
B.Pôssas, B.Pôssas, B.Pôssas, B.Pôssas, W. Meira Jr.W. Meira Jr.W. Meira Jr.W. Meira Jr. Using quantitative information for efficient Using quantitative information for efficient Using quantitative information for efficient Using quantitative information for efficient
M. Carvalho and R. ResendeM. Carvalho and R. ResendeM. Carvalho and R. ResendeM. Carvalho and R. Resende aaaasssssociation rule generationsociation rule generationsociation rule generationsociation rule generation

 35

Using Quantitative Information for EUsing Quantitative Information for EUsing Quantitative Information for EUsing Quantitative Information for Ef-f-f-f-
ficient ficient ficient ficient
AAAAsssssociation Rule Generationsociation Rule Generationsociation Rule Generationsociation Rule Generation

Bruno Pôssas, Wagner Meira Jr., Márcio Carvalho and Rodolfo ResendeBruno Pôssas, Wagner Meira Jr., Márcio Carvalho and Rodolfo ResendeBruno Pôssas, Wagner Meira Jr., Márcio Carvalho and Rodolfo ResendeBruno Pôssas, Wagner Meira Jr., Márcio Carvalho and Rodolfo Resende
Department of Computer Science
Federal University of Minas Gerais
Belo Horizonte – MG – Brazil
{bavep,meira,mlbc,rodolfo}@dcc.ufmg.br

Abstract The solution of the mining association rules problem in customer transactions was introduced
by Agrawal, Imielinski and Swami in 1993. Their approach was extended in several directions
such as adding or replacing the confidence and support by other measures, or how to also ac-
count for quantitative attributes. In this paper we present an algorithm that can be used in the
context of several of the extensions provided in the literature while preserving its performance,
as illustrated by a case study. Our approach is targeted at two of the most computationally de-
manding phases in the process of generating association rules: the enumeration of the candidate
sets and the verification of which of them are frequent. The minimization of the cost of these
phases is achieved by pruning early candidate sets based on additional quantitative information
about the transactions. In summary, we explore certain multidimensional properties of the data
allowing us to combine this additional information as a pruning criterion. Based on syntheti-
cally generated data, our strategy reduced the number of candidate sets examined by the algo-
rithm up to 15%. Furthermore, it also reduced the execution time significantly, in the order of
23%.

Keywords: Data mining, association rules, algorithms, knowledge discovery in databases.

1 Introduction

The problem of mining association rules in categori-
cal data presented in customer transactions was intro-
duced by Agrawal, Imielinski and Swami [2]. This semi-
nal work gave birth to several investigation efforts [4,13]
resulting in descriptions of how to extend the original
concepts and how to increase the performance of the
related algorithms.

The original problem of mining association rules was
formulated as how to find rules of the form set1
! set2. This rule is supposed to denote affinity or correla-
tion among the two sets containing nominal or ordinal
data items. More specifically, such an association rule

should translate the following meaning: customers that
buy the products in set1 also buy the products in set2.
Statistical basis is represented in the form of minimum
support and confidence measures of these rules with
respect to the set of customer transactions.

The original problem as proposed by Agrawal et al.[2]
was extended in several directions such as adding or
replacing the confidence and support by other measures,
or filtering the rules during or after generation, or includ-
ing quantitative attributes.

Srikant and Agrawal [16] describe a new approach
where quantitative data can be treated as categorical. This
is very important since otherwise part of the customer
transaction information is discarded.

Whenever an extension is proposed it must be

Using quantitative information for efficientUsing quantitative information for efficientUsing quantitative information for efficientUsing quantitative information for efficient B.Pôssas, W. Meira Jr. B.Pôssas, W. Meira Jr. B.Pôssas, W. Meira Jr. B.Pôssas, W. Meira Jr.
aaaasssssociation rule generationsociation rule generationsociation rule generationsociation rule generation M. Carvalho and R. ResendeM. Carvalho and R. ResendeM. Carvalho and R. ResendeM. Carvalho and R. Resende

 36

checked in terms of its performance. The algorithm effi-
ciency is linked to the size of the database that is amena-
ble to be treated. Therefore it is crucial to have efficient
algorithms that enable us to examine and extract valuable
decision-making information in the ever larger databases.

