In the case of 
the GEWMA- d  chart, this relation will depend also on the number of streams (m). For 
illustration, Figure 1 shows the GEWMA- d  iso-ARL0 curves for m 20=  streams, for 3 
different 0ARL  values. These curves were obtained by simulation and search: discretizing 
the range of possible values for λ, for each value of λ considered, a univariate search was 
conducted for the value of k  that yielded the desired 0ARL  (computed by simulation). The 
dots on the curves in the Figure are the points ( ), kλ  thus obtained. Other points in the 
curve can be obtained by linear interpolation. So, each curve contains all points ( ), kλ  that 
give a same 0ARL . These curves are helpful in the stage of optimization of the chart, 
described in detail the next section. In summary, given the specified 0ARL , the goal is to 
find the pair ( ), kλ  in the respective curve that yields the shortest 1ARL  for a shift of interest 
in the mean in one stream. 

For a fair performance comparison of the (optimized) EWMA- d  chart with Mortell & 
Runger’s (1995) EWMA- tR  chart and Runger et al. (1996) MEWMA-S2 chart, we must 
use the optimal designs of these charts too. As a prerequisite to the optimization, we 
determined, in the same way, iso-ARL0 curves for the EWMA- tR  and the MEWMA-S2 
charts. Figures 2 and 3 exhibit the curves for 20-stream processes and 3 different 0ARL  
values. Curves for other numbers of streams are given in Simões (2010) and are available 
upon request. To the best of our knowledge, there is no work in the literature that gives 
the k × λ  curves for these charts. 

 
Figure 1. k × λ curves for the GEWMA- d  chart for 20 streams 
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Figure 2. k  × λ  curves for the EWMA-Rt chart for 20 streams 

 
Figure 3. k  × λ  curves for the MEWMA S2 chart for 20 streams 

5 Optimal designs 

With m, n, ARL0 and *δ  given, we obtain the best design for the GEWMA- d  chart 
solving the following optimization problem (Equation 12): 

( )*
1Min ARL ,δ θ   (12) 

subject to (Equation 13) 

( ) 0 ARL 0, ARLδ = θ =  (13) 

where: 
( )1 0 0/δ = µ − µ σ  is a shift in the in-control mean of an individual stream component ie , 

represented in standard deviation units; note that, as we assume that the in-control mean 
of any individual stream component is zero (that is, ( )tijE e 0= ), 1 0/δ = µ σ . 

*δ  is the smallest shift in the mean of the individual component of a stream that is 
considered relevant to detect with minimum delay (for which ARL1 should be minimized); 
θ  represents the set of parameters of the chart: ( ){ }n, m, kθ = λ , where the notation ( )k λ  
indicates that, given the desired 0ARL , k is uniquely determined by the respective iso-
ARL0 curve as a function of λ, as just seen in the preceding section. 

With k  thus determined as a function of λ, and with n and m as input data, λ becomes 
the only decision variable, so the optimal solution can be found by any univariate search 
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method. We chose to use the Golden Section Search method (Kiefer, 1953), programmed 
in MatlabTM. For each value of λ, the ARL1 for the *δ  specified was obtained by simulation. 
The search was considered to have converged when the last interval was smaller than 
0.005. This termination criterion was based on previous observation that the 1ARL  as a 
function of λ is quite flat around the minimum. The midpoint of the last interval was then 
considered to be the optimal solution. 

The optimal values of λ  and k, under the constraint of ARL0 = 200, are shown in 
the columns with headings *λ  and k* of Table 2 (for n = 1) and Table 3 (for n = 4), 
for m = 5, 10 and 20 streams and *δ = 0.5, 1.0 and 2.0. Larger values of *δ  were not 
considered because EWMA schemes are devised for the detection of small to 
moderate changes in the process parameters. Optimal designs for other numbers 
of streams in the process (namely, m = 2, 3 and 15) and also for other ARL0 values 
(ARL0 = 100 and 370.4) can be found in Simões (2010) and can be obtained by 
request to the first author. 

