
 
 
 
 

Received Mar. 27, 2022 - Accepted May 2, 2022 
Financial support: None. 

 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Gestão & Produção, 29, e05221, 2022 |  https://doi.org/10.1590/1806-9649-2022v29e5221 1/17 

ORIGINAL 
ARTICLE 

 

A cyber process control system based on pattern 
recognition and cloud computing 
Um sistema de controle de processos cibernéticos com base em 
reconhecimento de padrões e computação em nuvem 

Amr Mohamed Ali1 , Soumaya Yacout2, Eladl Rabeih1, Yasser Shaban1 
1Helwan University, Faculty of Engineering, Department of Mechanical Design Engineering, Cairo, Egypt. E-mail: 

amr_abduljawad@m-eng.helwan.edu.eg; eng_amr2077@yahoo.com 
2École Polytechnique, Department of Mathematics and Industrial Engineering, Montréal, Québec, Canada 

How to cite: Ali, A. M., Yacout, S., Rabeih, E., & Shaban, Y. (2022). A cyber process control system 
based on pattern recognition and cloud computing. Gestão & Produção, 29, e05221. 
https://doi.org/10.1590/1806-9649-2022v29e5221 

Abstract: This paper presents a novel simulation model of the Cyber Process Control System 
(CPCS) by combining pattern recognition and Cloud Computing (CC). This paper's originality 
arises from its aim to build a cloud computing platform for autonomous machines, and the 
exploration of manufacturing data to generate interpretable patterns to be used in process control 
decision making. The combining of Cloud technology and machine learning brings production to 
Industry 4.0. The proposed system is tested using data Carbon Fiber Reinforced Polymer (CFRP) 
routing process. The little information available about the manufacturing process of this type of 
material and the interaction between the production steps makes the manufacturing process quite 
difficult. This system generates interpretable rules of controllable operating parameters sent to 
the controller to keep the machining process within the limits of the specifications. The second 
step is activated during the drifting conditions in the machining step. Also, the simulation of the 
machining process is illustrated to generate the relations between input and output variables of 
the machining process. The findings of the corrective actions are illustrated and the interaction 
between the two industrial steps is simulated. Finally, current and future CPCS and CC 
applications in Industry 4.0 are discussed. 

Keywords: Process control; Pattern recognition; Multi-class logical analysis of data; Cyber-
physical system; Industry 4.0; Cloud computing. 

Resumo: Este artigo apresenta um novo modelo de simulação do Cyber Process Control System 
(CPCS) combinando reconhecimento de padrões e Cloud Computing (CC). A originalidade deste 
artigo decorre de seu objetivo de construir uma plataforma de computação em nuvem para 
máquinas autônomas e da exploração de dados de fabricação para gerar padrões interpretáveis 
para serem usados na tomada de decisões de controle de processos. A combinação de 
tecnologia em nuvem e aprendizado de máquina traz a produção para a Indústria 4.0. O sistema 
proposto é testado usando o processo de roteamento de polímero reforçado com fibra de 
carbono (CFRP). A pouca informação disponível sobre o processo de fabricação desse tipo de 
material e a interação entre as etapas de produção dificulta bastante o processo de fabricação. 
Este sistema gera regras interpretáveis de parâmetros operacionais controláveis enviados ao 
controlador para manter o processo de usinagem dentro dos limites das especificações. A 
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segunda etapa é ativada durante as condições de deriva na etapa de usinagem. Além disso, a 
simulação do processo de usinagem é ilustrada para gerar as relações entre as variáveis de 
entrada e saída do processo de usinagem. Os resultados das ações corretivas são ilustrados e 
a interação entre as duas etapas industriais é simulada. Finalmente, são discutidas as aplicações 
atuais e futuras de CPCS e CC na Indústria 4.0. 

Palavras-chave: Controle de processos; Reconhecimento de padrões; Análise lógica 
multiclasse de dados; Sistema ciber-físico; Indústria 4.0; Computação em nuvem. 