In this paper we present an algorithm that can be used
in the context of several of the extensions provided in the
literature but at the same time preserves its performance,
as demonstrated in a case study. The approach in our
algorithm is to explore multidimensional properties of the
data (provided such properties are present), allowing us
to combine this additional information in a very efficient
pruning phase. This results in a very flexible and efficient
algorithm that was used with success in several experi-
ments using categorical and quantitative databases.

The paper is organized as follows. In the next section
we describe the quantitative association rules and we
present na algorithm to generate it. Section 3 presents an
optimization of the pruning phase of the Apriori [4] algo-
rithm based on quantitative information associated with
the items. Section 4 presents our experimental results for
mining four synthetic workloads, followed by some re-
lated work in Section 5. Finally we present some conclu-
sions and future work in Section 6.

2 Quantitative Rules

Items found in relational tables have many different
attributes. These attributes may be either quantitative
(such as age or salary) or categoric (such as zip code, a
boolean value or a license plate number). In this work,
any valued attribute will be treated as quantitative and
will be used to derive the quantitative association rules
presented in this section.

2.1 Formal Definition

Let A = {a1, a2, ..., an} be the set of attributes from a table
and V the set of non-negative values for an attribute, and Va
be the set of values for an attribute a. We define an item i as
the pair 〈a,qa〉 , where a is an attribute and qa ∈ Va its quantita-
tive value. An itemrange is the contiguous allowable range
for an attribute a, represented by a tuple 〈a: la - ha〉 where la ∈
Va, ha ∈ Va, and la ≤ ha are its low and high limits. We ob-
serve that, for each attribute, only a single range is allowed.
It may be interesting to consider the case of multiple non-
overlapping ranges but this is for further work.

Let us represent a transaction T as the set {t1, t2,...tn}
of its items and by D the set of all transactions. A transac-
tion T satisfies a given set of em itemranges I, if for each
〈aI : la - ha〉 ∈ I there exists an 〈aT, qa〉 ∈ T with aI = aT e la ≤

qa ≤ ha. A quantitative association rule is an expression of
the form X ! Y, where X ⊂ I, Y⊂ I, X ∩ Y = ∅ and I is
a set of itemranges. As defined in [2], a rule
X ! Y is valid for the transaction set D with confidence c
if c% of the transactions in D that satisfy X also satisfy Y.
The rule X ! Y has support s in the transaction set D if s
of the transactions in D satisfy X ∪ Y. Given a transac-
tion set D, the quantitative association rule generation
problem is the problem of generating all rules that have
support and confidence greater than some given con-
stants, denoted by minsupp and minconf, respectively.

As an example of application of this rule, consider the
supermarket purchase analysis problem. In this model, a
transaction is a set of items bought by a customer. A rule
may be: “80% of the people who bought between 1 and 5
beers also bought between 2 and 4 bags of potato chips”.
This information may be strategic when investing in a
new advertisement campaign or designing a new layout
for the store.

For the sake of this presentation, the solution of the
quantitative association rule generation problem is divided
into three steps: The first step consists of enumerating the
support for the itemranges sets. The second step consists of
finding all the itemrange sets that have support values
greater than minsupp (these are the frequent or large sets).
The last step consists of generating the association rules
derived from the frequent sets found in the second step.
These steps are the same those of the non-quantitative
procedure, but the extra information about the quantities
induces an additional dimension on the generated rules,
which usually increases the rules' information content.

2.2 Generating Quantitative Rules

In this subsection we describe the algorithm for gen-
erating quantitative association rules. The starting point
of our algorithm is counting the itemranges in the data-
base, in order to determine the frequent ones. These fre-
quent itemranges are the basis for generating higher-
order itemranges using an algorithm similar to Apriori.

We consider the size of a transaction as the number of
items that it comprises. We define as a k-itemset a set of
items of size k and denote frequent (large) itemsets by Lk
and candidate itemsets (possibly frequent) Ck. A j-
rangeset is a set of j-itemranges, and each k-itemset has a
j-rangeset that stores the quantitative rules of the itemset.

During each iteration of the algorithm, we use just the
frequent sets from the previous iteration to generate the
candidate sets and check whether their support is above
the threshold. The set of candidate sets found is pruned
by a strategy that discards sets which contain infrequent
subsets. The algorithm ends when there are no more
candidate sets to be verified.