As seen in these tables, we also optimized the designs of the EWMA- tR  and MEWMA-
S2 charts (for the same values of m, n, *δ  and ARL0), for the purposes of performance 
comparison (which is the subject of the next section). The optimization problem statement 
and the solution method are the same for all charts; only the monitoring statistic and 
control limits differ. The monitoring statistics of the EWMA-Rt and MEWMA S2 charts were 
described in Section 2. We now describe how their control limits are related to k, for full 
understanding of their designs in Tables 2 and 3. 

Note that these charts have only one (upper) control limit (UCL), because their 
statistics are positive and only increases in their expected values indicate out-of-control 
situations. The UCL of the EWMA-Rt chart is given by Equation 14 

0
2 3UCL d kd

2 n
  σλ

= +  − λ 
 (14) 

Where, again, k denotes the control limit factor, and 2d  and 3d  are the mean and standard 
deviation of the relative range for normal data, which are tabulated in many statistical and 
SPC books. Note that, here, the “sample size” to which 2d  and 3d  correspond is the number 
of streams, m, rather than the number of observations per stream, n, in time t. 

In the case of the MEWMA S2 chart, k is the very control limit (that is, UCL = k), because 
when the process is in control the MEWMA statistic ( tW ) has unit variance. Indeed, in sampling 
time t, the statistic is (using our notation for consistency) (Equation 15) 

( ) ( )
m 2

t ti t2
i 10

n 2
W

=

− λ
= −

σ λ
∑ Z Z  (15) 

where tiZ  is the exponentially smoothed value of the i-th stream and tZ  is the sample 
average (over i) of the tiZ ’s. Since the variance of ( )

m 2
ti t

i 1=
−∑ Z Z  is ( ) ( )2

0 / n / 2σ λ − λ , tW  has 
unit variance. 

When the process is in control, tW  is distributed as a chi-squared variable with m 1−  
degrees of freedom; this is why the values of k for this MEWMA chart in Tables 2 and 3 
increase noticeably with m. In Runger et al. (1996), in the expression of tW  the factor that 
appears pre-multiplying the summation is ( )2

0 / 2σ λ − λ , which is clearly a typo. 
The column k* of Tables 2 and 3 gives also), in one row for each pair (m, n), the 

control limit factor k of the Shewhart-type residuals GCC of Epprecht et al. (2011a). 
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The control limits for this chart are set at ( ) ( )0k m 1 / mn± σ − . Note that this expression 
corresponds to Equations 10a and 10b in the particular case 1λ = . Indeed, the 
Shewhart chart can be seen as a particular case of an EWMA chart with 1λ = . With 
λ  thus fixed (and considering n given), the constraint on ARL0 determines uniquely 
the value of k, so (unlike with the EWMA charts) there is no possibility of optimizing 
the Shewhart chart for a given *δ ; this is why for this chart the values of *δ  are left 
blank and there is only one value of k for each pair (m, n), while for the EWMA charts 

*λ , k* and the ARL1 profile depend on the value of *δ  besides of the values of (m,  n). 

 

 

Table 2. Optimal designs ( *λ  and k*) and ARL profiles, for ARL0 = 200.0 and n = 1. 

