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Abstract: Renewable sources are responsible for more than half of Brazilian electric generation, 
which basically correspond to hydropower, biomass and wind sources. This research aimed to 
verify if the Autoregressive Integrated Moving Average (ARIMA) models present good 
performance in predicting electricity generation from biomass, hydropower and wind power for 
the first months of COVID-19 pandemic in Brazil. The best forecasting models adjusted for 
biomass, hydropower and wind generation was the SARIMA, since this model was able to identify 
seasonal effects of climatic instability, such as periods of drought. Based on the seasonality of 
the largest generating sources, renewable generation needs to be offset by other sources, as 
non-renewable, and more efforts are needed to make Brazilian electric matrix more sustainable. 
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Resumo: As fontes renováveis são responsáveis por mais da metade da geração elétrica 
brasileira, as quais correspondem basicamente às fontes hidráulica, biomassa e eólica. A 
presente pesquisa teve como objetivo verificar se os modelos Autorregressivos Integrados de 
Médias Móveis (ARIMA) possuem bom desempenho ao prever a geração de eletricidade das 
fontes biomassa, hidráulica e eólica nos primeiros meses da pandemia da COVID-19 no Brasil. 
O melhor modelo de previsão ajustado para as fontes biomassa, hidráulica e eólica foi o SARIMA, 
uma vez que esse modelo foi capaz de identificar os efeitos sazonais causados por instabilidades 
climáticas, como períodos de estiagem. Devido à sazonalidade das principais fontes geradoras, 
a geração renovável precisa ser compensada com outras fontes, como as não renováveis. Dessa 
forma, mais esforços são necessários para tornar a matriz elétrica brasileira mais sustentável. 
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1 Introduction 
Renewable sources are a competitive advantage for an electric matrix in the global energy 

scenario (Maciel et al., 2018). According to the International Energy Agency (IEA, 2017), the 
world’s most renewable matrices are from Iceland, Paraguay, Democratic Republic of Congo, 
Albania, Ethiopia and Costa Rica. Brazilian electric matrix can be considered renewable, since 
hydropower is responsible for generating more than half of the country electricity (EPE, 2018). 
The widespread use of this source is justified by its abundance; Brazil has numerous rivers 
with large tributaries and substantial power generation potential (Ferreira et al., 2016). 

Other renewable sources used in the country are biomass, solar and wind energy (EPE, 
2018). The first one has presented great progress in research and implementation actions, as 
it is an alternative source that contributes to the reduction of climate change (Bakhtiar et al., 
2020; Daioglou et al., 2019; Uddin et al., 2019). Even though biomass and wind sources 
present an unstable generation during the year, they are complementary to hydropower 
generation in Brazil (Cotia et al., 2019; Čepin, 2019; Ferreira et al., 2018; González-Aparicio 
& Zucker, 2015; Razmjoo et al., 2019; Silva et al., 2016). In addition to climatic instabilities, 
electricity demand can be influenced by consumer behavior, which changed significantly after 
the COVID-19 pandemic with the transition of several jobs to home offices (Qarnain et al., 
2020; Carvalho et al., 2021). The planning of an electric matrix can be based on time series 
analysis, which evaluate trends, serial correlation and instabilities over time. (Kuang et al., 
2016; Renn & Marshall, 2016; Shen & Ritter, 2016). Time series have already been applied 
to renewable energies in studies developed by Alsharif et al. (2019), Baruque et al. (2019) 
and Hosseini et al. (2019). Linear models, such as the Autoregressive Integrated Moving 
Average (ARIMA), have high levels of accuracy and can be used to reveal series average 
behavior (Bhutto et al., 2017). Neuro-fuzzy logic is also a method for predicting renewable 
generation, such as biomass, according to studies of Olatunji et al. (2019a, b). 

This research gap is to predict electricity generation from renewable sources as an 
alternative to previous work that only predicted the market prices renewable energy 
(González-Aparicio & Zucker, 2015; Salles & Campanati, 2019). The objective of this 
research is to verify which is the best forecasting model, the ARIMA model or its seasonal 
version (SARIMA), and to predict electricity generation from biomass, hydropower and wind 
sources for the first months of COVID-19 pandemic in Brazil. 

The general ARIMA models were adjusted, because we were looking for an explanation 
given by the current and past values of each series. Although these models do not consider 
the correlation among variables, they are more accurate than the vector autoregressive 
models (Ramser et al., 2019; Senna & Souza, 2016). 

The article is structured in five sections: the first one had a brief introduction to the problem; 
the second one presents the methodology used; the third one contains the results; the fourth 
one addresses the discussions; the last one deals with the conclusions and suggestions for 
future research. 

2 Materials and methods 

2.1 Data collection 
Amounts of electricity generated (GWh) from renewable sources were collected at 

National Electric Energy Agency open database (ANEEL, 2020). Three time series 
were collected to analyze biomass, hydropower and wind generation, since they are 
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the Brazilian electric matrix renewable part. The modeling stage had 60 monthly 
observations, from January 2015 to December 2019, and, for out-of-sample forecasts, 
another 6 observations were used referring to the period from January to June 2020. 

