On the Helly Defect of a Graph

Mitre C. Dourado*

Fábio Protti[†]

Jayme L. Szwarcfiter[‡]

Abstract

The Helly defect of a graph G is the smallest integer i such that the iterated clique graph $K^i(G)$ is clique-Helly. We prove that it is NP-hard to decide whether the Helly defect of G is at most 1.

Keywords: Clique graphs, clique-Helly graphs, Helly defect

1 Introduction

In this work, we consider the following question, on iterated clique graphs. Given a graph G and an integer $i \geq 0$, is the i-iterated clique graph of G a clique-Helly graph? Since clique-Helly graphs can be recognized in polynomial time [11], for i=0 the answer of this question can be given in polynomial time. In this work, we prove that the above problem is NP-hard for i=1. In fact, the NP-hardness holds for a more general problem stated in Theorem 6.

In general, write that a set S is a k-set when |S| = k, a k^+ -set when $|S| \ge k$, and a k^- -set when $|S| \le k$. This same notation will also apply for families of sets.

Let \mathcal{F} be a family of subsets F_i of some set. A core of \mathcal{F} is any subset of $\bigcap_{F_i \in \mathcal{F}} F_i$. Let p,q be integers, $p \geq 1$ and $q \geq 0$. Say that \mathcal{F} is (p,q)-intersecting when every p^- -subfamily of it has a q^+ -core. In addition, \mathcal{F} is (p,q)-Helly when every (p,q)-intersecting subfamily of it has a q^+ -core. Consequently, the classical p-Helly families of sets [2,3] correspond to the case (p,1)-Helly,

while the Helly families correspond to the notation (2,1)-Helly.

Let G be a graph. A *complete* of G is a subset of pairwise adjacent vertices of it. A *clique* is a maximal complete. A *clique-transversal* of G is a subset of vertices intersecting all cliques. The problem of deciding whether a given subset is a clique-transversal of G has been proved to be Co-NP-Complete by Erdös, Gallai and Tuza [8]. Say that G is (p,q)-clique-Helly when the family of the cliques of G is (p,q)-Helly. When G is (2,1)-clique-Helly, write simply *clique-Helly*.

The clique graph K(G) of G is the intersection graph of the cliques of G. The *i-th iterated clique* graph of G, denoted $K^{i}(G)$, is defined as follows: $K^{0}(G) = G$, while $K^{i}(G) = K(K^{i-1}(G))$, i > 0.

The Helly defect of a graph G is the smallest i such that $K^i(G)$ is clique-Helly. If $K^i(G)$ is not clique-Helly, for any finite i, say that its Helly defect is infinite. Trivially, the Helly defect of a clique-Helly graph is 0.

A graph G is *periodic* when $K^{i}(G) = G$, for some i. In addition, the smallest i satisfying $K^{i}(G) = G$ is the *period* of a periodic graph G.

Escalante [9] proved that if $K^i(G)$ is clique-Helly, then $K^j(G)$ is clique-Helly for any $j \geq i$, and that if G is clique-Helly, then $K^2(G)$ is an induced subgraph of G.

Let G be a periodic clique-Helly graph, and let $p \geq 1$ be its period. Clearly, $G = K^{2p}(G)$. By Escalante's result, $K^{2p}(G)$ is an induced subgraph of $K^2(G)$, therefore $G = K^2(G)$. This implies that $p \leq 2$. This argument shows that if H is a periodic graph with period strictly greater than 2, then $K^i(H)$ cannot be clique-Helly for any $i \geq 0$, and thus its Helly defect is infinite.

Bandelt and Prisner [1] proved that the Helly defect of a chordal graph is at most 1. In [4] there are examples of graphs with Helly defect i, for any finite i.

In this paper, we prove that it is NP-hard to decide whether the clique graph of G is (2,q)-Helly, for any fixed $q \geq 1$. Consequently, it is NP-hard to decide whether G has Helly defect at most 1.