m δ* Chart λ* k* 
Steady-state ARL1 

δ 
0.5 1.0 1.5 2.0 3.0 4.0 

5 

--- residuals GCC 1.000 3.290 154.0 74.8 31.4 13.5 3.6 1.6 

0.5 
GEWMA- d  0.035 2.715 33.0 14.3 9.2 6.8 4.5 3.5 
EWMA-Rt 0.013 1.037 101.9 34.7 16.3 9.6 4.9 3.3 

MEWMA-S2 0.037 10.506 33.8 14.7 9.3 6.9 4.6 3.5 

1.0 
GEWMA- d  0.111 3.055 40.7 12.8 7.2 5.1 3.3 2.5 
EWMA-Rt 0.013 1.037 101.9 34.7 16.3 9.6 4.9 3.3 

MEWMA-S2 0.100 12.730 40.2 13.3 7.7 5.4 3.5 2.7 

2.0 
GEWMA- d  0.294 3.223 67.8 16.9 7.3 4.4 2.6 1.9 
EWMA-Rt 0.154 2.399 121.5 40.8 14.9 7.5 3.3 2.2 

MEWMA-S2 0.318 14.406 72.1 18.8 8.1 4.8 2.7 1.9 

10 

--- residuals GCC 1.000 3.480 172.2 97.3 40.5 16.1 3.7 1.6 

0.5 
GEWMA- d  0.035 2.978 35.5 15.1 9.5 7.1 4.7 3.6 
EWMA-Rt 0.013 1.027 123.3 45.9 20.5 11.5 5.4 3.4 

MEWMA-S2 0.037 18.299 38.2 16.4 10.4 7.7 5.1 3.9 

1.0 
GEWMA- d  0.088 3.236 41.7 13.3 7.7 5.5 3.6 2.7 
EWMA-Rt 0.013 1.027 123.3 45.9 20.5 11.5 5.4 3.4 

MEWMA-S2 0.113 21.381 49.6 15.3 8.4 5.8 3.7 2.8 

2.0 
GEWMA- d  0.234 3.410 73.3 16.2 7.3 4.6 2.7 2.0 
EWMA-Rt 0.131 2.318 137.0 53.6 19.8 9.3 3.7 2.3 

MEWMA-S2 0.220 22.624 70.6 18.6 8.5 5.4 3.1 2.3 

20 

--- residuals GCC 1.000 3.662 182.9 118.0 52.5 20.8 4.3 1.7 

0.5 
GEWMA- d  0.035 3.215 39.0 16.1 10.1 7.5 5.0 3.8 
EWMA-Rt 0.013 1.032 144.2 61.2 27.0 14.3 6.0 3.6 

MEWMA-S2 0.034 31.470 44.0 19.2 12.2 8.9 5.9 4.5 

1.0 
GEWMA- d  0.101 3.476 51.5 14.4 8.0 5.6 3.6 2.7 
EWMA-Rt 0.013 1.032 144.2 61.2 27.0 14.3 6.0 3.6 

MEWMA-S2 0.089 35.283 56.3 18.2 10.2 7.1 4.5 3.3 

2.0 
GEWMA- d  0.284 3.620 101.8 21.5 8.2 4.8 2.7 2.0 
EWMA-Rt 0.123 2.286 153.4 73.4 27.9 12.1 4.3 2.4 

MEWMA-S2 0.267 37.785 98.5 29.2 11.6 6.6 3.5 2.5 



An EWMA control chart... 

Gestão & Produção, 28(3), e062, 2021 13/17 

Table 3. Optimal designs ( *λ  and k*) and ARL profiles, for ARL0 = 200.0 and n = 4. 

