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Abstract The solution of the mining association rules problem in customer transactions was introduced 
by Agrawal, Imielinski and Swami in 1993. Their approach was extended in several directions 
such as adding or replacing the confidence and support by other measures, or how to also ac-
count for quantitative attributes. In this paper we present an algorithm that can be used in the 
context of several of the extensions provided in the literature while preserving its performance, 
as illustrated by a case study. Our approach is targeted at two of the most computationally de-
manding phases in the process of generating association rules: the enumeration of the candidate 
sets and the verification of which of them are frequent. The minimization of the cost of these 
phases is achieved by pruning early candidate sets based on additional quantitative information 
about the transactions. In summary, we explore certain multidimensional properties of the data 
allowing us to combine this additional information as a pruning criterion. Based on syntheti-
cally generated data, our strategy reduced the number of candidate sets examined by the algo-
rithm up to 15%. Furthermore, it also reduced the execution time significantly, in the order of 
23%. 

Keywords: Data mining, association rules, algorithms, knowledge discovery in databases. 

  

1 Introduction 

The problem of mining association rules in categori-
cal data presented in customer transactions was intro-
duced by Agrawal, Imielinski and Swami [2]. This semi-
nal work gave birth to several investigation efforts [4,13] 
resulting in descriptions of how to extend the original 
concepts and how to increase the performance of the 
related algorithms.  

The original problem of mining association rules was 
formulated as how to find rules of the form set1  
! set2. This rule is supposed to denote affinity or correla-
tion among the two sets containing nominal or ordinal 
data items. More specifically, such an association rule 

should translate the following meaning: customers that 
buy the products in set1 also buy the products in set2. 
Statistical basis is represented in the form of minimum 
support and confidence measures of these rules with 
respect to the set of customer transactions.  

The original problem as proposed by Agrawal et al.[2] 
was extended in several directions such as adding or 
replacing the confidence and support by other measures, 
or filtering the rules during or after generation, or includ-
ing quantitative attributes.  

Srikant and Agrawal [16] describe a new approach 
where quantitative data can be treated as categorical. This 
is very important since otherwise part of the customer 
transaction information is discarded.  

Whenever an extension is proposed it must be 
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checked in terms of its performance. The algorithm effi-
ciency is linked to the size of the database that is amena-
ble to be treated. Therefore it is crucial to have efficient 
algorithms that enable us to examine and extract valuable 
decision-making information in the ever larger databases.  

 

In this paper we present an algorithm that can be used 
in the context of several of the extensions provided in the 
literature but at the same time preserves its performance, 
as demonstrated in a case study. The approach in our 
algorithm is to explore multidimensional properties of the 
data (provided such properties are present), allowing us 
to combine this additional information in a very efficient 
pruning phase. This results in a very flexible and efficient 
algorithm that was used with success in several experi-
ments using categorical and quantitative databases.  

The paper is organized as follows. In the next section 
we describe the quantitative association rules and we 
present na algorithm to generate it. Section 3 presents an 
optimization of the pruning phase of the Apriori [4] algo-
rithm based on quantitative information associated with 
the items. Section 4 presents our experimental results for 
mining four synthetic workloads, followed by some re-
lated work in Section 5. Finally we present some conclu-
sions and future work in Section 6. 

  

2 Quantitative Rules 

Items found in relational tables have many different 
attributes. These attributes may be either quantitative 
(such as age or salary) or categoric (such as zip code, a 
boolean value or a license plate number). In this work, 
any valued attribute will be treated as quantitative and 
will be used to derive the quantitative association rules 
presented in this section. 

2.1 Formal Definition 

Let A = {a1, a2, ..., an} be the set of attributes from a table 
and V the set of non-negative values for an attribute, and Va 
be the set of values for an attribute a. We define an item i as 
the pair 〈a,qa〉 , where a is an attribute and qa ∈  Va its quantita-
tive value. An itemrange is the contiguous allowable range 
for an attribute a, represented by a tuple 〈a: la - ha〉  where la ∈  
Va, ha ∈  Va, and la ≤ ha are its low and high limits. We ob-
serve that, for each attribute, only a single range is allowed. 
It may be interesting to consider the case of multiple non-
overlapping ranges but this is for further work.  

