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Abstract: Interpreting an out-of-control signal is a crucial step in monitoring categorical processes. For 
the Chi-Square Control Chart (CSCC), an out-of control situation does not specify if it was a process 
deterioration or a process improvement. For this reason, a weighted chi-square statistical control chart 
WSCC is proposed with different weighting categories in order to enable an accelerated disclosure of 
a control situation after a shift due to a deterioration of quality and on the other hand, decelerate an out 
of control situation after a shift due to a quality improvement. Furthermore, in comparison with 
Marcucci’s method, the new procedure provides an accurate and easier way to interpret several 
signals. In other words, the WSCC allows a faster detection of an out-of control situation in the case of 
a quality deterioration, however, an out-of control situation is not quickly detected in the case of a quality 
improvement. Indeed, comparative studies have been performed to find the best control chart for each 
combination. Concluding remarks with comments and recommendations are given based on Average 
Run Length (ARL) and standard deviation run length (SDRL). 

Keywords: Multinomial processes; Categorical processes; Chi-square control chart; Weighted chi-
square statistic; ARL and SDRL. 

Resumo: Interpretar um sinal fora de controle é uma etapa crucial no monitoramento de processos 
categóricos. Para o gráfico de controle do qui-quadrado (CSCC), uma situação fora de controle não 
especifica se foi uma deterioração do processo ou uma melhoria do processo. Por esta razão, um 
gráfico de controle estatístico qui-quadrado ponderado WSCC é proposto com diferentes categorias 
de ponderação, a fim de permitir uma divulgação acelerada de uma situação de controle após uma 
mudança devido a uma deterioração da qualidade e, por outro lado, desacelerar uma situação fora 
de controle após um turno devido a uma melhoria da qualidade. Além disso, em comparação com 
o método de Marcucci, o novo procedimento fornece uma maneira precisa e mais fácil de interpretar 
vários sinais. Em outras palavras, o WSCC permite uma detecção mais rápida de uma situação fora 
de controle no caso de uma deterioração da qualidade, entretanto, uma situação fora de controle 
não é detectada rapidamente no caso de uma melhoria da qualidade. Na verdade, estudos 
comparativos foram realizados para encontrar o melhor gráfico de controle para cada combinação. 
As observações finais com comentários e recomendações são fornecidas com base no 
comprimento médio de execução (ARL) e comprimento de execução de desvio padrão (SDRL). 
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1 Introduction 

Throughout the years, the importance of measurement and improvement of quality was 
enhanced in the investigation of continuous improvement of products and services. The use of 
statistical process control (SPC) via control charts has proven its efficiency in monitoring and 
improving manufacturing processes. The most commonly used SPC charts are those of 
Shewhart (1925). Shewhart & Deming (1939) discussed Statistical method of quality control. 
There are two different types of control charts which differ depending on the nature of the control 
characteristic. If the quality dimension is measured through a numerical scale, then a control 
chart by variables is used. On the other hand, if the product can only be categorized as defective 
or non-defective, control chart by attributes is applied. Steiner et al. (1996) proposed control 
charts to detect mean and standard deviation shifts based on grouped data. For the second 
case, Duncan (1950) developed a chi-square chart for controlling a set of percentages. The main 
purpose of this work is to focus on the attribute control chart. The attribute control chart is applied 
if the quality cannot be measured with numerical scale, such as appearance, softness, color, etc. 
Nelson (1987) investigated chi-square control chart for several proportions and Woodall (1997) 
discussed construction methods of control charts based on attribute data. Product units are then 
classified as either conforming or nonconforming, depending upon whether or not they meet 
specifications. The binary classification used in the p-chart might not be applied in several 
situations where product quality does not transform suddenly from conforming to non-
conforming, and there might be a number of intermediate states such as conforming, minor non-
conforming and major non-conforming. Hence with many categories of classification, the process 
develops multinomial random variables. Several researches were conducted in order to monitor 
such processes like Marcucci (1985), Raz & Wang (1990) and Taleb & Limam (2002). A Control 
charts for process average and variability based on linguistic data was proposed by 
Kanagawa et al. (1993), on the other hand, Tucker et al. (2002) analyzed control chart method 
for ordinal data. Taleb et al. (2006) discussed methods based on multivariate fuzzy multinomial 
control charts. Topalidou & Psarakis (2009) reviewed multinomial and multi-attribute quality 
control charts. The previous studies do not provide an idea about which category is responsible 
for the out-of-control situation and could not detect if it is a process deterioration or not. For this 
reason, a new chart using a Weighted Sum of Chi-squares that express the relative importance 
of all categories and with known quality proportions is proposed. Consequently, an efficient way 
is presented to interpret out-of-control signals. Classical control chart for attribute processes is 
discussed in Section 2. The framework for the proposed Weighted Sum of Chi-Square chart is 
presented in Section 3. An experimental study and a sensitivity analysis are given in Section 4 
and 5 to illustrate the effectiveness of the new approach and compare it to the classical one. 

