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Abstract

The Helly defect of a graph G is the smallest integer
i such that the iterated clique graph K*(G) is clique-
Helly. We prove that it is NP-hard to decide whether
the Helly defect of G is at most 1.
Keywords: Clique graphs, clique-Helly graphs,
Helly defect

1 Introduction

In this work, we consider the following question, on
iterated clique graphs. Given a graph G and an integer
i > 0, is the i-iterated clique graph of G a clique-Helly
graph? Since clique-Helly graphs can be recognized in
polynomial time [11], for 4 = 0 the answer of this ques-
tion can be given in polynomial time. In this work, we
prove that the above problem is NP-hard for i = 1. In
fact, the NP-hardness holds for a more general prob-
lem stated in Theorem 6.

In general, write that a set S is a k-set when |S| = k,
a kT-set when |S| > k, and a k~ -set when |S| < k.
This same notation will also apply for families of sets.

Let F be a family of subsets F; of some set. A core
of F is any subset of (. .- Fi. Let p,q be integers,
p > 1and g > 0. Say that F is (p,q)-intersecting when
every p—-subfamily of it has a ¢*-core. In addition, F
is (p, q)-Helly when every (p, ¢)-intersecting subfamily
of it has a gT-core. Consequently, the classical p-Helly
families of sets [2, 3] correspond to the case (p, 1)-Helly,
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while the Helly families correspond to the notation
(2,1)-Helly.

Let G be a graph. A complete of G is a subset of
pairwise adjacent vertices of it. A clique is a maximal
complete. A cligue-transversal of G is a subset of ver-
tices intersecting all cliques. The problem of deciding
whether a given subset is a clique-transversal of G has
been proved to be Co-NP-Complete by Erdds, Gallai
and Tuza [8]. Say that G is (p,q)-clique-Helly when
the family of the cliques of G is (p, ¢)-Helly. When G
is (2,1)-clique-Helly, write simply clique-Helly.

The cliqgue graph K(G) of G is the intersection
graph of the cliques of G. The i-th iterated clique
graph of G, denoted K!(G), is defined as follows:
K°(@G) = G, while K{(G) = K(K"=(Q@)), i > 0.

The Helly defect of a graph G is the smallest i such
that K(G) is clique-Helly. If K'(G) is not clique-
Helly, for any finite 4, say that its Helly defect is infi-
nite. Trivially, the Helly defect of a clique-Helly graph
is 0.

A graph G is periodic when K'(G) = G, for some
i. In addition, the smallest i satisfying K'(G) = G is
the period of a periodic graph G.

Escalante [9] proved that if K*(G) is clique-Helly,
then K7(G) is clique-Helly for any j > i, and that if
G is clique-Helly, then K?(G) is an induced subgraph
of G.

Let G be a periodic clique-Helly graph, and let
p > 1 be its period. Clearly, G = K?(G). By Es-
calante’s result, K?P(@) is an induced subgraph of
K?*(G), therefore G = K?(G). This implies that p < 2.
This argument shows that if H is a periodic graph with
period strictly greater than 2, then K(H) cannot be
clique-Helly for any ¢ > 0, and thus its Helly defect is
infinite.

Bandelt and Prisner [1] proved that the Helly de-
fect of a chordal graph is at most 1. In [4] there are
examples of graphs with Helly defect ¢, for any finite
1.

In this paper, we prove that it is NP-hard to decide
whether the clique graph of G is (2, ¢)-Helly, for any
fixed ¢ > 1. Consequently, it is NP-hard to decide
whether G has Helly defect at most 1.
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2 The proof

In this section, we prove that it is NP-hard to rec-
ognize if the Helly defect of a graph is at most 1. We
need first some definitions and results.

Let G be a graph and T a triangle of it. The ex-
tended triangle of G, relative to T, is the subgraph
of G induced by subset of vertices of G which form a
triangle with (at least) two vertices of T.

Theorem 1 [6, 11] G is a clique-Helly graph if and
only if every of its extended triangles contains a uni-
versal vertex.

Extended triangles can be generalized as follows:
let C' be a p-complete of a graph G, p > 3. The p-
expansion of G relative to C is the subgraph of G in-
duced by the vertices forming a p-complete with p — 1
vertices of C.

Let .# be a subfamily of cliques of G. The clique
subgraph induced by F in G, denoted by G[F]., is
the subgraph of G formed exactly by the vertices and
edges belonging to the cliques of .%.

Lemma 2 [5] Let G be a graph, C a p-complete of
it, H the p-expansion of G relative to C, and € the
subfamily of cliques of G that contain at least p — 1
vertices of C'. Then G[€]. is a spanning subgraph of
H.