Let us represent a transaction T as the set {t1, t2,...tn} 
of its items and by D the set of all transactions. A transac-
tion T satisfies a given set of em itemranges I, if for each 
〈aI : la - ha〉  ∈  I there exists an 〈aT, qa〉  ∈  T with aI = aT e la ≤ 

qa ≤ ha. A quantitative association rule is an expression of 
the form X ! Y, where X ⊂  I, Y⊂  I, X ∩ Y = ∅  and I is 
a set of itemranges. As defined in [2], a rule  
X ! Y is valid for the transaction set D with confidence c 
if c% of the transactions in D that satisfy X also satisfy Y. 
The rule X ! Y has support s in the transaction set D if s 
of the transactions in D satisfy X ∪  Y. Given a transac-
tion set D, the quantitative association rule generation 
problem is the problem of generating all rules that have 
support and confidence greater than some given con-
stants, denoted by minsupp and minconf, respectively. 

As an example of application of this rule, consider the 
supermarket purchase analysis problem. In this model, a 
transaction is a set of items bought by a customer. A rule 
may be: “80% of the people who bought between 1 and 5 
beers also bought between 2 and 4 bags of potato chips”. 
This information may be strategic when investing in a 
new advertisement campaign or designing a new layout 
for the store.  

For the sake of this presentation, the solution of the 
quantitative association rule generation problem is divided 
into three steps: The first step consists of enumerating the 
support for the itemranges sets. The second step consists of 
finding all the itemrange sets that have support values 
greater than minsupp (these are the frequent or large sets). 
The last step consists of generating the association rules 
derived from the frequent sets found in the second step. 
These steps are the same those of the non-quantitative 
procedure, but the extra information about the quantities 
induces an additional dimension on the generated rules, 
which usually increases the rules' information content. 

2.2 Generating Quantitative Rules 

In this subsection we describe the algorithm for gen-
erating quantitative association rules. The starting point 
of our algorithm is counting the itemranges in the data-
base, in order to determine the frequent ones. These fre-
quent itemranges are the basis for generating higher-
order itemranges using an algorithm similar to Apriori.  

We consider the size of a transaction as the number of 
items that it comprises. We define as a k-itemset a set of 
items of size k and denote frequent (large) itemsets by Lk 
and candidate itemsets (possibly frequent) Ck. A j-
rangeset is a set of j-itemranges, and each k-itemset has a 
j-rangeset that stores the quantitative rules of the itemset. 

During each iteration of the algorithm, we use just the 
frequent sets from the previous iteration to generate the 
candidate sets and check whether their support is above 
the threshold. The set of candidate sets found is pruned 
by a strategy that discards sets which contain infrequent 
subsets. The algorithm ends when there are no more 
candidate sets to be verified.  
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Once we determine all frequent sets and their quanti-
tative ranges, the association rules are generated. The 
general outline of the algorithm is presented in Figure 1. 
The syntax and semantics of the primitives employed in 
our algorithm are similar to other approaches in the litera-
ture. A short description of the data structures is pre-
sented in the next subsection.  

1. L1 = {frequent 1 – itemsets}; 

2. For (k = 2; Lk-1 ≠ 0; k + +) { 

3.      Ck = generate_candidates (L k-1); 

4.      ∀  transactions T ∈  DB  

5.        ∀  subsets t ∈  T 

6.          If (c ∈  Ck: c is valid in t) then c.count ++; 

7.       Lk = { c ∈  Ck | c.count ≥ minsup}; 

8.    } 

9.    ∀  Lk, k > 2 

10.        generate_rules (Lk, Lk); 

Figure 1 - Quatitative Apriori Algorithm 

2.3 Data structures 

We use two data structures for generating quantitative 
association rules: trees of sets and intervals. The trees of 
sets keep the itemsets, as the original Apriori does. This 
tree is divided into levels and each level contains one or 
more lists of nodes. Each node represents an itemset and 
stores the item identifier and the occurrence counter of 
the itemset. The itemset is composed by the item stored in 
the node itself and the items stored in all of its ancestor 
nodes. Thus, k-itemsets are stored at level k. 