2 Control chart for attribute processes 

Marcucci (1985) introduces data where samples are classified into 3 categories such 
as conforming, non-conforming type A and non-conforming type B, with baseline 
proportions 0:95, 0:03 and 0:02 respectively. Table 1 shows simulated data using the 
Marcucci example parameters. The Marcucci procedure uses as a test statistic the chi-
square statistic and is defined in two cases as follows: 
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– If such proportion π is unknown, then a common statistical task is on homogeneity 
testing of proportions between the base period and each monitoring period 
(Duncan, 1974), and the correspondingly test statistic is expressed as follows 
(Equation 1): 
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where Xkj is the number of items of category j in sample k, nk is the size of sample k and 
𝜋𝜋kj is the proportion of category j in sample k. 

– If the process proportions are known, then a common statistical task which is the 
Pearson goodness-of-fit statistic is applied and defined as follows (Equation 2): 
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where Xij is the number of items of category j in sample i, ni is the size of sample i and 𝜋𝜋j 
is the proportion of category j, ( )2 2 1iZ qχ→ − , where q is the number of categories of quality. 

The upper control limit for the CSCC is expressed as a level of percentile of the chi-
square distribution as follows (Equation 3): 

( )2 1UCL qαχ= −  (3) 

where α is the significance level. 

Table 1. Marcucci’s Example. 

Time Conforming Non-conforming 
Type A 

Non-conforming 
Type B Total 2Zi  

2Yi  

1 242 8 4 254 0.25 0.23 
2 199 5 3 207 0.58 0.81 
3 228 10 5 243 1.05 0.78 
4 193 5 3 201 0.46 0.65 
5 214 15 3 232 10.05 3.11 
6 132 4 2 138 0.22 0.35 
7 206 7 5 218 0.13 0.2 
8 146 5 4 155 0.3 0.79 
9 207 7 7 221 1.57 4.28 
10 174 24 8 206 57.44 75.93 
11 223 12 10 245 8.66 26.09 
12 204 12 5 221 4.59 2.34 
13 196 8 8 212 3.9 14.79 
14 225 10 10 245 6.52 24.67 
15 225 7 5 237 0.02 0.02 
16 141 2 5 148 2.75 12.83 
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Consequently, the UCL control limit for the Marcucci’s example is equal to 5:99. The 
CSCC provides an out-of-control signal when a single plotted point exceeds UCL. Therefore, 
it relies only on a single value to take decision and it is relatively insensitive to small process 
shift. Hence if we consider the additional data given in Table 2, we can notice that it is difficult 
to interpret the results. Both observations are significantly outside the control limit with a 
false alarm rate of 0.05 as used by Marcucci (1985). For observation 18, though we do not 
have non-conforming items, the process detects an out-of-control signal. 

Table 2. Additional data for Marcucci Example. 

Time Conforming 
Non-

conforming 
Type A 

Non-
conforming 

Type B 
Total 2

iZ  

17 200 10 50 260 395.5 
18 260 0 0 260 13.7 

Consequently, we can explain that the statistical test used by Marcucci, i.e., the 
Pearson statistic, is unable to detect whether we actually have a process deterioration or 
a process improvement. Then, as a conclusion, for the CSCC, an out-of control situation 
does not specify if it was a process deterioration or a process improvement. For this 
reason, a WSCC is proposed with different weighting categories in order to enable an 
accelerated disclosure of a control situation after a shift due to a deterioration of quality 
and on the other hand, decelerate an out-of-control situation after a shift due to a quality 
improvement. Furthermore, in comparison with Marcucci’s method, the new procedure 
provides an accurate and easier way to interpret several signals. In other words, the 
WSCC allows a faster detection of an out-of control situation in the case of a quality 
deterioration, however, an out-of control situation is not quickly detected in the case of a 
quality improvement. Taleb & Limam (2002) proposed another approach which is based 
on membership functions, all categories are represented with only one representative 
value according to fuzzy theories and fuzzy sets. Fuzzy sets are composed by objects 
with different degrees of membership that varies in a range between 0 and 1, membership 
functions are associated to each object and their values come from the fact that it is 
impossible to precisely identify the class to which belongs objects in the set; the 
vagueness; the lack of clearly defined criteria for classifying and the presence of random 
variables makes it necessary to resort to fuzzy theory and membership functions to solve 
problem of identification. The classic function takes only 2 values 0 and 1 which indicates 
the certainty of the class that owns the object. If the value assigned is 0 so object does 
not belong to the set, else (value = 1) it is certain that the object is part of the set. However, 
the membership function can cover a multitude of values between 0 and 1 according to 
the degree of membership of an object to a class. If the value is different from 1 or 0, so 
we are doubting about the membership of the object to the class. The major difference 
between a characteristic function and a membership function is that the first is unique 
while the second is infinite and can generate an infinite number of membership functions. 
In addition, it consists only of weighting all the categories according to their proportions 
into a single representative value which, using fuzzy operations, makes it possible to 
derive a representative value capable of emphasizing the improvement or the 
deterioration of the quality. However, fuzzy theory is based on uncertainty and hesitation 
in the assignment due to human subjectivity and the shape of the membership function 
will change. Fuzzy sets are then drawn with intersection areas between categories. This 
problem of undefined limits makes better to privilege the probability theory and propose 
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our new approach. In the following section, a new approach that offers an easier way to 
interpret an out-of-control signal is presented. The new method is called the Weighted 
Sum of Chi-squares method (WSCC). 