Proof. We have to show that V(G[¥].) = V(H).
Let v € V(H). Then v is adjacent to at least p — 1
vertices of C'. Hence, v together with those p — 1 ver-
tices form a p-complete, which is contained in a clique
that contains at least p — 1 vertices of C. Therefore,
v € V(G[€].). Now, consider v € V(G[%].). Then v
belongs to some clique containing p — 1 vertices of C.
That is, v is adjacent to at least p—1 vertices of C, and
hence v € V(H). Consequently, V(G[¥].) = V(H).
Furthermore, both H and G[%]. are subgraphs of G,
but H is induced. Thus E(G[%].) C E(H).

Let g be a positive integer. The graph ®,(G) is
defined in the following way: the vertices of ®,(G)
correspond to the g-completes of G, two vertices be-
ing adjacent in ®,(G) if the corresponding ¢g-completes
in G are contained in a common clique. We remark
that @, is precisely the operator ®, 24, studied in [10].
An interesting property of ®, is that there exists a bi-
jection between the subfamily of ¢T-cliques of G' and
the family of cliques of ®,(G) [5]. The following def-
initions are possible due to this property: If C is a
qT-clique of G, denote by ®,(C) the clique that cor-
responds to C' in ®,(G). If C’ is a clique of ®,(G),

denote by <I>q’1 (C") the g"-clique that corresponds to
C'in G. If % is a subfamily of ¢"-cliques of G, define
D,(F) ={2,(C) | C € F}. If ¥ is a subfamily of
cliques of ®,(G), define @' (¢) = {®,'(C) | C € €}.

Lemma 3 [5] Let G be a graph, F a subfamily of
q*t-cliques of it, € = ®,(F), and H = ®,(G). Then
H[%). contains a universal vertex if and only if G[.F ],
contains q universal vertices.

Proof. If H[¥]. contains a universal vertex x, then
every clique of # contains the g-complete of G that
corresponds to z, that is, G[.#]. contains ¢ universal
vertices. Conversely, if G[.#]. contains ¢ universal ver-
tices forming a g-complete @ of G, then every clique
of ¥ contains the vertex of H that corresponds to @,
that is, H[%]. contains a universal vertex.

The proof of the next lemma is easy, and thus we
will omit it:

Lemma 4 [5] Let C be a (p+ 1)-complete of a graph
G, and let € be a p~ -subfamily of cliques of G such
that every clique of € contains at least p vertices of
C. Then € has a 17 -core. ]

The following theorem is a characterization of (p, ¢)-
clique-Helly graphs:

Theorem 5 [5] Let p > 1 be an integer. A graph G is
(p, q)-clique-Helly if and only if every (p+1)-ezpansion
of ®,(G) contains a universal vertez.

Proof. Suppose that G is a (p, ¢)-clique-Helly
graph and there exists a (p + 1)-expansion T, rela-
tive to a (p + 1)-complete C' of ®,(G), such that T
contains no universal vertex.

Let % be the subfamily of cliques of H = ®,(G)
that contain at least p vertices of C. Let # = &_'(%).
Consider a p~-subfamily .#' C #. Let ¢’ = ®,(.%").
By Lemma 4, ¢’ has a 17-core. That is, H[¢"]. con-
tains a universal vertex. This implies, by Lemma 3,
that G[.#'], contains ¢ universal vertices. Thus, .#’
has a gT-core, that is, .# is (p, q)-intersecting. Since
G is (p, q)-clique-Helly, we conclude that .# has a ¢*-
core and G[.Z], contains ¢ universal vertices. By us-
ing Lemma 3 again, H[%']. contains a universal vertex.
Moreover, by Lemma 2, H[%].. is a spanning subgraph
of T. However, T' contains no universal vertex. This
is a contradiction. Therefore, every (p + 1)-expansion
of H = ®,(G) contains a universal vertex.

Conversely, assume by contradiction that G is not
(p, @)-clique-Helly. Let .% = {C},...,Ct} be a mini-
mal (p, ¢)-intersecting subfamily of cliques of G which
does not have a g-core. Clearly, k > p.
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By the minimality of .#, the subfamily .#\C; has
a qt-core Q;, for i = 1,...,k. Tt is clear that
Qi € C;. Moreover, every two distinct @;, (); are con-
tained in a same clique, since & > 3. Hence the sets
Q1,Qa,...,Qp+1 correspond to a (p + 1)-complete C
in ®,(G).

