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Abstract: Sensing networks provide nowadays massive amounts of data that in many 
applications provide information about curves, surfaces and vary over a continuum, usually time, 
and thus, can be suitably modelled as functional data. Their proper modelling by means of 
functional data analysis approaches naturally addresses new challenges also arising in the 
statistical process monitoring (SPM). Motivated by an industrial application, the objective of the 
present paper is to provide the reader with a very transparent set of steps for the SPM of functional 
data in real-world case studies: i) identifying a finite dimensional model for the functional data, 
based on functional principal component analysis; ii) estimating the unknown parameters; iii) 
designing control charts on the estimated parameters, in a nonparametric framework. The 
proposed SPM procedure is applied to a real-case study from the maritime field in monitoring 
CO2 emissions from real navigation data of a roll-on/roll-off passenger cruise ship, i.e., a ship 
designed to carry both passengers and wheeled vehicles that are driven on and off the ship on 
their own wheels. We show different scenarios highlighting clear and interpretable indications that 
can be extracted from the data set and support the detection of anomalous voyages. 

Keywords: Profile monitoring; Functional principal component analysis; CO2 emissions; Control 
charts; Statistical process monitoring. 

Resumo: As redes de detecção fornecem hoje em dia grandes quantidades de dados que em 
muitas aplicações fornecem informações sobre curvas, superfícies e variam em um continuo, 
geralmente o tempo, e, portanto, podem ser modelados adequadamente como dados funcionais. 
Sua modelagem adequada por meio de abordagens de análise de dados funcionais naturalmente 
aborda novos desafios que surgem também no monitoramento estatístico de processos (SPM). 
Motivado por uma aplicação industrial, o objetivo do presente artigo é fornecer ao leitor um 
conjunto muito transparente de etapas para o SPM de dados funcionais em estudos de caso do 
mundo real: i) identificar um modelo dimensional finito para os dados funcionais, com base na 
análise de componentes principais funcionais; ii) estimar os parâmetros desconhecidos; iii) 
desenhar cartas de controle sobre os parâmetros estimados, em uma estrutura não paramétrica. 
O procedimento SPM proposto é aplicado a um estudo de caso real do campo marítimo no 
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monitoramento das emissões de CO2 de dados de navegação reais de um navio de cruzeiro roll-
on / roll-off de passageiros, ou seja, um navio projetado para transportar passageiros e veículos 
com rodas que são levados para dentro e para fora do navio em suas próprias rodas. Mostramos 
diferentes cenários destacando indicações claras e interpretáveis que podem ser extraídas do 
conjunto de dados e apoiar a detecção de viagens anômalas. 

Palavras-chave: Monitoramento de perfis; Análise de componentes principais funcionais; CO2 
emissões; Gráficos de controle; Monitoramento estatístico do processo. 

1 Introduction 
In many applications, the development of data-acquisition systems allows the 

gathering of massive amount of data that can be suitably modelled as functional data, 
that is as functions varying over a continuum. Functional data analysis (FDA) refers to 
the set of statistical methods where the observation units are functional data. Thorough 
overviews of FDA techniques are provided by Ramsay & Silverman (2005); Horváth & 
Kokoszka (2012); Kokoszka & Reimherr (2017). More specific theoretical insight can 
be found in Hsing & Eubank (2015) and Bosq (2012). Each functional data observation 
is usually obtained from discrete measurements over the continuous domain. Thus, 
standard multivariate methods could be in principle applied, even though they fail when 
the number of observations is much less than the number of discrete measurements. 
This typical high dimensionality issue cannot be overlooked by collapsing or averaging 
measurements when the aim of the analysis is to monitor or control the stability over 
time of quality characteristics apt to be modelled as a functional data. This approach 
has been used extensively in the literature (Bocchetti et al., 2015; Erto et al., 2015; 
Lepore et al., 2019; Capezza et al., 2019), however, there is a serious risk of discarding 
valuable information. For instance, Figure 1 shows two CO2 emission functions from 
the real-case study in the maritime field described in Section 3. 

 
Figure 1. Two CO2 emission functions with similar means throughout the domain but different 

shapes. 

If an approach where each function is replaced by its mean all over the domain is 
used, then these functions are summarized by very similar numbers (not reported for 
confidentiality reasons). However, it is clear from Figure 1 that these two functions show 
very different shapes and, thus, they should be treated accordingly. In a statistical 
process monitoring application, this could result in very serious lack of ability to detect 
anomalous observations. 