^{*}Universidade Federal do Rio de Janeiro, COPPE, Caixa Postal 68511, 21945-970, Rio de Janeiro, RJ, Brasil. Partially supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq, Brasil. E-mail: mitre@cos.ufrj.br

[†]Universidade Federal do Rio de Janeiro, NCE, Caixa Postal 2324, 20001-970, Rio de Janeiro, R.J., Brasil. Partially supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq, Brasil. E-mail: fabiop@nce.ufrj.br

[‡]Universidade Federal do Rio de Janeiro, Instituto de Matemática, NCE and COPPE, Caixa Postal 2324, 20001-970, Rio de Janeiro, RJ, Brasil. Partially supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq, and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro - FAPERJ, Brasil. E-mail: jayme@nce.ufrj.br

2 The proof

In this section, we prove that it is NP-hard to recognize if the Helly defect of a graph is at most 1. We need first some definitions and results.

Let G be a graph and T a triangle of it. The extended triangle of G, relative to T, is the subgraph of G induced by subset of vertices of G which form a triangle with (at least) two vertices of T.

Theorem 1 [6, 11] G is a clique-Helly graph if and only if every of its extended triangles contains a universal vertex.

Extended triangles can be generalized as follows: let C be a p-complete of a graph G, $p \geq 3$. The p-expansion of G relative to C is the subgraph of G induced by the vertices forming a p-complete with p-1 vertices of C.

Let \mathscr{F} be a subfamily of cliques of G. The *clique* subgraph induced by \mathscr{F} in G, denoted by $G[\mathscr{F}]_c$, is the subgraph of G formed exactly by the vertices and edges belonging to the cliques of \mathscr{F} .

Lemma 2 [5] Let G be a graph, C a p-complete of it, H the p-expansion of G relative to C, and $\mathscr C$ the subfamily of cliques of G that contain at least p-1 vertices of C. Then $G[\mathscr C]_{\mathcal C}$ is a spanning subgraph of H.

Proof. We have to show that $V(G[\mathscr{C}]_c) = V(H)$. Let $v \in V(H)$. Then v is adjacent to at least p-1 vertices of C. Hence, v together with those p-1 vertices form a p-complete, which is contained in a clique that contains at least p-1 vertices of C. Therefore, $v \in V(G[\mathscr{C}]_c)$. Now, consider $v \in V(G[\mathscr{C}]_c)$. Then v belongs to some clique containing p-1 vertices of C. That is, v is adjacent to at least p-1 vertices of C, and hence $v \in V(H)$. Consequently, $V(G[\mathscr{C}]_c) = V(H)$. Furthermore, both H and $G[\mathscr{C}]_c$ are subgraphs of G, but H is induced. Thus $E(G[\mathscr{C}]_c) \subseteq E(H)$. \square

Let q be a positive integer. The graph $\Phi_q(G)$ is defined in the following way: the vertices of $\Phi_q(G)$ correspond to the q-completes of G, two vertices being adjacent in $\Phi_q(G)$ if the corresponding q-completes in G are contained in a common clique. We remark that Φ_q is precisely the operator $\Phi_{q,2q}$, studied in [10]. An interesting property of Φ_q is that there exists a bijection between the subfamily of q^+ -cliques of G and the family of cliques of $\Phi_q(G)$ [5]. The following definitions are possible due to this property: If G is a q^+ -clique of G, denote by $\Phi_q(G)$ the clique that corresponds to G in $\Phi_q(G)$. If G' is a clique of $\Phi_q(G)$,

denote by $\Phi_q^{-1}(C')$ the q^+ -clique that corresponds to C' in G. If $\mathscr F$ is a subfamily of q^+ -cliques of G, define $\Phi_q(\mathscr F)=\{\Phi_q(C)\mid C\in\mathscr F\}$. If $\mathscr C$ is a subfamily of cliques of $\Phi_q(G)$, define $\Phi_q^{-1}(\mathscr C)=\{\Phi_q^{-1}(C)\mid C\in\mathscr C\}$.