2.2 ARIMA models 
To understand behavior and series generator process, Autoregressive Integrated Moving 

Average models (ARIMA) were applied to capture serial correlation effects, as long as the 
series were stationary (Morettin, 2016). The autocorrelation function (ACF) and the partial 
autocorrelation function (PACF) were applied to determine which ARIMA filter will be used: 
AR, MA, ARMA, ARIMA or SARIMA (Souza, 2016; Reichert & Souza, 2020). 

As the series stationarity is a basic assumption for the ARIMA modeling, unit root tests, 
such as Augmented Dickey-Fuller (ADF) e Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests, 
were applied in series in level and in their first differences to identify the number of differences 
to make the series stationary (d=0 or d=1) (Kwiatkowski et al., 1992; Dickey & Fuller, 1981). 

The ARIMA models and their seasonal variation (SARIMA) were applied to predict 
the amount of electricity generated by renewable sources (Renn & Marshall, 2016), as 
presented in Equations 1 and 2 (Box & Jenkins, 1970; Box et al., 1994). 

( ) ( )Δ    d
t tB X B eφ θ=  (1) 

( ) ( ) ( ) ( )d Ds
t tB B X B B eφ θΦ ∆ ∆ = Θ  (2) 

where: Xt represents the series analyzed, B is the delay operator, d is the integration order, ϕ is the 
autoregressive parameter, Φ  is the seasonal autoregressive parameter, θ is the moving average 
parameter, Θ  is the seasonal moving average parameter and et characterizes the residue 
classified as white noise, which means independent and identically distributed values (i.i.d.). 

The best model for each generating source was validated based on its lowest 
Akaike and Bayesian information criteria (AIC and BIC) values and residues with the 
white noise condition (Akaike, 1974; Kim et al., 2017). 

2.3 Methodological steps 
Initially, a chart of the series original values was elaborated to investigate the 

stylized factors as trend, seasonality, stationarity and fluctuations that can be 
understood as volatility. To confirm the series stationarity, the ADF and KPSS tests 
were performed and their results were used to decide whether a difference (d=1) would 
be needed to make the series stationary. 

In sequence, the ACF and PACF functions were applied to the original series to 
verify the serial correlation and identify a possible ARIMA filter to be used in the 
adjustment step. 

The best model was chosen based on adjustment statistics, such as AIC and BIC, 
and the white noise condition. After adjustment, the models were used to predict out-
of-sample values in the interval between January and June 2020. The accuracy of the 
models was verified through Mean Absolute Percentage Error (MAPE), Symmetric 
MAPE, Root Mean Square Error (RMSE) statistics and the U-Theil coefficient 
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(Khair et al., 2017; Jadhav et al., 2017). Finally, charts of predicted and original values 
were used to verify the forecasting performance of the ARIMA models. These analyses, 
model adjustment and forecasts out-of-sample were developed in EViews S.V. 9 
software. 

3 Results 
In initial analysis, time series charts were elaborated to verify stationarity, 

seasonality and volatility in electricity generation from renewable sources, as shown in 
Figure 1. 

 
Figure 1. Timeline charts of amounts of electricity generated from renewable sources. 

The biomass and wind series can be considered as non-stationary of renewable, due to 
the growing trend behavior (Figure 1). Otherwise, hydropower presented the most stable 
behavior, despite having seasonal peaks caused by climatic instability. In order to confirm the 
series stationarity, the ADF and KPSS unit root tests were performed with the series in level 
and in their first differences; the results can be seen in Table 1. 

Table 1. Unit root tests results. 

Unit Root Tests 
ADF KPSS ADF KPSS 

In level 1st difference 

Biomass -2.07 0.29 -7.17 0.04 

Hydropower -5.83 0.08 -6.89 0.03 

Wind -1.86 0.84 -6.86 0.02 

Where: for an α = 0.05, the critical values are ADF: -2.92 and KPSS: 0.46. 

The tests results confirmed the non-stationarity of biomass and wind generation, as 
well as the stationarity of hydropower generation (d=0). The ACF and PACF charts also 
confirmed the need to adjust models with these series in their first differences (d=1). In 
this case, the biomass and wind series were transformed by applying differences. 
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Serial correlation could be identified by the ACF and PACF charts, which enable the 
application of the ARIMA models to predict electricity generation from renewable sources. In 
Table 2, the best ARIMA models for each renewable source are presented. These models 
were select based on the lowest AIC and BIC values and the white noise condition. 

Table 2. The ARIMA models for renewable generation. 
  Parameter p-value AIC BIC 

Biomass SARIMA  
(0,1,1)(1,0,0)12 

θ12 = -0.99 
< 0.05 12.51 12.61 

Φ12 = 1.00 

Hydropower SARIMA 
(1,0,0)(1,0,0)12 

φ1 = 0.98 
< 0.05 18.78 18.88 

Φ12 = 0.55 

Wind SARIMA  
(1,1,1)(1,0,0)6 

φ5 = -0.45 
< 0.05 15.78 15.92 θ1 = -0.35 Φ6 = -

0.34 

The best-adjusted models for biomass, hydropower and wind generation were a 
seasonal ARIMA (Table 2), since renewable sources are directly affected by the 
climate. For prediction, the accuracy of the selected models was analyzed by the 
MAPE, Symmetric MAPE, RMSE statistics and the U-Theil coefficient applied to out-
of-sample forecasts, as shown on Table 3. 