1 Introduction 

In November 2011 the German government implemented the first concept of 
Industry 4.0, which was a key component of their high-tech strategy for 2020. The term 
Industry 4.0 previously appeared at the Hannover Industrial Fair in April 2013 as a 
German national strategy. These appearances support classifying this term as a 
significant topic among global industries. Industry 4.0 mainly depends on building a 
Cyber-Physical System (CPS) to build a smart, reconfigurable, highly flexible 
production process, with real-time interactions between people, production, and 
devices. Industry 4.0 strategies are aimed at creating smart factories where CPSs and 
CC are used and able to monitor, control, and make smart decisions for physical 
processes (Zhong et al., 2017). Making the machine work autonomously with and 
interact with other production phases become the main research topic in the industrial 
field. These results in a production that can be standardized solve problems and make 
adaptive decisions (McFarlane et al., 2003). Some process control systems utilize 
artificial intelligence (AI), which allows them to learn from historical data to achieve 
smart control and standardized industrial processes. The autonomous manufacturing 
model is based on smart sciences that improve the design, management, and 
enhancement of the interaction between production phases. The smart manufacturing 
model uses smart sensors, adaptive decision-making models, intelligent devices, and 
data analytics. Many researchers have proposed studies on classical process control. 
The classical process control technique is dependent on the expert system that uses 
experience to find suitable operating conditions to produce conforming surfaces. There 
has been a recent trend of researchers using intelligent manufacturing techniques to 
control production processes. For example, Mourtzis et al. (2019) proposed a 
knowledge-enriched framework with aid of CC and wireless sensor networks to collect 
the machining parameters from the production process and shared them with a human 
operator by using mobile devices. Song & Moon (2019) introduced a cyber-
manufacturing system architecture that consisted of five component levels and 
investigate the performance of the proposed system by using simulation techniques. 
Merdan et al. (2019) proposed a model-driven technique for automatically configuring 
the control layer of a CPS based on knowledge representation of the environment and 
component capabilities. The proposed technique includes a control architecture that is 
examined in two industrial use cases. Huang (2016) developed a decision-making 
model for surface roughness monitoring for end milling operation. The developed model 
achieves a higher level of accuracy for surface quality prediction. Furthermore, the 
decision-making algorithm should be applied to implement a cutting tool monitoring 
system. This system is; an adaptive control of machining parameters that adjusts the 
parameters for quality surface roughness for the smart Computer Numerical Control 
(CNC) machine. De Paula Ferreira et al. (2020) proposed a stat of the art research 
study on simulation in the field of Industry 4.0 (I4.0). Mourtzis (2020) introduced the 
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significant milestones in the manufacturing system evaluation due to quick response 
and analysis, low cost, and decreasing the risk of operation. Jiang et al. (2014) 
proposed an innovative approach to adaptive analyses of machining process stability 
to improve the quality of the machining process, which is solved with the 
backpropagation neural network and support vector machine. The equipment model 
service performance prediction is established to forecast the quality of the machining 
form features in real-time. Shaban et al. (2017) developed a pattern-based Machine 
Learning (ML) approach to detect characteristic patterns to control the quality of a 
machined part at a specific range. The proposed methodology used to find these 
patterns lead to conforming products. Also, an online machining process control has 
been implemented by using the experimental results. A process control model shows 
how two-class Logical Analysis of Data is used to control the routing process by 
autonomously tuning the routing conditions to always return to the machining zones. 
The generated model introduces the different patterns of conforming and 
nonconforming production quality. This use in this paper was a two-class decision-
making approach; its use was limited to control of only one conforming quality variable. 
Additionally, they use a simple multiple linear regression in the simulation of the CFRP 
machining process. 

In this paper, we present a simulation model of a novel CPCS by using ML and 
online connectivity of the internet. Due to the very rare information available about the 
machining process of CFRP, and how the interaction between the production stages 
makes the manufacturing process quite difficult is considered. This paper's originality 
arises from its aim to build a cloud computing platform for monitoring and control of the 
Production's performance autonomously, and the exploration of manufacturing data to 
generate interpretable patterns to be used in process control decision making and 
simulate the interaction between two production stages. We use Artificial Neural 
Network (ANN) to simulate machine behavior during the production process. A 
Graphical User Interface (GUI) was built to simulate the machine-to-machine 
connection. In section 2, (CPCS) based on internet connectivity is presented. The 
proposed methodology is introduced in section 3. In section 4, the experimental setup 
and results are given. In Section 5 the accuracy of the proposed simulation model 
compared with the most popular machine learning techniques of ANN and Support 
Vector Machine (SVM) are presented. A simulation online decision-making process is 
presented in section 6. Finding the autonomous corrective action is the subject of 
section 7. The sentencing step is illustrated in section 8. Discussion, conclusions, and 
future work are presented in section 9. 

2 The cyber process control system 

The process control system has an adaptive control loop with an automatic 
adjustment of controllable machining variables. The automatic control is used to 
improve productivity and product quality, which is not commonly available in CNCs 
(Liang et al., 2004). In this paper, we present the process control in two production 
steps; the first step is the machining step and the second step is the sentencing step. 
Figure 1 illustrates the machine-to-machine (M2M) interaction. 
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Figure 1. Machine to machine interaction structure. 