Statistical process monitoring of functional data is known also as profile monitoring, 
where functional data are referred to as profiles. As in the classical univariate and 
multivariate setting, where data are represented by scalars or vectors, profile 
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monitoring has the task of continuously monitoring the quality characteristic and of 
triggering a signal when assignable sources of variations (i.e., special causes) act on 
it. When this happens, the process is said to be out of control (OC). Otherwise, when 
only normal sources of variation (i.e., common causes) apply, the process is said to be 
in-control (IC). As discussed by Woodall et al. (2004), all the approaches for profile 
monitoring share the following structure: i) identifying a finite dimensional model for the 
functional data; ii) estimating the unknown parameters; iii) designing control charts on 
the estimated parameters. In particular, the book of Noorossana et al. (2012) 
represents a comprehensive overview of profile monitoring methods. Pini et al. (2018) 
proposed a two-step profile monitoring approach where, firstly, the informative parts of 
the functional data to be monitored are selected by means of the inferential interval-
wise testing procedure (Pini & Vantini, 2017) and then the monitoring procedure is 
performed on the basis of the information that the functions contain in the selected 
domains. Menafoglio et al. (2018) introduced a new approach for monitoring probability 
density functions based on simplicial functional principal component analysis. 
Grasso et al. (2016) presented a novel approach for profile monitoring that combines 
the functional principal component analysis and the use of parametric warping 
functions. More recently, Capezza et al. (2020) extended classical multivariate 
techniques to the monitoring of multivariate functional data and a scalar quality 
characteristic related to them. Centofanti et al. (2020) expand the Mandel’s regression 
control chart (Mandel, 1969) to the functional setting, that is a control chart elaborated 
on the functional residuals obtained from a function-on-function regression of the 
quality characteristic profile on concurrent functional covariates. Other relevant 
contributions in this field include the work of Jin & Shi (1999), Colosimo & Pacella 
(2007), Colosimo & Pacella (2010), Grasso et al. (2017), and Bersimis et al. (2018). 

Motivated by an industrial application, the objective of the present paper is to 
provide the reader with a very transparent set of steps for monitoring profiles in real-
world case studies. In particular, the proposed method can be divided into three main 
steps. Firstly, the functional data are obtained from the raw data through a smoothing 
technique based on spline functions. Then, a functional principal component analysis 
(FPCA), that is the functional extension of the classical (non-functional) principal 
component analysis (PCA) (Jolliffe, 2011), is performed in order to extract the relevant 
principal component scores. Lastly, the retained principal component scores are used 
in a monitoring procedure that is based on the simultaneous application of the 
Hotelling’s 2T  and the squared prediction error ( SPE ) control charts in a nonparametric 
framework. 

A complete overview of smoothing techniques for functional data is provided by 
Ramsay & Silverman (2005), where methods based on least squares and roughness 
penalties are presented under a practical point of view. More generally, references on 
smoothing spline estimators for nonparametric regression are Wahba (1990); Green & 
Silverman (1993); Eubank (1999), and Gu (2013). A survey of FPCA, and its use in 
explanatory analysis, modeling and forecasting, and classification of functional data is 
provided by Shang (2014). The 2T  and SPE  control charts are widely used for 
multivariate statistical process monitoring (Montgomery, 2007). See Lowry & 
Montgomery (1995) for a review on multivariate control charts. 

Finally, the proposed monitoring procedure is applied to a real-case study from the 
maritime field in monitoring CO2 emissions during the navigation phase of a roll-on/roll-
off passenger (Ro-Pax) cruise ship, i.e., a ship designed to carry both passengers and 
wheeled vehicles that are driven on and off the ship on their own wheels, whose data 
are courtesy of the owner Grimaldi Group. 
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The paper is structured as follows. Section 2 introduces the proposed procedure. In 
particular, in Section 2.1 we discuss how to obtain the functional data from the raw 
observations through data smoothing techniques; Section 2.2 describes the FPCA, and 
Section 2.3 introduces the monitoring procedure based on the 2T  and SPE  control 
charts. The real-case study in the shipping industry is presented in Section 3. Section 
4 concludes the paper. All computations and plots have been obtained by using the 
software environment R (R Core Team, 2020), where the proposed procedure is 
implemented through the package funcharts (Capezza et al., 2021) 

2 Methodology 
As stated before, the proposed methodology for profile monitoring is composed of 

three main steps: 
1. data smoothing: the raw observations are converted to functional data; 
2. FPCA: the infinite dimensional problem is translated into a finite dimensional one 

by means of an optimal functional data approximation; 
3. monitoring procedure: the principal component scores are used as input to build the 

2T  and SPE  control charts. 
In the following Sections 2.1, 2.2 and 2.3, these steps are illustrated. 