m δ* Chart λ* k* 
Steady-state ARL1 

δ 
0.5 1.0 1.5 2.0 3.0 4.0 

5 

--- residuals GCC 1.000 3.290 74.8 13.5 3.6 1.6 1.0 1.0 

0.5 
GEWMA- d  0.111 3.055 12.8 5.1 3.3 2.5 1.8 1.4 
EWMA-Rt 0.013 1.037 34.7 9.6 4.9 3.3 2.1 1.6 

MEWMA-S2 0.100 12.730 13.3 5.4 3.5 2.7 1.9 1.5 

1.0 
GEWMA- d  0.294 3.223 16.9 4.4 2.6 1.9 1.3 1.0 
EWMA-Rt 0.154 2.399 40.8 7.5 3.3 2.2 1.4 1.1 

MEWMA-S2 0.318 14.406 18.8 4.8 2.7 1.9 1.3 1.0 

2.0 
GEWMA- d  0.766 3.283 48.2 7.6 2.6 1.5 1.0 1.0 
EWMA-Rt 0.623 2.892 61.3 10.2 3.2 1.7 1.1 1.0 

MEWMA-S2 0.748 14.819 47.2 8.1 2.9 1.6 1.0 1.0 

10 

--- residuals GCC 1.000 3.480 97.3 16.1 3.7 1.6 1.0 1.0 

0.5 
GEWMA- d  0.088 3.236 13.3 5.5 3.6 2.7 1.9 1.5 
EWMA-Rt 0.013 1.027 45.9 11.5 5.4 3.4 2.1 1.6 

MEWMA-S2 0.113 21.381 15.3 5.8 3.7 2.8 1.9 1.6 

1.0 
GEWMA- d  0.234 3.410 16.2 4.6 2.7 2.0 1.4 1.1 
EWMA-Rt 0.131 2.318 53.6 9.3 3.7 2.3 1.4 1.1 

MEWMA-S2 0.220 22.624 18.6 5.4 3.1 2.3 1.6 1.2 

2.0 
GEWMA- d  0.766 3.478 63.2 8.5 2.7 1.5 1.0 1.0 
EWMA-Rt 0.676 2.873 83.7 13.6 3.7 1.8 1.1 1.0 

MEWMA-S2 0.725 23.563 62.3 10.8 3.4 1.9 1.1 1.0 

20 

--- residuals GCC 1.000 3.662 118.0 20.8 4.3 1.7 1.0 1.0 

0.5 
GEWMA- d  0.101 3.476 14.4 5.6 3.6 2.7 1.9 1.5 
EWMA-Rt 0.013 1.031 61.2 14.3 6.0 3.6 2.0 1.5 

MEWMA-S2 0.089 35.283 18.2 7.1 4.5 3.3 2.3 1.8 

1.0 
GEWMA- d  0.284 3.620 21.5 4.8 2.7 2.0 1.3 1.0 
EWMA-Rt 0.123 2.285 73.4 12.1 4.3 2.4 1.4 1.1 

MEWMA-S2 0.267 37.785 29.2 6.6 3.5 2.5 1.7 1.2 

2.0 
GEWMA- d  0.761 3.660 80.0 9.8 2.8 1.6 1.0 1.0 
EWMA-Rt 0.522 2.823 98.6 16.7 4.1 1.9 1.1 1.0 

MEWMA-S2 0.657 38.528 75.9 13.8 4.2 2.2 1.2 1.0 

6 Performance analysis 

Tables 2 and 3 show also the steady-state ARL1 profiles (steady-state ARL1 values for a 
range of shifts in the mean of one stream) of the GEWMA- d  chart, the residuals GCC of 
Epprecht et al. (2011a), the EWMA- tR  chart of Mortell & Runger (1995) and the MEWMA-S2 
chart of Runger et al. (1996), for process with 5, 10 and 20 streams, and for the cases of 1 and 
4 observations per stream. The ARLs for the shifts for which the charts were optimized ( )*δ  are 
in bold. Recall that, being a Shewhart-type chart, the residuals GCC with fixed n and ARL0 
constraint does not admit optimization. Tables of ARL profiles of the EWMA charts for m = 2, 3 
and 15 and also for ARL0 = 100 and 370.4 are available upon request to the first author. For ARL 
profiles of the residuals GCC, refer to Epprecht et al. (2011a). 
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It can be seen that the GEWMA- d  chart outperforms the other EWMA charts practically 
always: the ARL reduction relative to the MEWMA-S2 chart is smaller (but consistent), while the 
reduction relative to the EWMA- tR  chart is substantial. The only exception was with n = 1 and 

* 0.5δ = . In this case, for shifts of 4 standard deviations, the ARL of the EWMA- tR  chart was 
between 5% and 6% smaller. Nevertheless, given the two-component nature of the process 
variance (see Equation 2), we may expect that a shift of 0.5 standard deviations of the individual 
component (i.e., 00.5σ ) is likely to be substantially smaller in terms of the total standard deviation 
and, as a result, not typically relevant, so that in most practical situations the charts should be 
optimized for shifts larger than * 0.5δ = . 

The residuals GCC was considered just for completeness and for reference, since it 
was expected that its EWMA counterpart (the GEWMA- d  chart), and also the other 
EWMA charts, yielded much lower ARL1 values. As a matter of fact, the residuals GCC, 
with n = 1, outperforms the GEWMA- d  chart for 4δ ≥  (and for 3δ ≥  in the case of * 0.5δ =  
with m = 10 and 20). With n = 4, in the case * 0.5δ =  or 1.0, the residuals GCC outperforms 
the GEWMA- d  chart for 2δ ≥ ; in the case * 2δ = .0, the GEWMA- d  chart is always the 
most efficient of all charts considered. Note that EWMA charts are devised for quicker 
detection of small and moderate shifts; for large shifts it is natural that Shewhart-type 
charts provide shorter ARLs (being, nevertheless, much slower in the detection of small 
and moderate shifts). So the GEWMA- d  chart achieves its objective, being, for the 
detection of small and moderate shifts, the most efficient among the EWMA charts 
considered. The comparison with the residuals GCC was useful to show in which 
situations (for which sizes of shift) each one is preferable. 