To produce within the pre-defined specifications, the production process is 
continuously monitored during its process. Due to continuous monitoring, big data is 
generated. The big volume of data that is generated during monitoring needs scalable 
storage space and a parallel processing analyzer. In this paper, we build a production 
control system based on CC. The main advantages of using CC are accessibility, 
scalability, security, unlimited storage space, and cost-effectiveness. CC services are 
provided by Amazon AWS, Dropbox, Google Cloud, IBM, Microsoft Azure, and, 24/7 
support is available (Avram, 2014). The benefits of the proposed system include secure 
access and adjustable storage capacity, ease of use, fast speeds, and efficiently 
synchronized technology. 

The architecture of the CPCS consists of two steps. The first step is divided into 
four layers which are parameters; sensing, communication, analysis and sentencing, 
and corrective action. 

Parameter sensing (PS): PS consists of sensors connected to the machine to 
provide parameters’ values such as forces, temperature, and pressure. The setup of 
these sensors has Internet of Things (IoT) capability for wireless communication that 
enables data transfer via the internet to the higher layer. A combination of a sensor, 
microprocessor, and communication technology is used to convert environmental 
inputs into readable data, and to transmit this data onwards to a centralized repository. 
In contrast, traditional sensors rely on the manufacturer to perform the processing of 
inputs. Smart sensors allow for data to be transmitted with fewer errors, as the 
processing happens closer to the source, and can remain within a company’s network. 
A PS comprises an assortment of spatially disseminated and autonomous gadgets that 
gather data and carefully communicate it over a remote channel. A PS can utilize 
several sensors, joined by gateways and an organizing gadget, to detect the natural or 
states of being of a framework, and to screen or control it. Every hub contains at least 
one sensor that can be detached or dynamic. These sensors speak with one another 
to send the data to a worker CC that deals with the data of the whole system 
(Rashvand et al., 2014). Additionally, smart sensors can be more easily customized for 
specific use cases while traditional sensors are generally mass-produced. In this paper, 
the monitored cutting forces are measured using a Kister dynamometer 9255B, and 
temperatures are measured using a FLIR Thermo Vision A20M infra-red camera, 

Communication: Communication consists of distributed file storage and parallel 
processors that connect the virtual and physical sides. CC is the on-request 
conveyance of IT assets over the Internet with increasing pay requirements only as 
costs arise. Rather than purchasing, claiming, and keeping up physical server farms 
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and workers, you can get to innovation administrations; for example, registering force, 
stockpiling, and databases, dependent upon the situation from a cloud supplier. The 
proposed system doesn’t need to over-arrange assets in advance to deal with top 
degrees of business action later on. Rather, you only arrange the measure of assets 
that you need. You can scale these assets up or down to immediately develop and 
shrivel limits as your business needs change. This layer uses the internet to transfer 
the collected data from smart sensors to the central hub, which is explained below. In 
this paper, we use Dropbox Cloud storage, with a capacity of 2 Gigabytes. 

Sentencing: This layer includes the analyzer software that converts uncontrollable 
sensing data into useful information. We use historical data in offline learning to build 
the analyzer. The analyzer compares the offline learning patterns and the new sensing 
data that comes from the smart sensor. After analyzing the collected data and defining 
the conforming conditions, the corrective actions are sent back to the following layer. 

Implementation of corrective actions: - this layer consists of controllers that 
receive the corrective actions to adjust the control parameters that produce workpieces 
within conforming conditions. 

This paper presents a simulation model of the CPCS. Figure 2 illustrates the 
architecture of the proposed model. The proposed architecture is matched with the 
CPS to achieve Industry 4.0 requirements (Rashvand et al., 2014). We use the ML to 
convert the historically uncontrollable measuring data of the machining process to 
generate governor patterns in the offline analysis. Also, we use the controllable variable 
in the offline analysis to extract the control pattern to start building the online model of 
the proposed CPCS. 

 
Figure 2. Architecture of the CPCS. 
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To simulate the proposed process control system, a simulated example for multi-
parameter process control is developed using MATLAB 2015/b. 

3 Multi-Class Logical Analysis of Data (MC-LAD) 

In the following section, the proposed methodology is presented. Logical Analysis 
of Data (LAD) is a machine learning and knowledge discovery technique that generates 
patterns that are extracted from the given training data. These patterns represent rules 
that describe the states of the process during machining. They are interpretable as 
zones of conditions that lead to conforming or nonconforming products with different 
anomalies. 