B.Pôssas, B.Pôssas, B.Pôssas, B.Pôssas, W. Meira Jr.W. Meira Jr.W. Meira Jr.W. Meira Jr. Using quantitative information for efficient Using quantitative information for efficient Using quantitative information for efficient Using quantitative information for efficient
M. Carvalho and R. ResendeM. Carvalho and R. ResendeM. Carvalho and R. ResendeM. Carvalho and R. Resende aaaasssssociation rule generationsociation rule generationsociation rule generationsociation rule generation

 37

Once we determine all frequent sets and their quanti-
tative ranges, the association rules are generated. The
general outline of the algorithm is presented in Figure 1.
The syntax and semantics of the primitives employed in
our algorithm are similar to other approaches in the litera-
ture. A short description of the data structures is pre-
sented in the next subsection.

1. L1 = {frequent 1 – itemsets};

2. For (k = 2; Lk-1 ≠ 0; k + +) {

3. Ck = generate_candidates (L k-1);

4. ∀ transactions T ∈ DB

5. ∀ subsets t ∈ T

6. If (c ∈ Ck: c is valid in t) then c.count ++;

7. Lk = { c ∈ Ck | c.count ≥ minsup};

8. }

9. ∀ Lk, k > 2

10. generate_rules (Lk, Lk);

Figure 1 - Quatitative Apriori Algorithm

2.3 Data structures

We use two data structures for generating quantitative
association rules: trees of sets and intervals. The trees of
sets keep the itemsets, as the original Apriori does. This
tree is divided into levels and each level contains one or
more lists of nodes. Each node represents an itemset and
stores the item identifier and the occurrence counter of
the itemset. The itemset is composed by the item stored in
the node itself and the items stored in all of its ancestor
nodes. Thus, k-itemsets are stored at level k.

Each node in a tree of sets also contains an interval
tree. Interval trees are similar to KD trees [8] and store
itemranges information, such as their occurrency fre-
quency. Furthermore, they are binary trees where each
node contains a set of itemranges, a rangeset, an occur-
rency counter, and the tree discriminant. This tree satis-
fies two properties: (i) ancestor accumulation: the oc-
currence counter stored in a node is equal to the sum of
the counters of all its child nodes and (ii) ancestor inclu-
sion: the itemranges of the child nodes are sub-intervals
of the itemranges of the parent node.

The discriminant of a node is an item a of its rangeset
and a value da ∈ Va, that is, the quantity acquired of the
item. The discriminant plays a role similar to a node key
in a binary search tree: the left sub-tree contains item-
ranges where all amounts are less than da, while the right
sub-tree contains itemranges where all acquisition values

are equal or greater than da. In order to find a node in the
interval tree, we start from the root and the path taken
from each node is defined by the discriminant item,
checking whether the item quantity is smaller than the
discriminant quantity. An example of an interval tree can
be seen in Figure 2. In this figure the itemranges are
represented inside the node and the occurrence counter is
represented by “S: n”, where n is its value. The discrimi-
nant dimension of a node is chosen based on the biggest
distance among the items values being inserted and the
respective intervals lengths in the rangeset.

Figure 2 – Interval tree for itemset A B

Another property of KD trees that also holds for in-
terval trees is that the counters of all leaf nodes are bound
to a capacity specified at building time. Thus, whenever
the capacity of a node n is reached, an item is chosen as
discriminant and the two children of n are created and the
rangesets of the children nodes are based on the dis-
criminant. As a consequence, the format of the interval
tree is a function of the frequency distributions of the
various items and their discriminants.

3 Improving Apriori

In this section we describe how quantitative rules are
used for making the generation of association rules more
efficient. More specifically, we make the candidate prun-
ing phase more efficient by reducing the number of can-
didates that are generated to further verification.

The original Apriori approach prunes a candidate
itemset C of size k whenever any of its subsets of size
k-1 are not frequent (lines 1..4 of the algorithm in Figure
4). Although this approach is safe in the sense that no
large itemsets are mistakenly discarded, it is still possible
to generate candidates that later show to be not frequent,
because the overlap among the transactions accounted in
the k-1 itemsets is not large enough for guaranteeing the
support to C.