3 The Weighted Sum of the Chi-square Control Chart (WSCC) 

The WSCC consists in assigning a weight for each category as defined in the below 
Statistic (Equation 4): 
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=∑  (4) 

In the test statistic, Wj is an appropriate way to determine the weights and shows a 
new method in order to find the relative weights of each category. This weight could be 
defined according to the following Equation 5: 
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Where: 
q is the number of categories. 
j = 1; …; q. 
n is the sample size. 
pj is the proportion for each category. 

for instance, if the number of categories is equal to q = 4, we will find the following 
results 
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on the other side of the weighting formula, and for the baseline proportions (p = [0:6; 0:25; 
0:1; 0:05]) and the same number of categories (q = 4), we find for n = 1000 observation 
the following results: 

- p = [0.6; 0.25; 0.1; 0.05] →  we have 600 for C1, 250 for C2, 100 for C3 and 50 for 
C4 
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Table 3. An Illustration of the Effectiveness of CSCC. 
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The aim of the new approach is to improve the sensitivity of 2
iY only on the shift 

affecting the worst categories, which leads to improve the sensitivity of the chart in 
detecting the process deterioration. Table 3 is provided in order to better assimilate the 
effectiveness of the WSCC. With C1 and Cq represent respectively the best and the worst 
categories. In fact, in case of quality improvement, i.e, the number of observations in best 
category (C1) increased, the corresponding weigh decreases, hence the process is in 
control. However, in case of quality deterioration, i.e, the number of observations in worst 
category (Cq) increased, the corresponding weigh increases, hence the process is out-of 
control. A lot of researches proved that the density function for the distribution of a 
weighted sum of independent chi-square random variables cannot be represented by 
elementary analytic functions. However, in many cases, the feasibility of approximating 
the distribution of 2

iY  by a gamma distribution is proven feasible (Equation 6, 7 and 8), the 
first two moments are equal to the first two moments of 2

iY  (Feiveson & Delaney, 1968). 
Thus: 

( ) ( )2
1

0
i

x
t

YG x e t dt
λ

α λα
λ

− −=
Γ∫

 (6) 

With: 
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Consequently, the UCL is equal to a level of percentile of the Gamma distribution 
expressed as follows (Equation 9): 

( ), , UCL p α λ= Γ  (9) 

with p is the false alarm rate. However, determining the statistical test distribution of 2
iY  

with the new weight Wj is not an easy task due to the unequally weights, and we are not 
certain if it follows Gamma distribution or not, future research may focus on this 
distribution. Hence, in this paper, the UCL is computed using Simulation. 

 
Figure 1. Chi-Square-Chart. 

4 Experimental study 

To illustrate the application of the proposed WSCC and the interpretation of its out-of-
control signal, The Marcucci example given in Table 1 is considered. In our experimental 
study, some assumptions have been introduced; we set false alarm rate on α = 0.05. The 
corresponding upper control limit for the WSCC is calculated using simulation and it is 
equal to UCL = 5.02. Moreover, large sample sizes were investigated for this study, i.e 
n  = 100; 300; 500; 1000. Then, for the chi-square chart, the UCL = 5.99 and it’s equal to 
the percentile level of the chi-square distribution. Figure 1 and Figure 2 represent the 
resulting CSCC and the WSCC: As highlighted on Figure 1 and Figure 2, 4 samples are 
out-of control for the CSCC however 5 samples are out-of control for the WSCC . A close 
examination of the data related to those samples, indicated that despite sample 5 
represents an improvement of the quality, however the CSCC consider it as out of control, 
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but the proposed WSCC was able to differentiate that it was an improvement of the quality 
and consequently interpreted the signal as in-control. On the other side, if we analyze the 
data related to sample 13, we found out that this sample represents a deterioration of the 
quality. Consequently, the WSCC has succeeded in interpreting it as an out-of control 
situation. After this analysis, we can conclude, as a general rule, that the WSCC 
outperforms the CSCC in differentiating between the improvement and the deterioration 
of the quality. 

The sensitivity analysis is determined in terms of the ARL and SDRL. In the field of 
Statistical Process Control, the random variable generally used to evaluate the 
performance of a control chart (based on the Ti statistic) is the Run Length defined by 
Equation 10: 

{ } 1, 2, ... | , .iRL inf i T LCL UCL= = ∉    (10) 

When possible, it is important to evaluate its probability density function fRL(l), its 
cumulative distribution function FRL(l), its mean value ARL =E(RL) (Equation 11) and its 
standard deviation SDRL = δ(RL) (Standard-deviation Run Length), (Equation 12). 
Moreover, the number of samples needed to report an out of control situation (which 
equals the length of the sequence) is a geometric random variable RL (the support of the 
random variable Ω(RL) = (1; 2; 3; …; ∞). The ARL of this geometric variable RL with 
parameter p is is given by its first moment. 