The identification of these patterns in any new dataset is an indication of the 
production output’s condition. The cbmLAD (Alexe et al., 2004) software is used. The 
multi-class LAD methodology is composed of 3-steps; Data Binarization, Pattern 
Generation, and Theory Formation (Yacout et al., 2012; Moreira, 2000). 

4 Case study 

We consider the machining of Carbon Fiber Reinforcements Polymer (CFRP) as a 
case study. The CFRP properties include high specific strength and stiffness, 
performance to weight ratio, high chemical and thermal stability, and high connectivity 
and corrosion resistance. These properties make them the backbone of many 
applications, especially in mechanical engineering, aerospace, aviation, automotive 
industries, and sports (Mortada et al., 2014; Sharma et al., 2014; Soutis, 2005; 
Paiva et al., 2009). CFRP is designed to gradually substitute conventional metallic 
materials (Mallick, 2007). Most CFRP studies are concentrated on its material 
properties. CFRP machining is more difficult than conventional metal machining due to 
the different material structures (Tyczyński et al., 2014). This challenge increases the 
importance of studying machining to reduce the production cost (Che et al., 2014). 
Milling composite materials is a complex task. Challenges include material 
heterogeneity, distance error and parallelism during the machining process, and 
material characteristics and cutting parameters; namely, spindle speed (v), feed (f), 
length of cut (LOC), and tool overhang length (LOT). The manufacturers of CFRP use 
milling as a corrective operation to produce a well-defined and high-quality surface that 
requires the removal of excess material to control tolerance (Ferreira et al., 1999; 
Sorrentino et al., 2016). 

Routing processes were tested on a Quasi-isotropic laminate comprising 35 piles 
of 8-harness satin woven graphite-epoxy prepared with the final cured thickness of 
6.35±0.02mm. The specification of the cutting tool is 6.3mm, 4 flutes, and solid carbide 
end mill (Davim & Reis, 2005). The experiments were performed on a Makino A88ɛ 
machining center. A spindle speed attachment was used to achieve spindle speed up 
to 40,000 rpm, which has 1 kw of power. The slotting was tested along with the full 
thickness of the composite material. After each 32mm of cutting distance, tool wear 
was investigated at the flank and the rake faces. The total cutting distance was 96mm. 
The experimental test matrix was used with spindle speeds (v-rpm) 10,000, 20,000, 
30,000, 40,000, 3 feeds (f-mm/min): 250, 500, 1000, 3 values of cutting distance (C-mm) 
24, 31, 38 and 3 overhang lengths (TL-mm) 30, 60, 90. Therefore, the total number of 
full factorial designs of experiments is 108 observations. The monitored variables are 



A cyber process control system… 

Gestão & Produção, 29, e05221, 2022 7/17 

feed force (Fx), transverse force (Fy), axial force (Fz)for different speeds, feeds and 
tool overhang length of TL1=38mm and TL3=24. The machined slots were 
characterized in terms of parallelism and a distance error. The specifications of these 
qualities and characteristics were the following: Parallelism ≤ 1% and a distance error 
≤ 0.5%. To consider both quality characteristics, a multi-class pattern generation 
problem is based on the experimental data. Is solved. Table 1 illustrates a sample of 
three classes of observations that satisfy quality specifications (class 0), the 
observations with unsatisfied parallelism (class1), as well as the observations with both 
unsatisfied parallelism and distance error (class 2). The experimental data illustrate the 
controllable and uncontrollable parameters which affect machine production. 

Table 1. A sample of the experimental results. 

v 
(rpm) 

F  
(mm/min) 

TL 
(mm) 

C 
(mm) 

Fx 
(N) 

Fy 
(N) 

Fz 
(N) 