1. A 1 B 1 C 3 D 4
2. A 2 B 1 C 2 - -
3. A 3 B 2 - - D 4
4. A 2 B 3 C 3 - -

Using quantitative information for efficientUsing quantitative information for efficientUsing quantitative information for efficientUsing quantitative information for efficient B.Pôssas, W. Meira Jr. B.Pôssas, W. Meira Jr. B.Pôssas, W. Meira Jr. B.Pôssas, W. Meira Jr.
aaaasssssociation rule generationsociation rule generationsociation rule generationsociation rule generation M. Carvalho and R. ResendeM. Carvalho and R. ResendeM. Carvalho and R. ResendeM. Carvalho and R. Resende

 38

5. A 2 B 1 - - - -
6. A 3 B 2 C 3 - -
7. A 4 - - - - D 4
8. - - B 2 C 1 D 3
9. - - B 4 C 3 - -
10. - - B 1 - - D 1

Figure 3 – Example of a Transaction Database

Our strategy, as mentioned, is to use quantitative in-
formation to estimate more precisely this overlap in terms
of transactions. For instance, if we consider the transac-
tion database from Figure 3 and a support threshold of 3,
we find five frequent 2-itemsets AB, AC, AD, BC, and
BD, with supports 6, 4, 3, 6, and 4, respectively. The
original Apriori approach generates two candidate
itemsets, A B C and A B D, but the verification in the
transaction database reveals that only A B C is frequent.
If we verify the interval trees for A B, A D, and B D in
Figure 5, we are able to discover that A B D is unfeasible
before the counting phase, as follows. The interval (A:4
D:4) does not match any interval in the tree for A B,
since there is no node where A is associated with the
quantity 4. Thus, the transactions accounted in A D are
not all accounted in A B, as we can see in Figure 3,
where transaction 7 does not include B. In this case we
say that A B D is unfeasible with respect to A D.

We developed an algorithm that generalizes this pro-
cedure and enhances significantly the pruning process.
There are two basic issues in implementing the strategy
described: (1) how to order intervals for sake of compari-
son, (2) how to test the overlap among them.

We choose intervals based on a greedy strategy. Since
our goal is to prune a candidate k-itemset as early as
possible, we focus on the (k-1)-itemset with the smallest
support, which presumably is the easiest to be considered
unfeasible. We start by checking leaves that have the
smallest ranges in all dimensions, which we call rangeset
coverage.

We define that two rangesets overlap () when any
of their itemranges overlap. More specifically, given two
rangesets R = r1, r2,...,rn and S = s1,s2,...,sm, where ri (and
sj) are itemranges We say that R S if ∃ r, s|r ∈ R, s ∈ S,
ra = as, ri <= sh V sj <= rh.

The starting point of the algorithm presented in Figure
4 represents the original prune approach, where a candi-
date itemset C is unfeasible if any of its subsets of size
k-1 are not frequent (lines 2..4). The second phase ex-
plores the quantitative information present in the interval
trees (lines 5..16). The first step of our prune approach
finds the k-1 subset (pmin) with the smallest support value
(line 6) for further evaluation in the intervals trees of all
other k-1 subsets. This evaluation takes into account all

interval nodes l from pmin (line 7). The initial overlapped_
support is the support for l itself. We then verify whether
this support is valid across all k-1 subsets. Notice that at
this level our algorithm is also greedy, since we start with
the subset with minimum support and verify whether it
holds for all subsets. Thus, for each node considered, the
algorithm determines which leaves (k) in the remaining
interval trees overlap with the leaves in the interval tree
associated with pmin (line 10). We then update overlapped
support if the sum of the supports for all k is smaller than
its current value (lines 11..12). We should emphasize that
this sum of supports is an upper bound on the support that
1 may have in p and, if it the bound is smaller than the
current overall support, then it becomes the new support
for that itemrange. If, after verifying all nodes, the resul-
tant overlapped_support is 0, the overall support for pmin
is decremented by the support of l (lines 13..14), meaning
that l comprises an itemrange that is not present in all
subsets needed for the new candidate. Finally, if the sup-
port for pmin after the feasibility verifications is smaller
than minsupp then C is assigned as unfeasible (lines
15..16).

1. for each candidate C

2. Enumerate the set P of k-1 itemsets of C

3. if ∃ p ∈ P | support(p) < minsupp

4. then C is unfeasible

5. Else

6. Find pmin|pmin ∈ P and ∃ p| support(p) <support(pmin)

7. ∀ leaves l of Pmin

8. overlapped_support = support(l)

9. for each p ∈ P and p ≠ pmin

10. K is the set of all leaves k where k l

11. if overlapped_support > ∑ support (k)

12. then overlapped_support = ∑ support (k)

13. if overlapped_support == 0

14. then support(pmin) = support(pmin) - support(l)

15. if (support(pmin) < minsupp)