( ) 1E RL ARL
p

= =
 (11) 

The variance of the geometric run length variable RL is 

( ) ( ) 2
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1 1pV RL p ARL
p
−

= = −
 (12) 

 
Figure 2. Weighted-Chi-square-Chart 
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Table 4. ARL for Known Proportions with q=5 and n=1000. 

Baseline proportions n = 1000 
q=5 

P = [0.50 0.30 0.10 0.07 0.03] 

UCL( 2
iZ ) SDRL( 2

iZ ) UCL( 2
iY ) SDRL( 2

iY ) 
9.487729 19.1013 91.036737 19.453656 

ARL( 2
iZ )  ARL( 2

iY )  

19.607843  19.96008  

Improvement ARL( 2
iZ ) SDRL( 2

iZ ) ARL( 2
iY ) SDRL( 2

iY ) 
P = [0.52 0.30 0.10 0.07 0.01] 1.0486577 0.2258877 136.9863 136.48538 
P = [0.55 0.30 0.10 0.02 0.03] 1 0 35.460993 34.957417 
P = [0.55 0.30 0.05 0.07 0.03] 1.0002 0.0141435 1.0316723 0.1807635 
P = [0.58 0.22 0.10 0.07 0.03] 1.0007005 0.0264762 1.0001 0.0100005 
P = [0.60 0.27 0.09 0.03 0.01] 1 0.0264762 2.7785496 2.2230133 

Deterioration ARL( 2
iZ ) SDRL( 2

iZ ) ARL( 2
iY ) SDRL( 2

iY ) 
P = [0.48 0.30 0.10 0.07 0.05] 1.2227929 0.5219479 1.0887316 0.3108133 
P = [0.43 0.30 0.17 0.07 0.03] 1 0.0283062 1.0053282 0.0731887 
P = [0.43 0.37 0.10 0.07 0.03] 1.0091836 0.0962701 1.0085729 0.0929860 
P = [0.40 0.32 0.12 0.10 0.08] 1 0 1 0 

Hence the standard deviation (SD) of the run length is 

( ) 1SD RL p= −  ARL (13) 

5 Sensitivity analysis 

In this section we summarize the results of a simulation study comparing the ARL and 
SDRL performance of the previously discussed CSCC and WSCC where the sample sizes 
are fixed, without loss of generality at n= 100, 300, 500, 1000, and a fixed number of 
categories at q= 3, 4, 5 (see from Table 4 to Table 15). This study provided a baseline 
information about the performance of the weighted sum of chi-square approach. In this 
simulation study, 10.000 samples are used to estimate each ARL and SDRL values. The 
Simulation study was done on two phases as below: 

• Phase I 
– Step1: Generate 10:000 Samples with fixed size n=100, 300, 500, 1000, using 

known proportions p0 = [p01; p02; …; p0q] with p0j is a specified proportion 
associated with each category j = 1; …; q. 

– Step 2: Calculate for each sample the corresponding 2Yi and 2Zi  
– Step 3: Calculate the UCL0 using a fixed Type I error for each chart. 
• Phase II 
– Step 4: For fixed shifts of proportions vectors, generate 10:000 samples and 

calculate the corresponding 2Yi and 2Zi  
– Step 5: Calculate the number of samples plotted outside the UCL0 for both charts. 
– Step 6: Calculate the ARL and SDRL for each chart. 

The following remarks can be deduced as conclusions from Table 4 to Table 15 below: 
- Process Improvement: 
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As the number of categories increases, the values of ARL 2( )iY  and SDRL 2( )iY  
increase: 

P= [0.52, 0.30, 0.10, 0.07, 0.01] →  ARL 2( )iY = 136.9863 and SDRL 2( )iY  = 136.48538, 

P= [0.64, 0.25, 0.10, 0.01] →  ARL 2( )iY = 98.039216 and SDRL 2( )iY  = 97.537934, 

P= [0.75, 0.20, 0.05] →  ARL 2( )iY = 67.567568 and SDRL 2( )iY  = 67.065704, 

As the sample size increases, the values of ARL 2( )iY  and SDRL 2( )iY  increase, for 
instance: 

n= 100 →  ARL 2( )iY = 99.009901 and SDRL 2( )iY  = 98.508632 

n= 300 →  ARL 2( )iY = 21.716467 and SDRL 2( )iY  = 19.96008 

n= 500 →  ARL 2( )iY = 112.35955 and SDRL 2( )iY  = 111.85843 

n= 1000 →  ARL 2( )iY = 136.9863 and SDRL 2( )iY  = 136.48538, 

As the proportion in the best category increases, the ARL 2( )iY  exceeds the ARL 2( )iZ : 

P= [0.52, 0.30, 0.10, 0.07, 0.01] the ARL of the CSCC is equal to 1.0486577 however 
the ARL of the WSCC is equal to 136.9863. 