Each node in a tree of sets also contains an interval 
tree. Interval trees are similar to KD trees [8] and store 
itemranges information, such as their occurrency fre-
quency. Furthermore, they are binary trees where each 
node contains a set of itemranges, a rangeset, an occur-
rency counter, and the tree discriminant. This tree satis-
fies two properties: (i) ancestor accumulation: the oc-
currence counter stored in a node is equal to the sum of 
the counters of all its child nodes and (ii) ancestor inclu-
sion: the itemranges of the child nodes are sub-intervals 
of the itemranges of the parent node. 

The discriminant of a node is an item a of its rangeset 
and a value da ∈  Va, that is, the quantity acquired of the 
item. The discriminant plays a role similar to a node key 
in a binary search tree: the left sub-tree contains item-
ranges where all amounts are less than da, while the right 
sub-tree contains itemranges where all acquisition values 

are equal or greater than da. In order to find a node in the 
interval tree, we start from the root and the path taken 
from each node is defined by the discriminant item, 
checking whether the item quantity is smaller than the 
discriminant quantity. An example of an interval tree can 
be seen in Figure 2. In this figure the itemranges are 
represented inside the node and the occurrence counter is 
represented by “S: n”, where n is its value. The discrimi-
nant dimension of a node is chosen based on the biggest 
distance among the items values being inserted and the 
respective intervals lengths in the rangeset. 

 

Figure 2 – Interval tree for itemset A B 

Another property of KD trees that also holds for in-
terval trees is that the counters of all leaf nodes are bound 
to a capacity specified at building time. Thus, whenever 
the capacity of a node n is reached, an item is chosen as 
discriminant and the two children of n are created and the 
rangesets of the children nodes are based on the dis-
criminant. As a consequence, the format of the interval 
tree is a function of the frequency distributions of the 
various items and their discriminants. 

  

3 Improving Apriori 

In this section we describe how quantitative rules are 
used for making the generation of association rules more 
efficient. More specifically, we make the candidate prun-
ing phase more efficient by reducing the number of can-
didates that are generated to further verification.  

The original Apriori approach prunes a candidate 
itemset C of size k whenever any of its subsets of size  
k-1 are not frequent (lines 1..4 of the algorithm in Figure 
4). Although this approach is safe in the sense that no 
large itemsets are mistakenly discarded, it is still possible 
to generate candidates that later show to be not frequent, 
because the overlap among the transactions accounted in 
the k-1 itemsets is not large enough for guaranteeing the 
support to C. 

1. A 1 B 1 C 3 D 4 
2. A 2 B 1 C 2 - - 
3. A 3 B 2 - - D 4 
4. A 2 B 3 C 3 - - 
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5. A 2 B 1 - - - - 
6. A 3 B 2 C 3 - - 
7. A 4 - - - - D 4 
8. - - B 2 C 1 D 3 
9. - - B 4 C 3 - - 
10. - - B 1 - - D 1 

Figure 3 – Example of a Transaction Database 

Our strategy, as mentioned, is to use quantitative in-
formation to estimate more precisely this overlap in terms 
of transactions. For instance, if we consider the transac-
tion database from Figure 3 and a support threshold of 3, 
we find five frequent 2-itemsets AB, AC, AD, BC, and 
BD, with supports 6, 4, 3, 6, and 4, respectively. The 
original Apriori approach generates two candidate  
itemsets, A B C and A B D, but the verification in the 
transaction database reveals that only A B C is frequent. 
If we verify the interval trees for A B, A D, and B D in 
Figure 5, we are able to discover that A B D is unfeasible 
before the counting phase, as follows. The interval (A:4 
D:4) does not match any interval in the tree for A B, 
since there is no node where A is associated with the 
quantity 4. Thus, the transactions accounted in A D are 
not all accounted in A B, as we can see in Figure 3, 
where transaction 7 does not include B. In this case we 
say that A B D is unfeasible with respect to A D. 