Let % be the subfamily of cliques of H = ®,(G)
that contain at least p vertices of C. Let ¢’ =
O, (F) = {2,(Ch),...,24(C)}. Since every C; € F
contains at least p sets from Qi,Q2,...,Qp+1, it is
clear that the clique ®,(C;) of H contains at least p
vertices of C. Therefore, ®,(C;) € ¢, fori =1,...,k.

Let T be the (p + 1)-expansion of H relative to
C. By Lemma 2, H[¥]. is a spanning subgraph of
T. Therefore, V(Q) C V(T), for every ) € €. In
particular, V(®,(C;)) C V(T), for i = 1,...,k. By
hypothesis, T" contains a universal vertex z. Then
z is adjacent to all the vertices of ®,(C;)\{z}, for
i =1,..., k. This implies that ®,(C;) contains z, oth-
erwise ®,(C;) would not be maximal. Thus, ¢’ has
a 17-core and H[%']. contains a universal vertex. By
Lemma 3, G[-#]. contains ¢ universal vertices, that is,
F has a q'-core. This contradicts the assumption for
#. Hence, G is a (p, q)-clique-Helly graph.

Next, we state the main result of this paper.

Theorem 6 Let q > 1 be a fized integer. Given a
graph G, it is NP-hard to decide whether K(G) is
(2, q)-clique-Helly.

Proof.

The proof is a transformation from the following
problem. Given a graph G and a clique @ of it, does
@ intersect all the cliques of G7 (In other words, is @
a clique-transversal of G7) This problem was shown
to be Co-NP-complete in [7].

Given a graph G and a clique @ of it, we have
to construct a graph H such that @ is a clique-
transversal of G if and only if K(H) is (2, ¢)-clique-
Helly. The construction of H is as follows: consider
first the graph formed by three disjoint copies of G,
denoted by G,, Gy, G.. Add six vertices forming the
set Vi = {a},al, b}, b, ¢}, ch}, and add the following
edges:

ajv for all v € V(G,) and j = 1,2;
bjv for all v € V(Gp) and j = 1,2;
civ for allv € V(G.) and j = 1,2;
ajay; biby: cich; aybh; bheys cxal.

Add now ¢ vertices for each copy of G, forming the
set Vo = {a1,a2,...,aq, b1,b2,...,bg,C1,¢2,...,¢q}, and
add the edges:

a;v for allv € V(G,) and 1 <i < ¢;
biv for all v € V(Gp) and 1 <i < ¢;
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civ for all v € V(G,.) and 1 <i < g
ajay for 1 <i<qgandj=1,2
bt for 1 <i < gandj=1,2;
c,-c;- for1<i<gandj=1,2.

For each vertex w € @, consider its three copies
in G,,Gy, G, and collapse them into a single vertex,
preserving all its adjacencies. For simplicity, the ver-
tex of H corresponding to a vertex w € ) will also be
denoted by w, and we will refer to () as a complete of
H.

Finally, add more 3¢ vertices forming the set V3 =
{di,ds, ..., dy,dy, ds, ... d,
dy,dy,...,d;} and the edges:

dw for d € Vs, w € Q;

d;chy and d;a) for 1 <i < g;
diab and dib} for 1 <4 < g¢;
dibh and dc} for 1 <i < gq.

The construction of H is completed (see Figure 1).
Clearly, the clique @ of G corresponds to the com-
plete Q of H, while any other clique Q' # @ of G
corresponds to three complete sets Q},, Q, Q~, located
at G, Gy, G, respectively.

Figure 1: Construction of H.

By construction, observe that every clique of H is
formed by a copy of a clique of G together with three
new vertices: two from V7 and one from V5 U V.

We proceed with the proof of the theorem.
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Suppose that @ is a clique-transversal of G. This
implies that () intersects any clique @' of G. Since
each clique of H contains a copy of a clique of G by
construction, @) intersects any clique of H. Therefore
any clique of H that contains () is a clique-transversal
of H. Consider the following cliques of H:

QU {ay, b),d;} for 1 <i<gq.

Since these ¢ cliques contain (), they are clique-
transversals of H. Clearly, a clique which is a clique-
transversal of a graph G' is a universal vertex of
K(G"). So the clique graph of H contains ¢ univer-
sal vertices, hence K (H) is (2, g)-clique-Helly.

Conversely, suppose that @ is not a clique-
transversal of G. Consider the following three families
of cliques of H:

Ci ={QU{ab, b}, d}}, for 1 <i < q};
Co ={QU{b,,c},d'}, for 1 <i < gq};
Cs ={QU{d,a,d;}, for 1 <i<gq}.