To provide a general picture of the quantitative improvement attained with the new chart, 
Figure 4 shows the ARL curves of the three charts with n=1 for the case of 20 streams, optimized 
for * 0.5δ = . For a better visualization, due to the large variation in the magnitude of the ARLs with 
the mean shifts, the figure was split into two parts with different vertical scales, one for shifts up 
to 1.5 standard deviations and the other for shifts from 1.5 to 4.0 standard deviations. 

Figure 5 is similar to Figure 4, now for the case of subgroups of size n=4 per stream. The 
same pattern can be observed. The GEWMA- d  chart uniformly outperforms the other 
EWMA charts: it slightly outperforms the MEWMA-S2 chart and substantially outperforms 
the EWMA- tR  chart. They are outperformed by the residuals GCC only for the largest shifts. 

 
Figure 4. ARL1 profiles for n = 1 (m = 20 streams, ARL0 = 200.0, optimized for δ = 0.5). 
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Figure 5. ARL1 profiles for n = 4 (m = 20 streams, ARL0 = 200.0, optimized for δ = 0.5). 

6 Conclusions 

Our objective, as stated in the Introduction section of this paper, was to propose of an 
EWMA group control chart (GCC) on the smallest and the largest estimates of the 
individual streams components of a MSP, optimize it and and analyze its performance. 
This chart is the EWMA counterpart of Epprecht et al. (2011a) Shewhart-type residuals 
GCC. For this, we would first need to define the computation of the EWMA statistic to use, 
the calculation of the chart parameters, and describe its operation. Our motivation was 
the expectation that such a chart might be faster in detecting small and moderate shifts in 
the mean of individual streams of the process than the EWMA versions of Mortell & 
Runger’s (1995) tR  chart (EWMA- tR ) and Runger et al. (1996) S2 chart (MEWMA-S2). So 
a second objective was to compare the performances of the proposed chart with the 
previous ones, in equivalent conditions. This required optimizing all the charts for a variety 
of situations and for different sizes of shift in the mean of an individual stream, compute 
their ARLs and compare them side by side. The objective of the optimization was to obtain 
the design that yields the shortest out-of-control ARL (ARL1) possible for a given shift 
(specified), subject to a constraint on the value of ARL0. 

We succeeded in achieving all these objectives, and named our chart the GEWMA- d  
chart. The comparative performance analysis confirmed our expectations: for the 
detection of shifts in the mean of the individual component of a single stream, the 
GEWMA- d  chart has shown to outperform, in virtually all the cases analyzed, the EWMA-

tR  and MEWMA-S2 charts. Its ARLs were smaller than the ones of the latter and 
dramatically smaller than the ones of the former. 

The only exception observed was when the charts are used with a sample size of 1 
and are optimimized for a shift of 0.5 standard deviations. In this case, and only for very 
large shifts (of the order of 4 or more standard deviations), the ARL of the EWMA- tR  chart 
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was smaller. Nevertheless, given the two-component nature of the process variance, we 
may expect that a shift of 0.5 standard deviations of the individual component is likely not 
be typically relevant and that in most practical situations the charts should be optimized 
for shifts larger than this value. In this case, the proposed chart uniformly outperforms the 
other two. The differences in performance (i.e., the advantages of the proposed chart) 
increase with the number of streams. 

For signalling larger shifts (of the order of 3 or more standard deviations), the 
Shewhart-type residuals GCC of Epprecht et al. (2011a) is the fastest chart; this was 
expected since the EWMA charts are devised for protection against small and moderate 
shifts and Shewhart charts tend to be faster against larger shifts. 

An additional contribution of this work are the optimal designs obtained for the EWMA-
tR  and MEWMA-S2 charts, which had not been given in the previous literature. 

As a conclusion, the GEWMA- d  chart is recommended for the monitoring of small and 
moderate shifts of the mean of individual streams, being in this case the fastest of the 
charts considered. 
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