We developed an algorithm that generalizes this pro-
cedure and enhances significantly the pruning process. 
There are two basic issues in implementing the strategy 
described: (1) how to order intervals for sake of compari-
son, (2) how to test the overlap among them. 

We choose intervals based on a greedy strategy. Since 
our goal is to prune a candidate k-itemset as early as 
possible, we focus on the (k-1)-itemset with the smallest 
support, which presumably is the easiest to be considered 
unfeasible. We start by checking leaves that have the 
smallest ranges in all dimensions, which we call rangeset 
coverage. 

We define that two rangesets overlap (    ) when any 
of their itemranges overlap. More specifically, given two 
rangesets R = r1, r2,...,rn and S = s1,s2,...,sm, where ri (and 
sj) are itemranges We say that R      S if ∃ r, s|r ∈  R, s ∈  S, 
ra = as, ri <= sh V sj <= rh.  

The starting point of the algorithm presented in Figure 
4 represents the original prune approach, where a candi-
date itemset C is unfeasible if any of its subsets of size  
k-1 are not frequent (lines 2..4). The second phase ex-
plores the quantitative information present in the interval 
trees (lines 5..16). The first step of our prune approach 
finds the k-1 subset (pmin) with the smallest support value 
(line 6) for further evaluation in the intervals trees of all 
other k-1 subsets. This evaluation takes into account all 

interval nodes l from pmin (line 7). The initial overlapped_ 
support is the support for l itself. We then verify whether 
this support is valid across all k-1 subsets. Notice that at 
this level our algorithm is also greedy, since we start with 
the subset with minimum support and verify whether it 
holds for all subsets. Thus, for each node considered, the 
algorithm determines which leaves (k) in the remaining 
interval trees overlap with the leaves in the interval tree 
associated with pmin (line 10). We then update overlapped 
support if the sum of the supports for all k is smaller than 
its current value (lines 11..12). We should emphasize that 
this sum of supports is an upper bound on the support that 
1 may have in p and, if it the bound is smaller than the 
current overall support, then it becomes the new support 
for that itemrange. If, after verifying all nodes, the resul-
tant overlapped_support is 0, the overall support for pmin 
is decremented by the support of l (lines 13..14), meaning 
that l comprises an itemrange that is not present in all 
subsets needed for the new candidate. Finally, if the sup-
port for pmin after the feasibility verifications is smaller 
than minsupp then C is assigned as unfeasible (lines 
15..16). 

1. for each candidate C 

2.    Enumerate the set P of k-1 itemsets of C 

3.    if ∃ p ∈  P | support(p) < minsupp 

4.       then C is unfeasible 

5.       Else 

6.         Find pmin|pmin ∈  P and ∃  p| support(p) <support(pmin) 

7.         ∀  leaves l of Pmin 

8.            overlapped_support = support(l) 

9.           for each p ∈  P and p ≠ pmin 

10.             K is the set of all leaves k where k        l 

11.             if overlapped_support > ∑ support (k) 

12.               then overlapped_support = ∑ support (k) 

13.          if overlapped_support == 0 

14.            then support(pmin) = support(pmin) - support(l) 

15.      if (support(pmin) < minsupp) 

16.           then C is unfeasible 

Figure 4 – Quantitative Pruning Algorithm 

 

 

Figure 5 – Interval trees for A B, A D and B D 
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4 Experimental Results 

4.1 Experiments with Synthetic Data 

In order to evaluate the efficiency of our algorithm in 
pruning the candidate sets, we executed the algorithm on 
transaction databases generated synthetically, which 
simulate real workloads. The generator of workload takes 
into account correlations among items acquired by the 
same customer, that is, the probability of the occurrence 
of frequent itemsets which may assume four possible 
distributions: (1) normal (nor), (2) bimodal (bim), (3) 
exponential (exp), and (4) random (ran). The transaction 
sizes varied from 10 to 52 items, and the average size of 
the largest potentially frequent itemset is 10. To create a 
workload, our generator program takes five parameters:  
T - number of transactions, M - average size of transac-
tions, L - average size of the maximal large itemsets,  
I - number of items, and D - distribution of occurrences 
of large itemsets. 