- Process Deterioration: 

As the sample size increases, the values of ARL 2( )iY  and SDRL 2( )iY  decreases: 

n= 100 →  ARL 2( )iY = 6.7204301 and SDRL 2( )iY  = 6.2003025 

n= 300 →  ARL 2( )iY = 3.8774719 and SDRL 2( )iY  = 3.3402569 

n= 500 →  ARL 2( )iY = 2.6226069 and SDRL 2( )iY  = 2.0628766 

n= 1000 →  ARL 2( )iY = 1.6697278 and SDRL 2( )iY  = 1.0574796, 

As the number of categories increases, the values of ARL 2( )iY  and SDRL 2( )iY  
decreases: 

It is interesting to note that in most samples, the WSCC outperforms the CSCC in 
detecting a process deterioration comparing to CSCC. 

Table 5. ARL for Known Proportions with q=4 and n=1000. 

Baseline proportions n = 1000 
q=4 

P = [0.60 0.25 0.10 0.05] 

UCL( 2
iZ ) SDRL( 2

iZ ) UCL( 2
iY ) SDRL( 2

iY ) 
7.8147279 20.327185 31.619325 19.453656 

ARL( 2
iZ )  ARL( 2

iY )  

20.833333  19.96008  

Improvement ARL( 2
iZ ) SDRL( 2

iZ ) ARL( 2
iY ) SDRL( 2

iY ) 
P = [0.64 0.25 0.10 0.01] 1 0 98.039216 97.537934 
P = [0.65 0.25 0.05 0.05] 1.0002 0.0141435 2.9664788 2.4152676 
P = [0.69 0.25 0.05 0.01] 1 0 3.866976 3.3296437 
P = [0.70 0.15 0.10 0.05] 1 0 1 0 
P = [0.75 0.15 0.05 0.05] 1 0 1 0 

Deterioration ARL( 2
iZ ) SDRL( 2

iZ ) ARL( 2
iY ) SDRL( 2

iY ) 
P = [0.55 0.25 0.10 0.10] 1 0 1 0 
P = [0.52 0.25 0.15 0.08] 1 0 1 0 
P = [0.50 0.35 0.10 0.05] 1 0 1.0001 0.0100005 
P = [0.50 0.30 0.15 0.05] 1 0 1 0 
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Table 6. ARL for Known Proportions with q=3 and n=1000. 

Baseline proportions n = 1000 
q=3 

P = [0.7 0.2 0.1] 

UCL( 2
iZ ) SDRL( 2

iZ ) UCL( 2
iY ) SDRL( 2

iY ) 
5.9914646 19.374265 11.225403  

ARL( 2
iZ )  ARL( 2

iY )  

19.880716  1.96008  

Improvement ARL( 2
iZ ) SDRL( 2

iZ ) ARL( 2
iY ) SDRL( 2

iY ) 
P = [0.75 0.20 0.05] 1 0 67.567568 67.065704 
P = [0.75 0.15 0.10] 1.0306091 0.1776120 1.0291242 0.1731254 
P = [0.76 0.20 0.04] 1 0 67.567568 67.065704 
P = [0.78 0.16 0.06] 1.0001 0.0100005 1.1419436 0.4026060 
P = [0.80 0.10 0.10] 1 0 1 0 

Deterioration ARL( 2
iZ ) SDRL( 2

iZ ) ARL( 2
iY ) SDRL( 2

iY ) 
P = [0.68 0.20 0.12] 2.1838829 1.6079371 1.6697278 1.0574796 
P = [0.65 0.23 0.12] 1.1384335 0.3969853 1.0887316 0.3108133 
P = [0.60 0.20 0.20] 1 0 1 0 
P = [0.55 0.25 0.20] 1 0 1 0 

Table 7. ARL for Known Proportions with q=5 and n=500. 

Baseline proportions n = 500 
q=5 

P = [0.50 0.30 0.10 0.07 0.03] 

UCL( 2
iZ ) SDRL( 2

iZ ) UCL( 2
iY ) SDRL( 2

iY ) 
9.487729 19.1013 95.113769  

ARL( 2
iZ )  ARL( 2

iY )  

19.607843  19.96008  

Improvement ARL( 2
iZ ) SDRL( 2

iZ ) ARL( 2
iY ) SDRL( 2

iY ) 
P = [0.52 0.30 0.10 0.07 0.01] 1.7969452 1.19669 112.35955 111.85843 
P=[0.55 0.30 0.10 0.02 0.03] 1.0031096 0.0558504 27.624309 27.1197 
P = [0.55 0.30 0.05 0.07 0.03] 1.0654166 0.2639999 2.2727273 1.7007534 
P = [0.58 0.22 0.10 0.07 0.03] 1.0659844 0.2652138 1.0539629 0.2384846 
P = [0.60 0.27 0.09 0.03 0.01] 1.00040020 0.0200090 6.6269052 6.1064693 

Deterioration ARL( 2
iZ ) SDRL( 2

iZ ) ARL( 2
iY ) SDRL( 2

iY ) 
P = [0.48 0.30 0.10 0.07 0.05] 1.866368 1.271598 1.406272 0.7558630 
P = [0.43 0.30 0.17 0.07 0.03] 1.0094892 0.0978736 1.1591515 0.4295122 
P = [0.43 0.37 0.10 0.07 0.03] 1.1978917 0.4868807 1.1676787 0.4424871 
P = [0.40 0.32 0.12 0.10 0.08] 1.0025063 0.0501257 1.0015023 0.4424871 

Table 8. ARL for Known Proportions with q=4 and n=500. 