2.1 Data smoothing 
Data are collected by devices in a discrete fashion, that is as n discrete observed 

curves ( ){ } 1, ,
, 1, ,i j i n

Y t j p
= …

= … , where { } 1, ,j j p
t

= …
 are the observation points in a given 

closed interval ⊆T R . Hence, appropriate methods are required to convert discrete raw 
data ( ){ }i jY t  into functional data ( ){ }iX t  computable for any t∈T , which are random 

realizations of a functional quality characteristic. If the discrete data are assumed 
without any measurement error, functional data can be theoretically drawn up by merely 
connecting the whole set of points ( ){ } 1, ,

, 1, ,i j i n
Y t j p

= …
= … . However, this does not 

represent the ordinary situation. When measurement error is present, each discrete 
observation is expressed as 

( ) ( )i j i j ijY t X t ε= +  (1) 

where ijε  are zero mean random errors with equal variances. Trivially, note that 
Equation 1 degenerates in the previous case when the variance ijε  tends to zero. From 
Equation 1, data smoothing techniques aim to recover the functional data by discarding 
exogenous perturbation due to error terms ijε . Functional data are intrinsically infinite 
dimensional; that is, infinite values are needed to completely specify them, precisely, 
the values at each possible argument t∈T . To this end, a common approach consists 
of representing each functional datum ( ){ }iX t  by introducing a basis function system, 

i.e., a set of K  known, linearly independent functions ( )1, , T
Kφ φΦ = …  that have the 

property that we can approximate arbitrarily well any function by taking a weighted sum 
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or linear combination of a sufficiently large number of these functions (Ramsay & 
Silverman, 2005). Then, we have 

( ) ( ) ( )
1

,    
K

T
i il l i

l

X t c t c t tφ
=

= = Φ ∈∑ T  (2) 

where ( )1, , T
i i ikc c c= …  is the coefficient vector for each curve. Then, the problem of 

recovering the functional data ( ){ }iX t  in Equation 2 reduces to the estimation of the 
unknown coefficient vectors ic  for every 1, ,i n= … . In particular, the coefficient vector ic  
is estimated as îc  by minimizing the following penalized sum of squares error 

� ( ) ( )( )21  argmin ,
K

p T T
i i j jj

c
c Y t t λ=

∈

  = ∑ − + 
  

c Φ c Rc
R

 (3) 

where 0λ >  is a smoothing parameter and R  is a matrix whose ( ),i j -th entry is 
( ) ( ) ( ) ( ) ,m m
i jt t dtφ φ∫T  with ( )mφ  the m -th derivative of φ . Finally, the functional data we 

are interested in are as follows 

( ) ( ) .ˆ ,   ˆ Φ   T
i iX t c t t= ∈T  (4) 

Note that, to obtain the functional data as in Equation 4, some choices should be 
made; these are discussed in the following. As basis functions Φ , the B-spline basis 
system is the most common choice in case of non-periodic functional data because it 
has good computational properties and great flexibility (Ramsay & Silverman, 2005). 
This implicitly assumes that the curves considered are well approximated by a spline 
function. Splines are optimal in the sense of being the smoothest possible functions 
interpolating the data (Green and Silverman, 1993). Spline functions divide the 
functional domain into subintervals, by means of break points. Over any subinterval, 
the spline is a polynomial of specific order q , with 1q −  non-zero derivatives and 
matching proper derivative constraints between adjacent polynomials (De Boor et al., 
1978). The smoothing parameter λ  in Equation 3 is chosen as that corresponding to 
the minimum value assumed by the generalized cross-validation (GCV) criterion, which 
is a well-known method to tradeoff between variance and bias. This criterion considers 
the degrees of freedom of the estimated curve that vary according to λ . See Ramsay 
& Silverman (2005) for further details. The penalty on the right-hand side of Equation 3 
is computed by setting 2m =  in the elements of the matrix R , i.e., by penalizing the 
function roughness, which is defined as the integrated squared second derivative of 