16. then C is unfeasible

Figure 4 – Quantitative Pruning Algorithm

Figure 5 – Interval trees for A B, A D and B D

B.Pôssas, B.Pôssas, B.Pôssas, B.Pôssas, W. Meira Jr.W. Meira Jr.W. Meira Jr.W. Meira Jr. Using quantitative information for efficient Using quantitative information for efficient Using quantitative information for efficient Using quantitative information for efficient
M. Carvalho and R. ResendeM. Carvalho and R. ResendeM. Carvalho and R. ResendeM. Carvalho and R. Resende aaaasssssociation rule generationsociation rule generationsociation rule generationsociation rule generation

 39

4 Experimental Results

4.1 Experiments with Synthetic Data

In order to evaluate the efficiency of our algorithm in
pruning the candidate sets, we executed the algorithm on
transaction databases generated synthetically, which
simulate real workloads. The generator of workload takes
into account correlations among items acquired by the
same customer, that is, the probability of the occurrence
of frequent itemsets which may assume four possible
distributions: (1) normal (nor), (2) bimodal (bim), (3)
exponential (exp), and (4) random (ran). The transaction
sizes varied from 10 to 52 items, and the average size of
the largest potentially frequent itemset is 10. To create a
workload, our generator program takes five parameters:
T - number of transactions, M - average size of transac-
tions, L - average size of the maximal large itemsets,
I - number of items, and D - distribution of occurrences
of large itemsets.

Our evaluation is based on two sets of workloads. The
first (w-trans) contains workloads with varying number
of transactions (from 10000 to 50000) and fixed number
of itens (500), aiming to quantify the scalability of the
algorithm, while the second set (w-items) comprises
workloads with varying number of itens (from 500 to
2500) and fixed number of transactions (50000), as a
measure of the complexity of the workload. The remain-
ing parameters for both sets of workloads are as follows:
the average size of transactions varied from 30 to 40; the
average size of the maximal large itemsets is 10; and all
four distributions of occurrences aforementioned.

We evaluate our pruning algorithm by considering the
number of frequent itemsets in each iteration, the number
of candidate itemsets (with and without pruning) and the
hit ratio between candidate itemsets and frequent item-
sets. We also evaluated the elapsed computational time
for executing the algorithm under different workloads
and compared execution times that employed or not our
pruning strategy. We illustrate these metrics by analyzing
the results from four workloads (T=50000, I=500, M=30,
L=10, and D = {bim, exp, nor, ran}), considering a 10%
support. The number of frequent itemsets at the end of
each iteration for these workloads and support are shown
in Table 1.

We start our evaluation by verifying the number of
candidate itemsets generated during the execution of the
algorithm. These data are shown in Table 2, where we
can see that our pruning algorithm reduced the overall
number of candidate itemsets by up to 16%. In fact, if we
consider just the itemsets greater than 2, which are effec-
tively pruned, the gains are over 20% for some work-
loads.

Workload
T D

Pruning No Pruning Gain

50000 bim 18081 21559 16.13%
50000 exp 14697 16194 9.24%
50000 nor 15996 19082 16.17%
50000 ran 14191 15623 9.17%

Table 2 - Total number of candidate itemset

The effectiveness of our algorithm increases with the
size of the itemsets being pruned, as we can see in Table
3, where we compare the number of candidate itemsets
per iteration of the algorithm. We can see that our ap-
proach reduces the number of itemsets by up 30%. Fur-
thermore, our pruning algorithm detected, in some cases,
that all unfeasible candidate itemsets, reducing the overall
number of iterations (e.g., 10-itemsets in the exponential
and in the random workload).

We also evaluated the “hit ratio” of our algorithm,
that is the ratio between the number of frequent itemsets
and the number of candidate itemsets found by our prun-
ing algorithm. We can see in Table 4 that the hit ratio for
itemsets greater than 2 is above 64% in all cases, reach-
ing 100% in some cases. For instance, in both the expo-
nential and random workloads, the pruning algorithm
identified as candidates exactly the frequent 10-itemsets.

Table 5 shows the elapsed time for generating rules
using the workload described. We can see that our prun-
ing algorithm enhances the performance of Apriori in all
cases, ranging from 16.5% to 23.9%, providing an aver-
age improvement of 21.2%. We should notice that the
pruning operations never increased the execution time of
the algorithm. In fact, our measurements show that these
operations represent a very small fraction of the overall
execution time (which is dominated by itemset counting),
being limited to few seconds per execution.