Baseline proportions n = 500 
q=4 

P = [0.60 0.25 0.10 0.05] 

UCL( 2
iZ ) SDRL( 2

iZ ) UCL( 2
iY ) SDRL( 2

iY ) 
7.8147279 19.334736 31.426705 19.453656 

ARL( 2
iZ )  ARL( 2

iY )  

19.8412  19.96008  

Improvement ARL( 2
iZ ) SDRL( 2

iZ ) ARL( 2
iY ) SDRL( 2

iY ) 
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Baseline proportions n = 500 
q=4 

P = [0.64 0.25 0.10 0.01] .0017029 0.0413013 103.09278 102.59156 
P = [0.65 0.25 0.05 0.05] 1.0446046 0.2158568 15.151515 14.642981 
P = [0.69 0.25 0.05 0.01] 1 0 46.296296 45.793566 
P = [0.70 0.15 0.10 0.05] 1.0007005 0.0264762 1.0003001 0.0173260 
P = [0.75 0.15 0.05 0.05] 1 0 1.0001 0.0100005 

Deterioration ARL( 2
iZ ) SDRL( 2

iZ ) ARL( 2
iY ) SDRL( 2

iY ) 
P = [0.55 0.25 0.10 0.10] 1.021868 0.1494865 1.0060362 0.0779271 
P = [0.52 0.25 0.15 0.08] 1.0092854 0.0968071 1.0131712 0.1155192 
P = [0.50 0.35 0.10 0.05] 1.0034116 0.0585085 1.0083695 0.0918670 
P = [0.50 0.30 0.15 0.05] 1.0928962 0.3186313 1.0084712 0.0918670 

Table 9. ARL for Known Proportions with q=3 and n=500. 

Baseline proportions n = 500 
q=3 

P = [0.7 0.2 0.1] 

UCL( 2
iZ ) SDRL( 2

iZ ) UCL( 2
iY ) SDRL( 2

iY ) 

5.9914646 20.725393 11.48985 19.334806 

ARL( 2
iZ )  ARL( 2

iY )  

21.231423  19.84127  

Improvement ARL( 2
iZ ) SDRL( 2

iZ ) ARL( 2
iY ) SDRL( 2

iY ) 

P = [0.75 0.20 0.05] 1.0276436 0.1685460 63.694268 63.19229 
P = [0.75 0.15 0.10] 1.3504389 0.6879290 1.3417416 0.6771476 
P = [0.76 0.20 0.04] 1.0015023 0.0387886 64.102564 63.600599 
P = [0.78 0.16 0.06] 1.0239607 0.1566359 1.8261505 1.2282814 
P = [0.80 0.10 0.10] 1 0 1 0 

Deterioration ARL( 2
iZ ) SDRL( 2

iZ ) ARL( 2
iY ) SDRL( 2

iY ) 

P = [0.68 0.20 0.12 3.8109756 3.2730046 2.6226069 2.0628766 
P = [0.65 0.23 0.12] 1.69549 1.0859081 1.4976786 0.8633438 
P = [0.60 0.20 0.20 1.0001 0.0100005 1 0 
P = [0.55 0.25 0.20] 1 0 1 0 

Table 10. ARL for Known Proportions with q=5 and n=300. 

Baseline proportions n = 300 
q=5 

P = [0.50 0.30 0.10 0.07 0.03] 

UCL( 2
iZ ) SDRL( 2

iZ ) UCL( 2
iY ) SDRL( 2

iY ) 

9.487729 19.453656 86.818157 19.453656 

ARL( 2
iZ )  ARL( 2

iY )  

20.576132  19.96008  

Improvement ARL( 2
iZ ) SDRL( 2

iZ ) ARL( 2
iY ) SDRL( 2

iY ) 

P = [0.52 0.30 0.10 0.07 0.01} 3.7664783 19.453655 19.96008 19.453656 
P = [0.55 0.30 0.10 0.02 0.03] 1.0954102 19.453655 34.965035 34.461408 
P = [0.55 0.30 0.05 0.07 0.03} 1.4361626 19.453655 7.3855244 6.8673464 
P = [0.58 0.22 0.10 0.07 0.03} 1.3640704 19.453655 1.3390466 0.6737946 
P = [0.60 0.27 0.09 0.03 0.01] 1.0302905 19.453655 11.600928 11.089662 

Deterioration ARL( 2
iZ ) SDRL( 2

iZ ) ARL( 2
iY ) SDRL( 2

iY ) 

P = [0.48 0.30 0.10 0.07 0.05] 2.7847396 19.453655 1.9219681 1.3311624 
P = [0.43 0.30 0.17 0.07 0.03] 1.1093854 19.453655 1.4755792 0.8377080 
P = [0.43 0.37 0.10 0.07 0.03] 1.6943409 19.453655 1.5239256 0.8935455 
P = [0.40 0.32 0.12 0.10 0.08] 1.0493179 19.453655 1.0171905 0.1322347 

Table 8. Continued… 
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Table 11. ARL for Known Proportions with q=4 and n=300. 