Our evaluation is based on two sets of workloads. The 
first (w-trans) contains workloads with varying number 
of transactions (from 10000 to 50000) and fixed number 
of itens (500), aiming to quantify the scalability of the 
algorithm, while the second set (w-items) comprises 
workloads with varying number of itens (from 500 to 
2500) and fixed number of transactions (50000), as a 
measure of the complexity of the workload. The remain-
ing parameters for both sets of workloads are as follows: 
the average size of transactions varied from 30 to 40; the 
average size of the maximal large itemsets is 10; and all 
four distributions of occurrences aforementioned. 

We evaluate our pruning algorithm by considering the 
number of frequent itemsets in each iteration, the number 
of candidate itemsets (with and without pruning) and the 
hit ratio between candidate itemsets and frequent item-
sets. We also evaluated the elapsed computational time 
for executing the algorithm under different workloads 
and compared execution times that employed or not our 
pruning strategy. We illustrate these metrics by analyzing 
the results from four workloads (T=50000, I=500, M=30, 
L=10, and D = {bim, exp, nor, ran}), considering a 10% 
support. The number of frequent itemsets at the end of 
each iteration for these workloads and support are shown 
in Table 1.  

We start our evaluation by verifying the number of 
candidate itemsets generated during the execution of the 
algorithm. These data are shown in Table 2, where we 
can see that our pruning algorithm reduced the overall 
number of candidate itemsets by up to 16%. In fact, if we 
consider just the itemsets greater than 2, which are effec-
tively pruned, the gains are over 20% for some work-
loads. 

 

 

 

 

Workload 
T D 

Pruning No Pruning Gain 

50000 bim 18081 21559 16.13% 
50000 exp 14697 16194 9.24% 
50000 nor 15996 19082 16.17% 
50000 ran 14191 15623 9.17% 

Table 2 - Total number of candidate itemset 

The effectiveness of our algorithm increases with the 
size of the itemsets being pruned, as we can see in Table 
3, where we compare the number of candidate itemsets 
per iteration of the algorithm. We can see that our ap-
proach reduces the number of itemsets by up 30%. Fur-
thermore, our pruning algorithm detected, in some cases, 
that all unfeasible candidate itemsets, reducing the overall 
number of iterations (e.g., 10-itemsets in the exponential 
and in the random workload). 

We also evaluated the “hit ratio” of our algorithm, 
that is the ratio between the number of frequent itemsets 
and the number of candidate itemsets found by our prun-
ing algorithm. We can see in Table 4 that the hit ratio for 
itemsets greater than 2 is above 64% in all cases, reach-
ing 100% in some cases. For instance, in both the expo-
nential and random workloads, the pruning algorithm 
identified as candidates exactly the frequent 10-itemsets. 

Table 5 shows the elapsed time for generating rules 
using the workload described. We can see that our prun-
ing algorithm enhances the performance of Apriori in all 
cases, ranging from 16.5% to 23.9%, providing an aver-
age improvement of 21.2%. We should notice that the 
pruning operations never increased the execution time of 
the algorithm. In fact, our measurements show that these 
operations represent a very small fraction of the overall 
execution time (which is dominated by itemset counting), 
being limited to few seconds per execution. 