Tmean 
(C) Parallelism Distance 

error Parallelism Distance 
error class 

Controllable Variable Uncontrollable Variable 
40000 250 38 30 -9.2 -5.8 -6.5 305 0.0392 0.010622047 1 1 2 
40000 500 38 30 -15.4 -11.2 -6.6 385 0.0205 0.04915748 1 1 2 
20000 250 31 30 -14.4 -10.8 -5.0 187 0.0082 0.017070866 0 1 1 
20000 500 31 30 -22.7 -20.5 -9.7 383 0.00875 0.018031496 0 1 1 
40000 500 24 30 -22.1 -10.0 -9.0 267 0.0023 0.003425197 0 0 0 
40000 1000 24 30 -29.5 -17.6 -11.1 421 0.00865 0.001283465 0 0 0 
30000 250 24 30 -15.4 -8.4 -3.4 204 0.00445 0.000401575 0 0 0 
30000 500 24 30 -20.4 -13.6 -6.8 264 0.00325 0.001590551 0 0 0 
20000 1000 31 90 -52.1 -44.7 -23.2 502 0.00545 0.019425197 0 1 1 
10000 1000 31 90 -100.3 -90.1 -44.8 420 0.01385 0.007795276 1 1 2 
40000 250 24 90 -30.0 -7.4 -3.8 372 0.00515 0.004346457 0 0 0 
40000 500 24 90 -39.6 -12.3 -9.5 387 0.00445 0.005330709 0 1 1 
40000 1000 24 90 -44.1 -19.2 -12.5 463 0.004 0.000850394 0 0 0 
30000 250 24 90 -23.2 -8.0 -4.9 281 0.00175 0.002685039 0 0 0 
30000 500 24 90 -28.8 -14.2 -7.7 332 0.00245 0.000874016 0 0 0 

5 Methodology test 

In this section, the comparison between the classification accuracy of the proposed 
machine learning technique (MC-LAD) with the most popular machine learning 
techniques such as the Artificial Neural Network (ANN) and Support Vector Machine 
(SVM) was illustrated in the following section. 

6 Artificial Neural Network (ANN) 

The Artificial Neural Network is the most popular supervised ML approach. In 1943 a 
computational model for neural networks based on mathematics and threshold logic 
algorithms was developed (Meshreki et al., 2012). ANN is composed of three layers, the 
input layer, neuron layer, and output layer. The input layers accept the input attributes. 
The neuron layer and number of neurons depend on the nonlinearity of the model, which 
interconnects between the input and output layers (McCulloch & Pitts, 1990). 

In this work, there are two models, the monitor, and control model. The input 
variables in the monitoring model are the feed force, transverse force, axial force, and 
the average temperature of the machining process. The control model input variables 
are cutting speed, feed, overhang tool length, and cutting distance. The multivariable 
output layers in our work are the quality outcomes which are “conforming”, 
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“nonconforming with distance error” and “nonconforming with distance error and 
parallelism error”. In Figures 3a and 3b the controllable and uncontrollable variables 
are illustrated. The following ANN models were developed to compare the classification 
accuracy and the proposed ML technique accuracy. The developed ANN models have 
one hidden layer with five neurons. The training and testing procedure is known as the 
K-fold cross-validation procedure. In our work, (K=5). 

 
Figure 3. ANN controllable and uncontrollable variables models. 

The second ML illustrated is the Support Vector Machine (SVM). SVM is a 
supervised non-parametric statistical learning technique, therefore there is no 
assumption. The SVM training algorithm aims to find a hyperplane that separates the 
dataset into a discrete predefined number of classes in a fashion consistent with the 
training examples. SVM gives the ability to generalize from a limited amount of training 
data with variable quality. Compared to alternative methods such as backpropagation 
neural networks, SVMs can yield comparable accuracy using a much smaller training 
sample size. This is in line with the “support vector” concept that relies on only a few 
data points to define the classifier’s hyperplane (Sharma et al.., 2008). The support-
vector network implements the following idea: it maps the input vectors into a high 
dimensional feature space Z through some non-linear mapping chosen a priori. In this 
space, a linear decision surface is constructed with special properties that ensure a 
high generalization ability of the network (Cortes & Vapnik, 1995). The advantage of 
using an SVM includes flexibility in the choice of the threshold separating the solvent 
from insolvent companies, the use of nonlinear transformations no assumptions about 
the functional form of the transformation, good out-of-sample generalization, and the 
ability to deliver a unique solution. The disadvantage includes the inability to represent 
the score of all companies as a simple parametric function of the financial ratios, since 
its dimension may be very high, or as a linear combination of single financial ratios, or 
other simple functional forms. 

In this paper, we use the Weka data mining software (Mountrakis et al., 2011) to 
build multi-class monitored and a multi-class control model. The number of 
observations of each class is 27, 25, 56 for conforming, distance error, and both 
distance and parallelism respectively. 

The validation and comparison between different ML techniques is a real challenge 
for researchers (Hall et al., 2009). Usually, to compare techniques for the same 
problem, the accuracy of each technique is compared. This accuracy metric is obtained 
from cross-validation with several repetitions. The technique with the highest accuracy 
is preferable. This comparison method is sufficient in most practical research (Wolpert, 
1996). The accuracy testing process is performed by dividing the experimental data 
into two sets. The first set is the training set which covers the different classes with a 
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constant percentage of each class observation number. The second set is the tests 
data that test the generated model to find the accuracy of classifying the tested 
observation with its class. The training and testing procedure is known as the K-fold 
cross-validation procedure. In our work, (K=5). To calculate the accuracy of the 
proposed methodology for the same problem we use the software cbmMC-LAD 
(Alexe et al., 2004). In the Table 2, the accuracy of each ML technique is illustrated. 