Baseline proportions n = 300 
q=4 

P = [0.60 0.25 0.10 0.05] 

UCL( 2
iZ ) SDRL( 2

iZ ) UCL( 2
iY ) SDRL( 2

iY ) 
7.8147279 19.178522 34.163768 19.453656 
ARL( 2

iZ )  ARL( 2
iY )  

19.685039  19.96008  
Improvement ARL( 2

iZ ) SDRL( 2
iZ ) ARL( 2

iY ) SDRL( 2
iY ) 

P = [0.64 0.25 0.10 0.01] 1.0980564 0.3281333 133.33333 132.83239 
P = [0.65 0.25 0.05 0.05 1.3299641 0.6624503 22.421525 21.915822 
P = [0.69 0.25 0.05 0.01] 1.0012014 0.0346820 80 79.498428 
P = [0.70 0.15 0.10 0.05] 1.0303967 0.1769764 1.0234367 0.1548741 
P = [0.75 0.15 0.05 0.05] 1.0002 0.0141435 1.0188487 0.1385784 

Deterioration ARL( 2
iZ ) SDRL( 2

iZ ) ARL( 2
iY ) SDRL( 2

iY ) 
P = [0.55 0.25 0.10 0.10] 1.1405109 0.4003176 1.0622477 0.2571429 
P = [0.52 0.25 0.15 0.08 1.0976948 0.3274738 1.1201972 0.3669395 
P = [0.50 0.35 0.10 0.05] 1.0678057 0.2690786 1.0992635 0.3303282 
P = [0.50 0.30 0.15 0.05] 1.0928962 0.3186313 1.0949305 0.3224008 

Table 12. ARL for Known Proportions with q=3 and n=300. 

Baseline proportions n = 300 
q=4 

P = [0.7 0.2 0.1] 

UCL( 2
iZ ) SDRL( 2

iZ ) UCL( 2
iY ) SDRL( 2

iY ) 
5.9914646 18.577242 12.064423  
ARL( 2

iZ )  ARL( 2
iY )  

19.083969  19.96008  
Improvement ARL( 2

iZ ) SDRL( 2
iZ ) ARL( 2

iY ) SDRL( 2
iY ) 

P = [0.75 0.20 0.05] 1.2189176 0.5165680 70.921986 70.420211 
P = [0.75 0.15 0.10] 2.0661157 1.4841558 2.0682523 1.4864102 
P = [0.76 0.20 0.04] 1.039177 0.2017717 74.074074 73.572375 
P = [0.78 0.16 0.06] 1.1944577 0.4819455 3.3557047 2.811592 
P = [0.80 0.10 0.10] 1.0049241 0.0703445 1.0042177 0.0650806 

Deterioration ARL( 2
iZ ) SDRL( 2

iZ ) ARL( 2
iY ) SDRL( 2

iY ) 
P = [0.68 0.20 0.12] 5.4112554 4.8857374 3.8774719 3.3402569 
P = [0.65 0.23 0.12] 2.463661 1.8989377 2.1710812 1.5945258 
P = [0.60 0.20 0.20] 1.002004 0.0448109 1.0006004 0.0245104 
P = [0.55 0.25 0.20] 1.0001 0.0100005 1 0 

Table 13. ARL for Known Proportions with q=5 and n=100. 

Baseline proportions n = 100 
q=5 

P = [0.50 0.30 0.10 0.07 0.03] 

UCL( 2
iZ ) SDRL( 2

iZ ) UCL( 2
iY ) SDRL( 2

iY ) 
9.487729 19.062916 122.05381 19.453656 
ARL( 2

iZ )  ARL( 2
iY )  

19.569472  19.96008  
Improvement ARL( 2

iZ ) SDRL( 2
iZ ) ARL( 2

iY ) SDRL( 2
iY ) 

P = [0.52 0.30 0.10 0.07 0.01] 16.528926 16.021126 99.009901 98.508632 
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Baseline proportions n = 100 
q=5 

P = [0.55 0.30 0.10 0.02 0.03] 4.199916 3.6659758 26.525199 26.020396 
P = [0.55 0.30 0.05 0.07 0.03] 5.3763441 4.8506424 26.315789 25.810947 
P = [0.58 0.22 0.10 0.07 0.03] 3.9184953 3.3817318 4.3994721 3.8672836 
P = [0.60 0.27 0.09 0.03 0.01] 2.6226069 2.0628766 41.322314 40.819252 

Deterioration ARL( 2
iZ ) SDRL( 2

iZ ) ARL( 2
iY ) SDRL( 2

iY ) 
P = [0.48 0.30 0.10 0.07 0.05] 5.6338028 5.1093964 3.875969 3.3387373 
P = [0.43 0.30 0.17 0.07 0.03] 2.18436 1.6084367 4.2753313 3.7420751 
P = [0.43 0.37 0.10 0.07 0.03] 4.4802867 3.948757 4.456328 3.9246059 
P = [0.40 0.32 0.12 0.10 0.08] 1.7476407 3.948757 1.5807777 0.9581651 

Table 14. ARL for Known Proportions with q=4 and n=100. 