Workload 

T D 

Pruning No Pruning Gain 

50000 bim 30405.8 39958.7 23.91% 

50000 exp 22376.5 28240.7 20.77% 

50000 nor 26865.4 35106.6 23.48% 

50000 ran 23416.1 28113.4 16.71% 

Table 5 – Elapsed time for generating rules (s) 
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Workload Number of frequent sets 

T D 

Total 

1 2 3 4 5 6 7 8 9 10 

50000 bim 14436 500 2572 4164 3108 1939 1047 669 346 84 7 

50000 exp 10888 500 1873 3093 2343 1438 793 511 267 64 6 

50000 nor 12842 493 2260 3691 2747 1697 951 608 312 76 7 

50000 ran 10564 500 1893 3010 2202 1369 774 490 258 63 5 

Table 1 – Frequent sets in the Workload 

Workload Candidates per itemset size 

T D 

Prune Total 

1 2 3 4 5 6 7 8 9 10 

50000 bin Y 18081 500 3976 5055 3764 2288 1247 753 396 94 8 

50000 bin N 21559 500 3976 6354 4688 2896 1531 971 510 123 10 

50000 exp Y 14697 500 2896 4182 3122 1930 1009 637 335 80 6 

50000 exp N 16194 500 2896 4719 3534 2147 1160 742 393 94 9 

50000 nor Y 15996 500 3432 4448 3299 1992 1154 705 372 86 8 

50000 nor N 19082 500 3432 5591 4108 2522 1417 910 479 113 10 

50000 ran Y 14191 500 2892 3928 2972 1858 996 630 327 83 5 

50000 ran N 15623 500 2892 4433 3364 2067 1146 734 383 97 7 

Table 3 – Number of candidates per itemset size 

Workload Hit Ratio per itemset size % 

T D 

Hit 
Ratio 1 2 3 4 5 6 7 8 9 10 

50000 bin 74.75 98.58 48.14 79.49 79.91 82.62 78.65 84.05 80.77 86.84 85.71 

50000 exp 65.02 100.00 45.41 78.60 78.89 82.00 80.90 87.44 85.55 88.10 100.00 

50000 nor 75.44 100.00 47.23 69.50 65.03 64.28 71.32 71.43 73.26 68.25 85.71 

50000 ran 65.67 100.00 45.38 64.79 66.75 65.79 72.76 75.34 74.53 75.00 100.00 

 Table 4 – Pruning Hit Ratio for Synthetic Workloads  

 

4.2 Mining Web Logs 

In order to confirm the performance trends we ob-
served using synthetic data, we experimented with a real-
life dataset: a web log database obtained from an actual 
virtual bookstore. We present the results of these experi-
ments in this section. 

The data consist of the set of requests to a virtual 
bookstore over an one-week period. We group the re-
quests into sessions, so that each session comprises all 
requests (that is, services such as browse, search, and 

pay) for a given user and its frequency, which is its num-
ber of occurrences. For sake of applying the quantitative 
Apriori algorithm, each session becomes a transaction 
and the resultant rules are common user behaviors that 
may be used for workload characterization and personal-
ization. The size of the web log is 6 MB and there is a 
total of 153 items, representing different requests, and 
35887 sessions with an average size of 15.  

The elapsed time for generating rules with our prun-
ing strategy was 18.5% faster than the basis quantitative 
algorithm (10% support). The average hit ratio of the 
algorithm was 77.6% and its value per itemset size reach 
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from 48.1% in the worst case (1-itemsets) and 91.7% in 
the best case (3-itemsets). Notice that the gains are simi-
lar to those observed in synthetic workloads. 

4.3 Algorithm Scalability 

As described previously, we evaluate the scalability 
of our algorithm through two sets of workloads (w_trans 
and w_ items). Table 6 shows the performance gains (the 
ratio between the overall execution times of the quantita-
tive Apriori algorithms employing or not our pruning 
strategy) for workloads comprising from 10000 to 50000 
transactions. We can observe that the gain usually in-
creases with the number of transactions, however, there 
are some exceptions as a consequence of the remaining 
workload parameters being the same in all cases. 

Number of Transactions Dist. 