It is clear that every clique in Cj,i = 1,2,3, is a
vertex of K(H). Let CE, CK, CE be the subsets of
vertices of K(H) corresponding to the cliques in the
families Cy, C5, and (3, respectively. Since all these
cliques contain @, all the vertices of CK U CK u CK
are pairwise adjacent. Therefore Cf, CK and CK are
completes of K(H). Moreover, it implies the exis-
tence of a clique containing these 3 completes. Since
each one of these completes contains ¢ vertices, the
graph @, (K (H)) contains three vertices vy, va,v3 cor-
responding to them. Since there is a clique in K (H)
containing C,C¥ CK it follows that {vi,v2, vs} is
a triangle T of &, (K (H)). Let T' be the extended tri-
angle relative to T'. Consider the following additional
families of cliques of H:

Cy = {Q; U {U’II:U’IQ:G’Z'}; for 1 <i< Q};

05 = {Q;) U {b’h IQ)bi}a for 1 S { S Q}y

Co ={QLU{c),ch, i}, for 1 <i < g}
where Q. Q},Q", are the three copies of a clique Q'
of G that does not intersects (). Clearly, Q' exists
because () is not a clique-transversal of GG. Clearly,
every clique in C;,i = 4,5,6, is a vertex of K(H). Let
CE,CE, CK be the subsets of vertices of K(H) cor-
responding to the cliques in the families Cy, C5, and
C, respectively. Since any clique in Cy contains @,
it follows that CK is a complete of K(H). Analo-
gously, CX and CX are completes of K(H). Con-
sider the cliques Q) U {a},a%, a1}, Q, U {b},b5, b1},
and Q. U {c},ch,c1} that belong to the families Cly,
Cs, and (Y, respectively. Since they are disjoint, their
corresponding vertices in K (H ) are not adjacent. Con-
sequently, there exists no clique in H containing a pair
of completes from Cf, CX CK. Therefore the vertices
v4, v5,v6 of @, (K (H)), corresponding to CK, CK | and

CK, respectively, form an independent set.

The following argument shows that v4, v5, vg belong
to T”. All the cliques of the families C; and Cy con-
tain the vertex ay. Hence the corresponding vertices
in K(H) are pairwise adjacent. Therefore there is a
clique in K(H) containing the completes C and CK.
Consequently v1v4 is an edge of ®,(K(H)). All the
cliques of the families C3 and C contain the vertex a},
meaning that vsv, is also an edge of ®,(K(H)). Select
a clique of the family C; and another of the family C,.
Since they do not intersect, the corresponding vertices
in K(H) are not adjacent. Hence there is no clique
in H containing the completes CX and CK. Conse-
quently vovy4 is not an edge of ®,(K (H)). By the same
argument, we conclude that v is adjacent to the ver-
tices v; and wvo, but not to vz; and wvg is adjacent to
ve and ws, but not to v;. Therefore, no vertex v;, for
1< ¢ <6, is universal in T".

Denote Ay = Q! U{al,ab} U{a; : 1 <i < g} and
As = QU {b), b5} U{b; : 1 <i < q}. Note that all the
cliques of C4 and Cj5 are subsets of A4 and As, respec-
tively. Note also that A4 N A5 = @, and the only edge
joining vertices of A4 and Aj is abd]. Therefore, any
clique sharing vertices simultaneoulsy with the cliques
of C4 and C5 must contain this edge. The vertices that
are adjacent simultaneously to a), and b} form the set
{d;:1<i<q}UQ. Consequently, each clique that
contains a), and b} contains solely vertices of this lat-
ter set. Since @ is a complete and {d} : 1 < i < ¢}
is an independent set, there are ¢ cliques of H that
contain the edge abb), and they correspond exactly to
the cliques of C'y. Therefore the only cliques of H that
share vertices with all the cliques of C4 and Cj are the
cliques of 7. Since their cardinalities are all equal to
q, CK is the only g-complete of K (H) which is con-
tained in a clique that contains Cf or CX. Hence
vy is the only one vertex simultaneously adjacent to
vg and vs in ®,(K(H)). Consequently, T' does not
have a universal vertex. By Theorem 5, it follows that
K(H) is not (2, g)-clique-Helly.

Corollary 7 It is NP-hard to verify whether the Helly
defect of a graph is at most one.

3 Conclusions

We have proved that the problem of recognizing
whether a given graph has Helly defect at most one is
NP-hard.

A related problem is to recognize whether the Helly
defect of a given graph is finite. It is not known
whether this problem is decidable.
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