Table 3. Statistics and the predicted values from the selected models for renewable generation. 

Amount of electricity 
generated (GWh) 

Biomass Hydropower Wind 

forecast error forecast error forecast error 

January 2020 311.69 26.18 36250.71 17757.41 4499.54 -1813.92 

February 2020 326.46 -16.58 34630.60 3629.09 3072.23 -361.92 

March 2020 433.09 18.74 39589.88 934.62 2948.05 -732.81 

April 2020 762.31 -2.97 39315.19 -7055.64 2645.30 393.77 

May 2020 854.67 118.40 31420.68 55.87 3033.14 731.37 

June 2020 1003.86 26.79 28645.24 1472.96 4543.96 189.41 

MAPE 5.40 7.23 25.06 

Symmetric MAPE 5.58 6.99 21.81 

RMSE 51.73 3393.30 883.56 

U-Theil coefficient 0.04 0.05 0.13 

According to the forecast statistics, the biomass and hydropower generation models 
were the ones that presented the best performance. The wind generation model also 
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achieves satisfactory performance, considering that the best-adjusted model is not 
always the best predictor. 

For specific analysis of the forecasts, charts were elaborated to compare the 
predicted and original values for each generation source, as shown in Figures 2, 3 and 4. 

 
Figure 2. Forecast of biomass generation based on the seasonal ARIMA model. 

In Figure 2, it is proved that the adjusted model for biomass generation was 
accurate, as the distance between the values is almost imperceptible in the chart. The 
behavior of predicted values for hydropower generation can be seen in Figure 3. 

 
Figure 3. Forecast of hydropower generation based on the seasonal ARIMA model. 
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The model for hydropower generation were capable to predict seasonal peaks and 
some movements of the original series, since it also has shown a good performance 
(Table 3). The chart of predicted values for wind generation are presented in Figure 4. 

 
Figure 4. Forecast of wind generation based on the seasonal ARIMA model. 

Although the model for wind generation has not demonstrated a good forecasting 
performance like the other models, this model was able to reproduce the drop in wind 
generation in March 2020. 

4 Discussion 
Renewable sources are a great option to generate electricity, but their volatility 

affects the stability of electrical system, since these sources are dependent on climatic 
factors. In conjunction with demand, climatic factors are the most critical points of a 
renewable matrix (Lucena et al., 2018; Pes et al., 2017). Consequently, renewable 
sources need to be combined to provide a stable generation (Saheli et al., 2019). For 
example, in Brazil, although hydropower generation is more controllable due to 
management of hydroelectric dams during drought periods, it is offset by biomass, coal, 
fossil fuels, natural gas, nuclear, solar and wind power (Galvão & Bermann, 2015; 
Silva et al., 2016). 

According to other studies, volatility models show good performance in predicting 
energy generation from renewable sources (Shen & Ritter, 2016; Lucheroni et al., 
2019; Jafarian-Namin et al., 2019; Croonenbroeck & Stadtmann, 2019). However, we 
identified that the ARIMA model and its seasonal version were able to predict accurate 
values, especially at the beginning of the COVID-19 pandemic in Brazil, in which even 
the way of consuming electricity changed (Haiges et al., 2017; Mite-León & Barzola-
Monteses, 2018; Carvalho et al., 2021). 

This more stable behavior could be justified by government incentives and private 
investments in renewable area, such as PROINFA; in addition to the worldwide 
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movement to make the energy matrix more sustainable (ANEEL, 2017; Aquila et al., 
2017; Maciel et al., 2018; Medina, 2020). Yet, much more government efforts are 
needed to expand renewable generation in the country, as well as to maintain the 
electrical system stability, either by hybrid generation or by energy storage devices 
(Noronha et al., 2019; Reichert & Souza, 2021). 

5 Conclusions 
Renewable sources are responsible for more than half of all electricity generated in 

Brazil and, due to their relevance, the ARIMA models were applied to predict electricity 
generated from biomass, hydropower and wind sources, in the interval between 
January and June 2020, which corresponds to the first months of the COVID-19 
pandemic in Brazil. 

Despite the pandemic and the change in energy consumption behavior, the 
seasonal ARIMA model was able to predict electricity generation from renewable 
sources. Knowing that the main renewable sources of Brazilian electric matrix have 
seasonal behavior will help in planning the national electrical system. 

The restriction of this study was that only renewable sources were analyzed, instead 
of all electric matrix sources. An important limitation of the study was the outdated 
database. 

We suggest, for future research, to predict electricity generation from all sources 
that make up Brazilian electric matrix to evaluate interactions among variables and the 
volatility generated by the transition from non-renewable to renewable sources. 
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