10000 20000 30000 40000 50000 

bin 20.99% 22.63% 19.49% 24.93% 23.91% 

exp 10.90% 11.57% 10.93% 10.38% 10.77% 

nor 17.86% 15.77% 20.80% 19.24% 23.48% 

ran 13.83% 13.72% 12.44% 15.21% 16.71% 

Table 6 – Time Gain for Generating Rules (w_trans) 

Table 7 show the gains, in terms of execution times, 
for varying number of items per transaction. Again, the 
gain usually increases with the number of items in the 
transaction. We can explain this trend by the fact that the 
support is the same for all experiments, and a larger 
number of items means that each item is less frequent on 
average.  

Number of Items Dist. 

500 1000 1500 2000 2500 

bin 23.91% 25.63% 29.49% 32.93% 35.91% 

exp 10.77% 14.57% 17.99% 19.98% 21.07% 

nor 23.48% 25.75% 28.30% 32.14% 34.52% 

ran 16.71% 19.27% 22.11% 25.01% 28.91% 

Table 7 – Time Gain for Generating Rules (w_items) 

  

5 Related Work 

There are several proposals for mining association 
rules from transaction data. Some of these proposals are 
constraint-based in the sense that all rules must fulfill a 
predefined set of conditions, such as support and confi-
dence [1,3,7]. The second class identify just the most 

interesting rules (or optimal) in accordance to some inter-
estingness metric, including confidence, support, gain, 
chi-squared value, gini, entropy gain, laplace, lift, and 
conviction [17,6,11]. However, the main goal common to 
all of these algorithms is to reduce the number of gener-
ated rules. We extend the first group of techniques since 
we do not relax any set of conditions nor employ a inter-
estingness criteria to sort the generated rules. 

In this context, many algorithms for efficient genera-
tion of frequent itemsets have been proposed in the litera-
ture since the problem was first introduced in [2]. The 
DHP algorithm [13] uses a hash table in pass k to perform 
efficient pruning of (k+1)-itemsets. The Partition algo-
rithm [15] minimizes I/O by scanning the database only 
twice. In the first pass it generates the set of all poten-
tially frequent itemsets, and in the second pass the sup-
port for all these is measured. The above algorithm are all 
specialized techniques which do not use any database 
operations. Algorithms using only general purpose 
DBMS systems and relational algebra operations have 
also been proposed [9.10]. 

There are some other efforts that exploit quantitative 
information present in transactions for generating asso-
ciation rules. In [16], the quantitative rules are generated 
by discretizing the occurrence values of an attribute in 
fixed-length intervals and applying the standard Apriori 
algorithm for generating association rules. However, 
although simple, the rules generated by this approach 
may not be intuitive, mainly when there are semantic 
intervals that do not match the partition employed. Other 
authors [5, 12, 18] proposed novel solutions that mini-
mize this problem by considering the distance among 
item quantities for delimiting the intervals, that is, their 
“physical”' placement, but not the frequency of occur-
rence as a relevance metric. Our quantitative approach 
was introduced in [14] and a quantitative interestingness 
metric was also presented. 

  

6 Final Remarks 

In this paper we addressed the problem of minimizing 
the number of candidate sets that are considered while 
generating association rules. We achieve such reduction 
by taking into consideration quantitative information that 
is usually discarded, since traditional association rules 
focus just on qualitative correlations.  

More specifically, our approach reduces the number 
of candidate sets generated by taking into account the 
quantitative information associated with each item that 
occurs in a transaction. This information allows us to 
make a better estimation of which candidate itemsets are 
feasible. We evaluated our approach using four syntheti-
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cally generated workloads, reducing not only the number 
of sets generated but also the overall execution time of 
the algorithm.  

 

Quantitative association rules can be used in several 
domains where the traditional approach is employed. The 
unique requirement for such use is to have a semantic 
connection between the components of the item-value 
pairs. We will investigate its use on other applications, 
such as discovering web access patterns on web logs, 
predicting web users surfing paths and spatial data clus-
tering analysis. Future work also includes evaluating the 
approach on real workloads and extending it to other data 
mining algorithms, always exploiting the quantitative 
perspective. 
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