Table 2. Comparison of the accuracy of MC-LAD, ANN, and SVM. 

Model MC-LAD ANN SVM 
Control model 93.2819% 88.05% (1 hidden Layer, 5 neurons) 83.643% 

Monitored model 94.7604% 70.4% (1 hidden Layer, 5 neurons) 58.8% 

Table 2 illustrates how using MC-LAD improves the accuracy of detecting 
unsatisfied specifications. In Tables 3 and 4, the generated patterns for the controllable 
variables and the uncontrollable variables are illustrated. We use these patterns in the 
CPCS to keep the machining process in the zone of patterns in class 0, which is the 
zone where both quality specifications are satisfied. In the following section, the 
adaptive process control system is illustrated. 

Table 3. Generated pattern for Controllable variables using MC-LAD. 

P.# V rpm*104 F mm/min TL (mm) C (mm) Weight 
1-Conforming Class (Class 0) 

1 <3.1 <695.18 <24  0.33 
2 1.5< v<2.5  <24 <38.77 0.06 
3 >3.86 >251.672 <24  0.10 
4  <695.518 <24 >30.218 0.33 
5 <3.1  <24 >64.114 0.15 

2-Distance Error Class (Class 1) 
1  250<f<475 24<Tl<37 >38.77 0.17 
2 <3.86 >296 >536 24<Tl<37 30<C<89 0.17 
3 1.5<v<2.5  24<Tl<37 38<C<66 0.09 
4   24<Tl<30  0.14 
5  519<f<991 <37 30<C<42 0.06 
6 <2.5 <475.7 24<Tl<37 <89.44 0.17 
7 <2.5 <991.9 24<Tl<37 59<C<88 0.22 
8 <1.5 >519.921 <37.87 <31.6081 0.02 
9 >3.1 <455.148 <30.897 <88.60 0.02 

3-Distance and Parallelism Error Class (class 2) 
1   >37.87  0.24 
2  >496.485 >30.8972 >89.44 0.08 
3 >1.5 >2.5  >30.8972 <60.01 0.20 
4 >1.5  >30.8972 <30.07 0.12 
5 2.<v<3.1 >991.973   0.06 
6 <2.5  >30.8972 >89.44 0.08 
7 >3.86  >30.8972  0.13 
8  >496.485 <24.0286 59<C<60 0.01 
9 <1.5 496<f<503 >30.8972 >59.68 0.04 
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Table 4. Pattern generated for uncontrollable variables using MC-LAD. 

P.# Fx (N) Fy (N) Fz (N) Tm (C) Weight 
1-Conforming Class (Class 0) 

1 <-14.9 -23< <-7.2  <318.5 0.295 
2 <-26.6 >-20.45   0.181 
3 <-14.9 >-12.55  <249.5 0.091 
4 <-14.9 >-23 <-8.9 <371.5 0.159 
5 <-26.6 -20< <-12.5   0.159 
6 <-14.9 >-42.2 <-18.0 <497 0.114 

2-Distance Error Class (Class 1) 
1 <-12.9 <-10.75  <188 0.046 
2 <-12.9 <-12.1 <-9.3 374<<409 0.18 
3 <-12.9 <-12.1 <-18.8 374<<409 0.069 
4 <-12.95  -5<<-3  0.046 
5 >-99.8 <-20.45 <-37.5  0.162 
6 <-30.1 -30< <-23 <-10.6 <409 0.162 
7 >-19.7  >-5.25 23< < 308 0.046 
8 >-22.95 <-12.1 <-7.25 <409 0.046 
9 >-55 <-12.1 <-22.2 >325.5 0.046 
10 <-27.4 <-12.1  374<<409 0.186 

3-Distance and Parallelism Error Class (Class 2) 
1  -93< <-19.6 >-21.4 409<<558 0.158 
2 >-26.6 <-5.75 <-3.05 >339.5 0.075 
3  -93< <-46 >-37.5 >210.5 0.083 
4  -29< <-20 >-14.7 352<<558 0.083 
5 >-20.25 -93< <-5.75 <-4.7 >210.5 0.108 
6 >-26.6   384<<558 0.066 
7 >-26.6 <-5.75 <-3.05 >285 0.116 
8 >-18.1 >-7.9  >210.5 0.058 
9 >-19.5 <-5.75 <-3.85 >194.5 0.1 
10 >-49 >-93.85 <-12.1 20< <558 0.066 
11   <-11.4 409<<441 0.083 