( )iX t , calculated as ( ) ( )
2

2 TX t dt  =  ∫
T

c Rc . The number K  of basis functions is not 

crucial (Cardot et al., 2003), unless it is sufficiently large to capture the local behavior 
of the functional data. 
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2.2 Functional principal component analysis 
FPCA is a key method aimed at reducing the infinite dimensionality of the functional 

data, by retaining a finite number L  of principal component scores or simply scores 
{ } 1, ,il l Lξ = … , which explain the largest part of the sample variability, for each functional 

observation ( ){ }iX t , obtained as described in Section 2.1 defined for t∈T . Without loss 

of generality, in what follows, let us assume that ( ){ }iX t  have zero mean, or that they 

are centered by subtracting the functional sample mean. Then, scores are defined as 

( ) ( )il l it X t dtξ ψ= ∫T  (5) 

where { } 1, ,l l Lψ = …  are weight functions referred to as functional principal components 

(FPCs) or simply principal components. The FPCs are subject to size restrictions of 
normalization and orthogonality, i.e., 2( ) 1l t dtψ∫ =T  and ( ) ( ) 0i jt t dtψ ψ∫ =T , for i j≠ . In 
this way, each weight function provides new information with respect to those brought 
by previous FPCs. FPCs are calculated by an iterative algorithm which at each step 
finds the weight function that maximizes the following mean square of the scores, i.e., 
their sample variance, 

( ) ( )( )22

1 1

argmax argmax ,       1 , ,
n n

l il i
i i

t X t dt l L
ψ ψ

ψ ξ ψ
= =

= = ∫ = …∑ ∑ T  (6) 

under the normalization and orthogonality constraints. Moreover, the FPCs in 
Equation 6 correspond to eigenfunctions of the covariance function of the process X  
(Ramsay & Silverman, 2005). Let us consider the function 

( ) ( )
1

ˆ ξ ψ ,
L

PC
i il l

l

X t t t
=

= ∈∑ T  (7) 

that is the linear combination of the FPCs and the scores. It can be demonstrated that 
( )ˆ PC

iX t  is the best L -dimensional approximation of iX  in terms of mean squared error, 

i.e., the quantity ( ) ( )( )2ˆ PC
i iE X t X t dt

 
∫ − 
  
T  is minimum over all the other L -dimensional 

linear combinations. 
The choice of the number L  of retained components depends on different 

necessities. Generally, the FPCs retained are chosen such that they explain at least a 
given percentage of the total variability. However, more sophisticated methods could 
be used as well (Jolliffe, 2011). 

2.3 Monitoring procedure 
In this step, the information provided by FPCA is used to continuously monitor the 

functional quality characteristic X  over time. To this aim, two functional control charts 
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are introduced based on the following 2T  and the SPE  statistics. The 2T  statistic is as 
follows 

2
2

1
L il

i l
l

T
ξ
λ== ∑  (8) 

where 1, , Lλ λ…  are the variances of the scores 1, ,i iLξ ξ…  introduced in Equation 5 and 
correspond to the eigenvalues of the covariance function of X . The statistic 2T  is the 
square distance of the projection of X  from the origin of the space spanned by the 
FPCs { }lψ  . Changes along directions orthogonal to such space are monitored by 
means of the iSPE  statistic, defined for each i  as 

( ) ( )( )2ˆ PC
i i iSPE X t X t dt= ∫ −T  (9) 

where ˆ PC
iX  are defined in Equation 7. 

In this paper, we focus on prospective (Phase II) monitoring. Thus, a set of IC data 
must be preliminarily obtained in the design phase of the control charts (Phase I). Let 
us assume that the functional observations { }iX  are acquired under IC conditions; 

principal components { }lψ  and eigenvalues 1, , Lλ λ…  shall be estimated from the 

sample covariance function. Let us denote the corresponding estimates by { }ˆlψ  and 

1̂
ˆ, , Lλ λ… . The control limits for both the 2T  (Equation 8) and the SPE  (Equation 9) 

control charts are obtained as the ( )1 α− -quantiles of the empirical distribution of the 

two statistics, based on the estimated { }2
iT  and { }iSPE . Other methods could be also 

used, either as in Centofanti et al. (2020), where the distribution of the two statistics is 
estimated through a kernel density estimation approach, or as in Nomikos & MacGregor 
(1995), where a parametric approach is considered. However, all these methods are 
expected to provide the same results for large sample size. 

The parameter α  is chosen by using the Bonferroni correction * / 2α α= , where *α  
is the overall type I error probability, in order to control the family-wise error rate 
(FWER). Other corrections are also possible, such as the Sidàk correction (Lehmann 

& Romano, 2006) ( )0.5*1 1α α= − −  . In Phase II, let ( )*X t , t∈T , denote a new 

observation of the functional quality characteristic. Then, the new estimated scores are 
calculated as ( ) ( )* *ˆ ˆξl l t X t dtψ= ∫

T

, for 1, ,l L= … , where { }ˆlψ  are the estimated FPCs. The 

new realization of the 2T  and SPE  statistics are calculated as 

�

*2
2*

1
λ

ˆL
l

ll

T
ξ

=

=∑  (10) 

and 



A functional data analysis approach... 