Workload

T D

Pruning No Pruning Gain

50000 bim 30405.8 39958.7 23.91%

50000 exp 22376.5 28240.7 20.77%

50000 nor 26865.4 35106.6 23.48%

50000 ran 23416.1 28113.4 16.71%

Table 5 – Elapsed time for generating rules (s)

Using quantitative information for efficientUsing quantitative information for efficientUsing quantitative information for efficientUsing quantitative information for efficient B.Pôssas, W. Meira Jr. B.Pôssas, W. Meira Jr. B.Pôssas, W. Meira Jr. B.Pôssas, W. Meira Jr.
aaaasssssociation rule generationsociation rule generationsociation rule generationsociation rule generation M. Carvalho and R. ResendeM. Carvalho and R. ResendeM. Carvalho and R. ResendeM. Carvalho and R. Resende

 40

Workload Number of frequent sets

T D

Total

1 2 3 4 5 6 7 8 9 10

50000 bim 14436 500 2572 4164 3108 1939 1047 669 346 84 7

50000 exp 10888 500 1873 3093 2343 1438 793 511 267 64 6

50000 nor 12842 493 2260 3691 2747 1697 951 608 312 76 7

50000 ran 10564 500 1893 3010 2202 1369 774 490 258 63 5

Table 1 – Frequent sets in the Workload

Workload Candidates per itemset size

T D

Prune Total

1 2 3 4 5 6 7 8 9 10

50000 bin Y 18081 500 3976 5055 3764 2288 1247 753 396 94 8

50000 bin N 21559 500 3976 6354 4688 2896 1531 971 510 123 10

50000 exp Y 14697 500 2896 4182 3122 1930 1009 637 335 80 6

50000 exp N 16194 500 2896 4719 3534 2147 1160 742 393 94 9

50000 nor Y 15996 500 3432 4448 3299 1992 1154 705 372 86 8

50000 nor N 19082 500 3432 5591 4108 2522 1417 910 479 113 10

50000 ran Y 14191 500 2892 3928 2972 1858 996 630 327 83 5

50000 ran N 15623 500 2892 4433 3364 2067 1146 734 383 97 7

Table 3 – Number of candidates per itemset size

Workload Hit Ratio per itemset size %

T D

Hit
Ratio 1 2 3 4 5 6 7 8 9 10

50000 bin 74.75 98.58 48.14 79.49 79.91 82.62 78.65 84.05 80.77 86.84 85.71

50000 exp 65.02 100.00 45.41 78.60 78.89 82.00 80.90 87.44 85.55 88.10 100.00

50000 nor 75.44 100.00 47.23 69.50 65.03 64.28 71.32 71.43 73.26 68.25 85.71

50000 ran 65.67 100.00 45.38 64.79 66.75 65.79 72.76 75.34 74.53 75.00 100.00

 Table 4 – Pruning Hit Ratio for Synthetic Workloads

4.2 Mining Web Logs

In order to confirm the performance trends we ob-
served using synthetic data, we experimented with a real-
life dataset: a web log database obtained from an actual
virtual bookstore. We present the results of these experi-
ments in this section.

The data consist of the set of requests to a virtual
bookstore over an one-week period. We group the re-
quests into sessions, so that each session comprises all
requests (that is, services such as browse, search, and

pay) for a given user and its frequency, which is its num-
ber of occurrences. For sake of applying the quantitative
Apriori algorithm, each session becomes a transaction
and the resultant rules are common user behaviors that
may be used for workload characterization and personal-
ization. The size of the web log is 6 MB and there is a
total of 153 items, representing different requests, and
35887 sessions with an average size of 15.

The elapsed time for generating rules with our prun-
ing strategy was 18.5% faster than the basis quantitative
algorithm (10% support). The average hit ratio of the
algorithm was 77.6% and its value per itemset size reach

B.Pôssas, B.Pôssas, B.Pôssas, B.Pôssas, W. Meira Jr.W. Meira Jr.W. Meira Jr.W. Meira Jr. Using quantitative information for efficient Using quantitative information for efficient Using quantitative information for efficient Using quantitative information for efficient
M. Carvalho and R. ResendeM. Carvalho and R. ResendeM. Carvalho and R. ResendeM. Carvalho and R. Resende aaaasssssociation rule generationsociation rule generationsociation rule generationsociation rule generation

 41

from 48.1% in the worst case (1-itemsets) and 91.7% in
the best case (3-itemsets). Notice that the gains are simi-
lar to those observed in synthetic workloads.