Lemma 3 [5] Let G be a graph, \mathscr{F} a subfamily of q^+ -cliques of it, $\mathscr{C} = \Phi_q(\mathscr{F})$, and $H = \Phi_q(G)$. Then $H[\mathscr{C}]_c$ contains a universal vertex if and only if $G[\mathscr{F}]_c$ contains q universal vertices.

Proof. If $H[\mathscr{C}]_c$ contains a universal vertex x, then every clique of \mathscr{F} contains the q-complete of G that corresponds to x, that is, $G[\mathscr{F}]_c$ contains q universal vertices. Conversely, if $G[\mathscr{F}]_c$ contains q universal vertices forming a q-complete Q of G, then every clique of \mathscr{C} contains the vertex of H that corresponds to Q, that is, $H[\mathscr{C}]_c$ contains a universal vertex.

The proof of the next lemma is easy, and thus we will omit it:

Lemma 4 [5] Let C be a (p+1)-complete of a graph G, and let $\mathscr C$ be a p^- -subfamily of cliques of G such that every clique of $\mathscr C$ contains at least p vertices of C. Then $\mathscr C$ has a 1^+ -core. \square

The following theorem is a characterization of (p,q)clique-Helly graphs:

Theorem 5 [5] Let p > 1 be an integer. A graph G is (p,q)-clique-Helly if and only if every (p+1)-expansion of $\Phi_a(G)$ contains a universal vertex.

Proof. Suppose that G is a (p,q)-clique-Helly graph and there exists a (p+1)-expansion T, relative to a (p+1)-complete C of $\Phi_q(G)$, such that T contains no universal vertex.

Let $\mathscr C$ be the subfamily of cliques of $H=\Phi_q(G)$ that contain at least p vertices of C. Let $\mathscr F=\Phi_q^{-1}(\mathscr C)$. Consider a p^- -subfamily $\mathscr F'\subseteq \mathscr F$. Let $\mathscr C'=\Phi_q(\mathscr F')$. By Lemma 4, $\mathscr C'$ has a 1⁺-core. That is, $H[\mathscr C']_c$ contains a universal vertex. This implies, by Lemma 3, that $G[\mathscr F']_c$ contains q universal vertices. Thus, $\mathscr F'$ has a q^+ -core, that is, $\mathscr F$ is (p,q)-intersecting. Since G is (p,q)-clique-Helly, we conclude that $\mathscr F$ has a q^+ -core and $G[\mathscr F]_c$ contains q universal vertices. By using Lemma 3 again, $H[\mathscr C]_c$ contains a universal vertex. Moreover, by Lemma 2, $H[\mathscr C]_c$ is a spanning subgraph of T. However, T contains no universal vertex. This is a contradiction. Therefore, every (p+1)-expansion of $H=\Phi_q(G)$ contains a universal vertex.

Conversely, assume by contradiction that G is not (p,q)-clique-Helly. Let $\mathscr{F} = \{C_1,\ldots,C_k\}$ be a minimal (p,q)-intersecting subfamily of cliques of G which does not have a q-core. Clearly, k > p.

By the minimality of \mathscr{F} , the subfamily $\mathscr{F} \setminus C_i$ has a q^+ -core Q_i , for $i=1,\ldots,k$. It is clear that $Q_i \not\subseteq C_i$. Moreover, every two distinct Q_i, Q_j are contained in a same clique, since $k \geq 3$. Hence the sets $Q_1, Q_2, \ldots, Q_{p+1}$ correspond to a (p+1)-complete C in $\Phi_q(G)$.

Let $\mathscr C$ be the subfamily of cliques of $H=\Phi_q(G)$ that contain at least p vertices of C. Let $\mathscr C'=\Phi_q(\mathscr F)=\{\Phi_q(C_1),\ldots,\Phi_q(C_k)\}$. Since every $C_i\in\mathscr F$ contains at least p sets from Q_1,Q_2,\ldots,Q_{p+1} , it is clear that the clique $\Phi_q(C_i)$ of H contains at least p vertices of C. Therefore, $\Phi_q(C_i)\in\mathscr C$, for $i=1,\ldots,k$.