7 Simulation of the CPCS machining process (Step 1) 

In the previous studies, the researchers use linear regression to simulate the 
machining process and the relation between the input and output of the machining 
process (Shaban et al., 2017). Due to the non-linearity between the input and output of 
the machining process of CFRP, the ANN is selected to simulate the machining 
process. The simulator CPCS for the machining of CFRP was developed by using ANN. 
We monitored four uncontrollable variables, feed force (Fx), transverse force (Fy), axial 
force (Fz), and mean temperature (Tmean) to detect the state of the machining process. 
We built the control process by using the controllable variables, spindle speed (v) and 
feed (f), overhang tool length (TL), and cutting distance (C). In the remote quality 
conforming center the sensors’ data that comes from the machining process (layer1) is 
checked with the patterns generated from historical data and classified into one of the 
three specified classes. The sensors’ data comes from sensors with wireless 
connections which send the reading of the uncontrollable variables to the cloud. The 
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second step in the process control is to find the corrective action when the quality is 
not conforming. The developed ANN models have one hidden layer with two neurons. 
In the simulation ANN model, the K-fold validation (K) was five. Matlab software was 
used to simulate this process by using an ANN (McCulloch & Pitts, 1990). Figure 4 
illustrates the network of controlled input parameters and the output values of the 
uncontrollable variables. 

 

Figure 4. The ANN that simulates the inputs and output of the machining process. 

According to the conforming pattern shown in Table 3, the generated patterns 
illustrate that overhang tool lengths (TL) less than 24 mm produce a conforming 
production. Also, the cutting distance (C) value is 24 to 96. In Figure 5, the decision-
making procedure schematic is presented. This decision-making schematic presents 
the control loop of the process control. It starts from the inserting of the controllable 
variables and ends with finding the corrective action of controllable variables if the 
uncontrollable variable analysis is the nonconforming pattern. 

 

Figure 5. Decision-making procedure schematic. 

In the online process, the overhang length and cutting distance cannot be modified, 
so in our simulation, we predefine and fixed the value of the two variables. For the 
overhang tool length, we selected a value less than 24mm. For the cutting distance, we 
used an interval from 24 to 96. In the following table, the new negative pattern of the 
controllable model is presented. In the online process, the overhang length and cutting 
distance cannot be modified so for our simulation, we predefined and fixed the value of 
the two variables. For the overhang tool length, we selected a value that is less than 
24mm. For the cutting distance; we used an interval from 24 to 96. In the Table 5, the 
new negative pattern of the controllable model is presented. 
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Table 5. Generated Conforming Controllable parameters patterns (feed and speed). 

No. Speed Feed Weight 
1 v>15000 303.232<f<361.335 0.142857 
2 v<25000 409.907<f<471.146 0.142857 
3 v<25000 475.746<f<695.518 0.0952381 
4 v>25000 398.798<f<414.291 0.047619 
5  291.927<f<296.346 0.047619 
6 v>25000 455.148<f<519.921 0.238095 
7  260<f<261.553 0.047619 
8 v>38631.6  0.238095 

8 Finding the corrective action 

The following graph illustrates the conforming pattern’s zoning. The corrective 
action to return the machining process from the non-controllable condition to the correct 
condition is illustrated in Table 6. 

Table 6. Corrective actions for the controllable variable (feed and speed). 

Zone Speed Feed Corrective action V Corrective action f 
A v<15000 f<300 15000 300 
B v<15000 300<f<700 15000 f 
C v<15000 f>700 15000 700 
D 15000<v<38000 F<300 Nearest v 300 
E 15000<v<25000 F>700 Nearest v 700 
F 25000<v<38000 F>500 Nearest v Nearest f 

 
Figure 6. conforming control parameter pattern. 

In zone (D, E, F) the controller measures the distance between the controllable 
parameter (v, f) and the nearest corrective pattern (vc, fc) according to the following 
Equation 1. 