8/13 Gestão & Produção, 28(3), e152, 2021 

( ) ( )( )2* * * ,ˆ PCSPE X t X t dt= ∫ −T  (11) 

where ( ) ( )* *

1

ˆξ ψˆˆ
L

PC
l l

l

X t t
=

=∑ , with t∈T . An OC signal is issued if at least one of 2*T   

(Equation 10) and *SPE   (Equation 11) violates the control limits. The larger the 
portion of variability of the functional data explained by the first L  FPCs retained 
into the FPCA model, the more coherent is the following interpretation of 2*T  and 

*SPE  statistics. In fact, as the former is based on the first scores, we expect that 
the larger the value of 2*T , the larger the deviation in magnitude from the 
reference mean of the new functional observation. Accordingly, as the latter is 
based on the last FPCs (see (9)), we expect that a new profile with large *SPE , 
which roughly monitors the shape of the current functional observation, exhibits 
non-negligible deviation in the covariance structure from that estimated on the 
reference data set. 

3 A real-case study in the shipping industry 
We illustrate the proposed monitoring procedure by means of a real-case 

study from the maritime field in monitoring CO2 emissions during the navigation 
phase of a roll-on/roll-off passenger (Ro-Pax) cruise ship. The data analyzed in 
this paper are a courtesy of the owner Grimaldi Group. Information about ports, 
name of the ship and CO2 emissions are omitted for confidentiality reasons. Two 
years of data are available with five-minute frequency. In the proposed 
application, we focus only on one route sailed by the ship to link two ports. The 
available data set contains the discrete values for 194 voyages of CO2 emissions 
due to propulsion, which is the functional quality characteristic to be monitored at 
the end of each voyage. The functional domain for each voyage is the fraction of 
total distance travelled from the beginning of the voyage, which is a 
dimensionless quantity between zero and one. 

The first 146 voyages are used as training data set to perform FPCA and estimate 
control chart limits. Then, the following 48 voyages are sequentially numbered using a 
voyage number (VN) and monitored as described in Section 2. Note that, since we 
focus on Phase II monitoring only, we do not report details about Phase I, which was 
devoted to filter out from the training data set data that do not reflect standard 
navigation conditions and thus may introduce bias in the estimation of model 
parameters and control chart limits. 

For each voyage, functional data are drawn from discrete observations by 
means of 50 B-spline basis functions and equally spaced knots. Functional data 
are smoothed by penalizing the integrated squared second derivative and by 
choosing the smoothing parameter through GCV criterion, as discussed in 
Section 2.1. 

Then, FPCA is applied on the training data set. Figure 2 reports the first four FPCs 
and the percentage of variability explained by each FPC. 
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Figure 2. First four functional principal components (FPCs). For each FPC, the percentage of 

variability explained is reported in the legend. 

As an example, note that the first component explains 56.8% of the total variability 
in the data, which is mainly attributed to the beginning and the end parts of the voyage. 
The second component explains 14.5% of the variability, which is attributed to the 
average value of CO2 emissions alongside the voyage, whereas the third component 
explains 12.1% of the variability and attributes the main weight to the end part of the 
voyage. Starting from the fourth component, the explained variability is less than 5% 
and interpretation becomes cumbersome. 

For the reasons discussed above, in this application it is convenient to retain the first 
3L =  FPCs, which explain together 83.4% of the total variability in the data, to 

approximate functional data and use the corresponding scores to calculate the statistic, 
while the residual functions ( ) ( )* *ˆ PCX t X t−  can be used to calculate the SPE  statistic as 

in Equation 11. Once control limits are estimated based on the 2T  and SPE  statistics 
calculated on the training data set, it is possible to use control charts to monitor new 
voyages. Figure 3 shows the 2T  and SPE  control charts used for Phase II monitoring. 

 
Figure 3. (a) 2T  and (b) SPE  phase II control charts. In each control chart, points joint by solid 

line indicate monitoring statistic values at each voyage, while dashed lines indicate upper 
control limit (UCL), at 0.05α = . 
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Several scenarios are possible, and it is interesting to notice that the use of both 
control charts supports the interpretation of the type of anomalies encountered. In 
Figure 4 we report OC profiles against those of the training data set, which are plotted 
for ease of comparison as grey lines. 