Let T be the (p+1)-expansion of H relative to C. By Lemma 2, $H[\mathscr{C}]_c$ is a spanning subgraph of T. Therefore, $V(Q) \subseteq V(T)$, for every $Q \in \mathscr{C}$. In particular, $V(\Phi_q(C_i)) \subseteq V(T)$, for $i=1,\ldots,k$. By hypothesis, T contains a universal vertex x. Then x is adjacent to all the vertices of $\Phi_q(C_i)\setminus\{x\}$, for $i=1,\ldots,k$. This implies that $\Phi_q(C_i)$ contains x, otherwise $\Phi_q(C_i)$ would not be maximal. Thus, \mathscr{C}' has a 1^+ -core and $H[\mathscr{C}']_c$ contains a universal vertex. By Lemma 3, $G[\mathscr{F}]_c$ contains q universal vertices, that is, \mathscr{F} has a q^+ -core. This contradicts the assumption for \mathscr{F} . Hence, G is a (p,q)-clique-Helly graph. \square

Next, we state the main result of this paper.

Theorem 6 Let $q \ge 1$ be a fixed integer. Given a graph G, it is NP-hard to decide whether K(G) is (2,q)-clique-Helly.

Proof.

The proof is a transformation from the following problem. Given a graph G and a clique Q of it, does Q intersect all the cliques of G? (In other words, is Q a clique-transversal of G?) This problem was shown to be Co-NP-complete in [7].

Given a graph G and a clique Q of it, we have to construct a graph H such that Q is a clique-transversal of G if and only if K(H) is (2,q)-clique-Helly. The construction of H is as follows: consider first the graph formed by three disjoint copies of G, denoted by G_a, G_b, G_c . Add six vertices forming the set $V_1 = \{a'_1, a'_2, b'_1, b'_2, c'_1, c'_2\}$, and add the following edges:

```
a'_j v for all v \in V(G_a) and j = 1, 2;

b'_j v for all v \in V(G_b) and j = 1, 2;

c'_j v for all v \in V(G_c) and j = 1, 2;

a'_1 a'_2; b'_1 b'_2; c'_1 c'_2; a'_2 b'_1; b'_2 c'_1; c'_2 a'_1.
```

Add now q vertices for each copy of G, forming the set $V_2 = \{a_1, a_2, ..., a_q, b_1, b_2, ..., b_q, c_1, c_2, ..., c_q\}$, and add the edges:

```
a_i v for all v \in V(G_a) and 1 \le i \le q;

b_i v for all v \in V(G_b) and 1 \le i \le q;
```

```
c_i v for all v \in V(G_c) and 1 \le i \le q;

a_i a'_j for 1 \le i \le q and j = 1, 2;

b_i b'_j for 1 \le i \le q and j = 1, 2;

c_i c'_j for 1 \le i \le q and j = 1, 2.
```

For each vertex $w \in Q$, consider its three copies in G_a, G_b, G_c , and collapse them into a single vertex, preserving all its adjacencies. For simplicity, the vertex of H corresponding to a vertex $w \in Q$ will also be denoted by w, and we will refer to Q as a complete of H.

```
Finally, add more 3q vertices forming the set V_3 = \{d_1, d_2, ..., d_q, d'_1, d'_2, ..., d'_q, d''_1, d''_2, ..., d''_q\} and the edges: dw for d \in V_3, w \in Q; d_i c'_2 and d_i a'_1 for 1 \le i \le q; d'_i a'_2 and d'_i b'_1 for 1 \le i \le q; d''_i b'_2 and d''_i c'_1 for 1 \le i \le q.
```

The construction of H is completed (see Figure 1). Clearly, the clique Q of G corresponds to the complete Q of H, while any other clique $Q' \neq Q$ of G corresponds to three complete sets Q'_a, Q'_b, Q'_c , located at G_a, G_b, G_c , respectively.

Figure 1: Construction of H.

By construction, observe that every clique of H is formed by a copy of a clique of G together with three new vertices: two from V_1 and one from $V_2 \cup V_3$.

We proceed with the proof of the theorem.