4.3 Algorithm Scalability

As described previously, we evaluate the scalability
of our algorithm through two sets of workloads (w_trans
and w_ items). Table 6 shows the performance gains (the
ratio between the overall execution times of the quantita-
tive Apriori algorithms employing or not our pruning
strategy) for workloads comprising from 10000 to 50000
transactions. We can observe that the gain usually in-
creases with the number of transactions, however, there
are some exceptions as a consequence of the remaining
workload parameters being the same in all cases.

Number of Transactions Dist.

10000 20000 30000 40000 50000

bin 20.99% 22.63% 19.49% 24.93% 23.91%

exp 10.90% 11.57% 10.93% 10.38% 10.77%

nor 17.86% 15.77% 20.80% 19.24% 23.48%

ran 13.83% 13.72% 12.44% 15.21% 16.71%

Table 6 – Time Gain for Generating Rules (w_trans)

Table 7 show the gains, in terms of execution times,
for varying number of items per transaction. Again, the
gain usually increases with the number of items in the
transaction. We can explain this trend by the fact that the
support is the same for all experiments, and a larger
number of items means that each item is less frequent on
average.

Number of Items Dist.

500 1000 1500 2000 2500

bin 23.91% 25.63% 29.49% 32.93% 35.91%

exp 10.77% 14.57% 17.99% 19.98% 21.07%

nor 23.48% 25.75% 28.30% 32.14% 34.52%

ran 16.71% 19.27% 22.11% 25.01% 28.91%

Table 7 – Time Gain for Generating Rules (w_items)

5 Related Work

There are several proposals for mining association
rules from transaction data. Some of these proposals are
constraint-based in the sense that all rules must fulfill a
predefined set of conditions, such as support and confi-
dence [1,3,7]. The second class identify just the most

interesting rules (or optimal) in accordance to some inter-
estingness metric, including confidence, support, gain,
chi-squared value, gini, entropy gain, laplace, lift, and
conviction [17,6,11]. However, the main goal common to
all of these algorithms is to reduce the number of gener-
ated rules. We extend the first group of techniques since
we do not relax any set of conditions nor employ a inter-
estingness criteria to sort the generated rules.

In this context, many algorithms for efficient genera-
tion of frequent itemsets have been proposed in the litera-
ture since the problem was first introduced in [2]. The
DHP algorithm [13] uses a hash table in pass k to perform
efficient pruning of (k+1)-itemsets. The Partition algo-
rithm [15] minimizes I/O by scanning the database only
twice. In the first pass it generates the set of all poten-
tially frequent itemsets, and in the second pass the sup-
port for all these is measured. The above algorithm are all
specialized techniques which do not use any database
operations. Algorithms using only general purpose
DBMS systems and relational algebra operations have
also been proposed [9.10].

There are some other efforts that exploit quantitative
information present in transactions for generating asso-
ciation rules. In [16], the quantitative rules are generated
by discretizing the occurrence values of an attribute in
fixed-length intervals and applying the standard Apriori
algorithm for generating association rules. However,
although simple, the rules generated by this approach
may not be intuitive, mainly when there are semantic
intervals that do not match the partition employed. Other
authors [5, 12, 18] proposed novel solutions that mini-
mize this problem by considering the distance among
item quantities for delimiting the intervals, that is, their
“physical”' placement, but not the frequency of occur-
rence as a relevance metric. Our quantitative approach
was introduced in [14] and a quantitative interestingness
metric was also presented.

6 Final Remarks

In this paper we addressed the problem of minimizing
the number of candidate sets that are considered while
generating association rules. We achieve such reduction
by taking into consideration quantitative information that
is usually discarded, since traditional association rules
focus just on qualitative correlations.

More specifically, our approach reduces the number
of candidate sets generated by taking into account the
quantitative information associated with each item that
occurs in a transaction. This information allows us to
make a better estimation of which candidate itemsets are
feasible. We evaluated our approach using four syntheti-

Using quantitative information for efficientUsing quantitative information for efficientUsing quantitative information for efficientUsing quantitative information for efficient B.Pôssas, W. Meira Jr. B.Pôssas, W. Meira Jr. B.Pôssas, W. Meira Jr. B.Pôssas, W. Meira Jr.
aaaasssssociation rule generationsociation rule generationsociation rule generationsociation rule generation M. Carvalho and R. ResendeM. Carvalho and R. ResendeM. Carvalho and R. ResendeM. Carvalho and R. Resende

 42

cally generated workloads, reducing not only the number
of sets generated but also the overall execution time of
the algorithm.