 
Figure 4. OC CO2 emission profiles (black lines) are superimposed on phase I reference ones 

(grey lines) and grouped by OC in (a) in 2T  control chart only; (b) SPE  control chart only; 
(c) both 2T  and SPE  control charts. 

In particular, note that VN 28 and 41 are OC in the 2T  control chart only (Figure 4a), 
VN 9, 12, 36, and 44 are OC in the SPE  control chart only (Figure 4b), whereas VN 23, 
24, 29, and 39 are OC in both control charts (Figure 4c). 

In Figure 4a, profiles of VN 28 and 41 show a clear deviation in magnitude only, that 
is the CO2 emissions plot below the average. Strictly speaking, it is worth noting that 
lower CO2 emissions, which are in fact desired, often are trivially associated to voyages 
sailed at lower-than-usual speed over ground that, in turn, imply other types of 
undesired costs for the shipping company due to arrival delay. Therefore, it is crucial 
that the proposed control charting procedure can signal these profiles. In Figure 4b, VN 
9, 12, 36, and 44 show that, during most of the voyage, the CO2 emissions were not 
particularly different from the reference profiles in the training data set. However, some 
non-negligible slowdowns are highlighted in brief parts of these voyages. The most 
important deviation from reference behavior occurs in fact at the beginning of VN 12, 
which shows the largest SPE  in Figure 4b. The other voyages seem to postpone the 
acceleration phase at the beginning of the voyage, or to anticipate the slowdown at the 
end of the voyage, then they show lower amounts of CO2 emissions. More generally, 
these voyages show a different shape from standard Phase I profiles. Finally, In Figure 
4c, with respect to the other voyages we discussed above, the CO2 emissions for VN 
23, 24, 29, and 39 show much larger deviations from the reference profiles in terms of 
both magnitude and shape. All these voyages have a lower-than-usual amount of CO2 
emissions for most of the voyage (deviation in magnitude), but also show sudden 
accelerations/slowdowns (deviation in shape). This is plausibly due to bad weather 
conditions, which has forced the ship to sail at an unusual navigation speed profile. 

Even though no action could be taken in most of the cases discussed above, we 
believe this real-case study motivates the use of a functional data approach that allows 
the definition of two non-trivial monitoring statistics. By plotting profiles related to out-
of-control signals, one can identify the domain portions where anomalies have 
occurred. However, in this application, we are not directly interested in a real-time 
feedback control and immediate actions during a voyage. Instead, the proposed control 
charts focus on tracking automatically (and possibly the whole fleet) for the following 
out-of-control signals, or patterns and trends which may identify malfunctioning in the 
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engines, the need for hull cleaning, or for any other energy efficiency initiative. Explicitly 
note that, in this application, CO2 emission profile at each voyage is the actual key 
performance indicator that the shipping company is interested in. This means that 
monitoring through the ship speed over ground alone, which may appear as an easier 
job than monitoring CO2 emissions directly, might not be adequate. While, theoretically, 
it is trivially known that the larger the speed, the larger the CO2 emissions, the true 
relationship between observational data is affected also by many covariates, such as 
weather conditions, displacement, trim. This should be properly accounted for in a 
complex model, which however is beyond the scope of this application. A different 
research question can be for example: “given the value of the covariates, is the quality 
characteristic as expected?”, as faced by Capezza et al. (2020) and Centofanti et al. 
(2020). 

4 Conclusions 
In this paper, we showed benefits and practical applicability of a functional data 

analysis approach in real-world case studies, with a very transparent set of steps. The 
two most important advantages over the classical multivariate approach are the 
possibility (i) of analyzing data theoretically defined over a continuum domain even 
when, over different observations, the discrete measurements are unequally spaced 
and may be more numerous than functional data observations; (ii) of assuming 
smoothness, i.e., that data points can borrow information from their neighbors. The 
smoothness assumption (ii) is very reasonable in most of the practical cases and 
supports model interpretability as it implies e.g., smooth eigenfunctions in the functional 
principal component analysis. 

The proposed functional control charting scheme is shown to be able to monitor 
CO2 emissions in practice from real navigation data and to support the detection and 
interpretation of anomalous voyage profiles. Different scenarios have validated the 
capability of distinguishing, with respect to the reference profiles characterizing the 
standard operating conditions, the type of deviation based on which control charts has 
issued the out of control signal. 
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