𝑑𝑑 = �(𝑣𝑣𝑣𝑣 − 𝑣𝑣)2 + (𝑓𝑓𝑓𝑓 − 𝑓𝑓)2 (1) 

For example in zone (D), if the operation parameter (v, f) is equal to (20000, 200) 
the corrective action would be (v, 300) or (38000, f) (Equations 2 to 5): 
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𝑑𝑑1 = �(20000 − 20000)2 + (300 − 200)2 (2) 

𝑑𝑑1 = 100 (3) 

𝑑𝑑2 = �(38000 − 20000)2 + (300 − 300)2 (4) 

𝑑𝑑2 = 18000
100

= 180 (5) 

In this case d1<d2 so the corrective action is (v, 300). 
In addition, for example if the operation parameter (v, f) in zone (F) is equal to 

(27000, 600) the corrective action would be (v, 500) or (38000, f) or (25000, f) 
(Equations 6 to 11): 

𝑑𝑑1 = �(27000 − 27000)2 + (500 − 600)2 (6) 

𝑑𝑑1 = 100 (7) 

𝑑𝑑2 = �(38000 − 27000)2 + (600 − 600)2 (8) 

𝑑𝑑2 = 11000
100

= 110 (9) 

𝑑𝑑3 = �(25000 − 27000)2 + (600 − 600)2 (10) 

𝑑𝑑3 = 2000
100

= 20 (11) 

In this case d3<d2 and d3<d1 so the corrective action is (25000, 600). 

 
Figure 7. Corrective Action Examples. 

Figure 7 illustrates some corrective action examples by computing the minimum 
distance between the operation condition and the nearest corrective action. In Figure 
8 the GUI of CPCS is shown. It simulates the machine’s behavior by generating a 
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network between the input controllable variable and the output monitoring variable. 
Then, the simulator characterizes the quality specifications and indexes them 
according to the illustrated method in the previous section. After that, the nearest 
corrective action is computed. If a pattern is non-conforming, the simulator sends the 
workpieces that have faults to a sentencing station. 

 

Figure 8. Simulation GUI of CPCS. 

9 Sentencing process (step 2)  

In this section, the product generated from step (1) is divided into two scenarios as 
shown in Figure 9. The first scenario is that the workpieces have a geometrical 
conforming condition. In this case, the workpieces proceed to the second step 
(sentencing process). The second scenario is that the product has a non-conforming 
condition. In this scenario, the work piece goes to the manual inspection station. This 
control system decreases the after machining cost and makes sure that any workpieces 
in the second step are accepted according to the geometrical requirement. This 
increases the efficiency of the production process. Figures 1 and 6 illustrate the two 
scenarios. In our study, the proposed system sends a warning signal with the status of 
the produced workpieces from the machining step. According to this signal, the 
production pieces transfer to the after machining process if it is a conforming condition. 
In the non-conforming case, the product goes to the inspection station to make sure 
that only the products that conform will transfer to the subsequent production step. 
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Figure 9. CPCS schematic. 

10 Conclusions 

In this paper, a novel system for monitoring and controlling a manufacturing process 
is developed. The proposed CPCS connects autonomously between multi 
manufacturing processes. The system is based on CC to connect the proposed system 
layers. The CC gives the ability to monitor, control, and analysis the behavior of the 
machining process continuously and via distance. The first step of this system consists 
of four layers, which include the uncontrolled parameter sensing layer, communication 
layer, analysis and decision making layer, and corrective action layer. The second step 
of the proposed system is divided into two scenarios conforming and non-conforming. 
In the case of conforming case, the system completes the manufacturing process and 
in the non-conforming case, the system feed the corrective action back to save the 
manufacturing process in the conforming zone. The proposed system is tested by using 
an experimental result of high-speed routing of CFRP as a study. The new system is 
developed as a step to convert a traditional factory into a smart factory. The new system 
is constructed based on a methodology to find interpretable rules that are governed by 
the generated patterns; these patterns describe the machining process of conforming 
products. We compare the proposed methodology and the most popular ML techniques 
ANN and SVM. The results are illustrated in Table 2. This comparison illustrates that 
the new approach improves the accuracy of the monitor and control models. By using 
the generated offline pattern from the new technique, shown in Table 3 we build CPCS. 
In step (1) the simulated machining process control system monitors the uncontrollable 
variable measured during the machining process and compares them with the offline 
pattern to classify the quality condition. The second step begins if the quality status is 
nonconforming by generating corrective control variables to control the machining 
process. The second step is illustrated in Figure 6. In summary, the implemented 
system helps to achieve the “Smart Factory” status and enhance the production 
process. 

For future research, we are working on applying the proposed CPCS in a real 
factory conversation from the traditional production methods to the new smart factories. 
Also, we are working on improving the communication architecture to achieve minimum 
time delay between the sensing actions to the corrective actions. We are working on 
implementing a real-time quality monitoring alarm based on the cyber-physical system. 
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