Quantitative association rules can be used in several
domains where the traditional approach is employed. The
unique requirement for such use is to have a semantic
connection between the components of the item-value
pairs. We will investigate its use on other applications,
such as discovering web access patterns on web logs,
predicting web users surfing paths and spatial data clus-
tering analysis. Future work also includes evaluating the
approach on real workloads and extending it to other data
mining algorithms, always exploiting the quantitative
perspective.

References

[1] R. Agrawal, T. Imielinski, and A. Swami. Database
mining: A performance perspective. In IEEE
Transactions on Knowlegde and Data Engineering,
December 1993.

[2] R. Agrawal, T. Imielinski, and A. Swami. Mining
association rules between sets of items in large
databases. In Proc. of the ACM SIGMOD Washing-
ton, D.C., pages 207-216, May 1993.

[3] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen,
and A.Verkamo. Fast discovery of association
rules. In Advances in Knowledge Discovery and
Data Mining, San Jose, CA, pages 307-328, 1996.

[4] R. Agrawal and R. Srikant. Fast algorithms for
mining association rules. In 20th International
Conference on Very Large Data Bases, Santiago,
Chile, pages 487 - 499, September 1994.

[5] Y.Aumann and Y.Lindell. A statistical theory for
quantitative association rules. In 5th ACM
SIGKDD International Conference on Knowledge,
San Diego, CA, pages 261 - 270, August 1999.

[6] R. Bayardo and R. Agrawal. Mining the most in-
teresting rules. In 5th ACM SIGKDD International
Conference on Knowledge, San Diego, CA, pages
145 - 154, August 1999.

[7] R. Bayardo, R. Agrawal, and D. Gunopulos. Con-
straint-based rule mining in large, dense databases.
In 15th International Conference on Data Engi-
neering, Sydney, Australia, pages 188 - 197, March
1999.

[8] J. Bentley. Multidimensional binary search trees
used for associative searching. In Communications

of ACM, 18(9):509 - 517, 1975.

[9]

M. Holsheimer, M. Kersten, H. Mannila, and H.
Toivonen. A perspective on databases and data
mining. In 1st International Conference on Knowl-
edge Discovery and Data Mining, Montreal, Can-
ada, pages 150 - 155, August 1995.

[10] M. Houtsma and A. Swami. Set-oriented mining of
association rules. Technical Report RJ 9567, IBM
Almaden Research Center, San Jose, CA, October
1993.

[11] B.Liu, W. Hsu, and Y. Ma. Pruning and summariz-
ing the discovered associations. In 5th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, San Diego, CA, pages
125 - 134, August 1999.

[12] R. Miller and Y. Yang. Association rules over
interval data. In ACM SIGMOD Conference, Tuc-
son, Arizona, pages 452 - 461, May 1997.

[13] J. Park, M. Chen, and P. Yu. An effective hash
based algorithm for mining associative rules. In
ACM SIGMOD Conference, San Jose, CA, pages
175 - 186, May 1995.

[14] B. Pôssas, F. Ruas, W. Meira, and R. Resende.
Geração de regras de associação quantitativas. In
XIV Brazilian Database Symposium, Florianópolis,
SC, pages 317 - 332, September 1999.

[15] A. Savasere, E. Omiecinski, and S. Navathe. An
efficient algorithm for mining association rules in
large databases. In 2lst International Conference
on Very Large Data Bases, Zurich, Switzerland,
pages 432 - 444, 1995.

[16] R. Srikant and R. Agrawal. Mining quantitative
association rules in large relational tables. In ACM
SIGMOD Conference, Montreal, Canada, pages 1 -
12, June 1996.

[17] G. Webb. Opus: An efficient admissible algorithm
for unordered search. In Journal of Artificial Intel-
ligence Research, 3:43l - 465, 1995.

[18] Z. Zhang, Y. Lu, and B. Zhang. An effective parti-
tioning-combining algorithm for discovering quan-
titative association rules. In 1st Pacific Asia Con-
ference on Knowledge Discovery and Datamining,
Singapore, pages 241 - 251, February 1997.