Baseline proportions n = 100 
q=4 

P = [0.60 0.25 0.10 0.05] 

UCL( 2
iZ ) SDRL( 2

iZ ) UCL( 2
iY ) SDRL( 2

iY ) 
7.8147279 21.56926 32.038648 19.453656 
ARL( 2

iZ )  ARL( 2
iY )  

22.075055  19.96008  
Improvement ARL( 2

iZ ) SDRL( 2
iZ ) ARL( 2

iY ) SDRL( 2
iY ) 

P = [0.64 0.25 0.10 0.01] 6.0569352 5.5343951 151.51515 151.01432 
P = [0.65 0.25 0.05 0.05] 4.7641734 4.2347579 26.385224 25.88039 
P = [0.69 0.25 0.05 0.01] 1.699813 1.0906655 133.33333 132.83239 
P = [0.70 0.15 0.10 0.05] 1.9912386 1.4049173 1.9853087 1.3986214 
P = [0.75 0.15 0.05 0.05] 1.2674271 0.5821893 1.7979144 1.1977403 

Deterioration ARL( 2
iZ ) SDRL( 2

iZ ) ARL( 2
iY ) SDRL( 2

iY ) 
P = [0.55 0.25 0.10 0.10] 2.1181953 1.5390114 1.6594756 1.0461279 
P = [0.52 0.25 0.15 0.08] 1.9868865 1.4002969 1.9508389 1.3619594 
P = [0.50 0.35 0.10 0.05] 2.0395676 1.4561141 2.1168501 1.5375969 
P = [0.50 0.30 0.15 0.05] 2.1168501 1.5375969 2.093364 1.512881 

Table 15. ARL for Known Proportions with q=3 and n=100. 

Baseline proportions n = 100 
q=3 

P = [0.7 0.2 0.1] 

UCL( 2
iZ ) SDRL( 2

iZ ) UCL( 2
iY ) SDRL( 2

iY ) 
5.9914646 21.13911 11.79648 19.334806 
ARL( 2

iZ )  ARL( 2
iY )  

21.645022  19.84127  
Improvement ARL( 2

iZ ) SDRL( 2
iZ ) ARL( 2

iY ) SDRL( 2
iY ) 

P = [0.75 0.20 0.05] 4.0866367 3.5516141 81.967213 81.465679 
P = [0.75 0.15 0.10] 6.0096154 5.4868809 6.4267352 5.9056067 
P = [0.76 0.20 0.04] 2.5826446 2.021734 75.757576 75.255915 
P = [0.78 0.16 0.06] 3.3590863 2.8150265 10.438413 9.9258276 
P = [0.80 0.10 0.10] 1.512173 0.8800535 1.5304561 0.9010215 

Deterioration ARL( 2
iZ ) SDRL( 2

iZ ) ARL( 2
iY ) SDRL( 2

iY ) 
P = [0.68 0.20 0.12] 9.5785441 9.0647649 6.7204301 6.2003025 
P = [0.65 0.23 0.12] 5.7208238 5.1968261 4.4622936 3.9306196 
P = [0.60 0.20 0.20] 1.2669454 0.5815542 1.1500863 0.4154662 
P = [0.55 0.25 0.20] 1.1082788 0.3464146 1.0625863 0.2578824 

Table 13. Continued… 
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The ARL and SDRL performance comparison for the case where n=100, 300, 500, 
1000 and q=3, 4, 5 is shown in the previous tables. They reveal in case of process 
improvement, it would be better to use the WSCC. In fact, this chart has better 
performance compared to CSCC. Whereas, in the case of a process deterioration, the 
WSCC does not suggest better outcomes as to the CSCC. 

Finally, The main strengths of the WSCC lies in: 

1. In a case of quality deterioration, this chart allows a fast detection of an out-of-control 
situation; 

2. On the contrary of Marccucci chart, an out-of-control situation is not quickly detected 
in the case of a quality improvement. 

6 Conclusion 

Processes with multiple categories can be modeled as multinomial processes. 
Marcucci (1985) proposed a method to monitor such processes. However, this method 
does not allow a differentiation between a process improvement or process deterioration, 
it indicates only if the process is out-of-control or not. Hence in this study we propose a 
Weighted sum of the chi-square control chart to monitor any multinomial processes. The 
basic concept of this chart is to enhance each category by weights. 

The corresponding UCL is calculated using simulation. According to an ARL 
comparison, we succeed to demonstrate that the proposed method outperforms the Chi-
square chart. In fact, the WSCC control chart does not only allow a faster detection of an 
out-of control situation in a case of quality deterioration but also outperforms the Marcucci 
method in the case of a quality improvement as it does not quickly detect an out-of control 
situation. 

Future researches will focus on expanding the study on other approaches such as 
implementing a Weighted sum of the chi-square control chart with unknown proportions, 
i.e proportions are not specified and should be estimated. It is well known that when in-
control parameters are estimated, the performance of control charts differs from the known 
parameters case due to the variability of the estimators used during the Phase I. 
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