Suppose that Q is a clique-transversal of G. This implies that Q intersects any clique Q' of G. Since each clique of H contains a copy of a clique of G by construction, Q intersects any clique of H. Therefore any clique of G that contains G is a clique-transversal of G. Consider the following cliques of G:

$$Q \cup \{a'_2, b'_1, d'_i\}$$
 for $1 \le i \le q$.

Since these q cliques contain Q, they are cliquetransversals of H. Clearly, a clique which is a cliquetransversal of a graph G' is a universal vertex of K(G'). So the clique graph of H contains q universal vertices, hence K(H) is (2,q)-clique-Helly.

Conversely, suppose that Q is not a clique-transversal of G. Consider the following three families of cliques of H:

$$C_1 = \{Q \cup \{d'_2, b'_1, d'_i\}, \text{ for } 1 \le i \le q\};$$

$$C_2 = \{Q \cup \{b'_2, c'_1, d''_i\}, \text{ for } 1 \le i \le q\};$$

$$C_3 = \{Q \cup \{c'_2, a'_1, d_i\}, \text{ for } 1 \le i \le q\}.$$

It is clear that every clique in C_i , i = 1, 2, 3, is a vertex of K(H). Let C_1^K , C_2^K , C_3^K be the subsets of vertices of K(H) corresponding to the cliques in the families C_1 , C_2 , and C_3 , respectively. Since all these cliques contain Q, all the vertices of $C_1^K \cup C_2^K \cup C_3^K$ are pairwise adjacent. Therefore C_1^K , C_2^K and C_3^K are completes of K(H). Moreover, it implies the existence of a clique containing these 3 completes. Since each one of these completes contains q vertices, the graph $\Phi_q(K(H))$ contains three vertices v_1, v_2, v_3 corresponding to them. Since there is a clique in K(H) containing C_1^K , C_2^K , C_3^K , it follows that $\{v_1, v_2, v_3\}$ is a triangle T of $\Phi_q(K(H))$. Let T' be the extended triangle relative to T. Consider the following additional families of cliques of H:

$$C_4 = \{Q'_a \cup \{a'_1, a'_2, a_i\}, \text{ for } 1 \le i \le q\};$$

$$C_5 = \{Q'_b \cup \{b'_1, b'_2, b_i\}, \text{ for } 1 \le i \le q\};$$

$$C_6 = \{Q'_c \cup \{c'_1, c'_2, c_i\}, \text{ for } 1 \le i \le q\};$$

where Q'_a, Q'_b, Q'_c , are the three copies of a clique Q' of G that does not intersects Q. Clearly, Q' exists because Q is not a clique-transversal of G. Clearly, every clique in $C_i, i = 4, 5, 6$, is a vertex of K(H). Let C_4^K, C_5^K, C_6^K be the subsets of vertices of K(H) corresponding to the cliques in the families C_4, C_5 , and C_6 , respectively. Since any clique in C_4 contains Q'_a , it follows that C_4^K is a complete of K(H). Analogously, C_5^K and C_6^K are completes of K(H). Consider the cliques $Q'_a \cup \{a'_1, a'_2, a_1\}, \ Q'_b \cup \{b'_1, b'_2, b_1\},$ and $Q'_c \cup \{c'_1, c'_2, c_1\}$ that belong to the families C_4 , C_5 , and C_6 , respectively. Since they are disjoint, their corresponding vertices in K(H) are not adjacent. Consequently, there exists no clique in H containing a pair of completes from C_4^K, C_5^K, C_6^K . Therefore the vertices v_4, v_5, v_6 of $\Phi_q(K(H))$, corresponding to C_4^K, C_5^K , and

 C_6^K , respectively, form an independent set.

The following argument shows that v_4, v_5, v_6 belong to T'. All the cliques of the families C_1 and C_4 contain the vertex a_2' . Hence the corresponding vertices in K(H) are pairwise adjacent. Therefore there is a clique in K(H) containing the completes C_1^K and C_4^K . Consequently v_1v_4 is an edge of $\Phi_q(K(H))$. All the cliques of the families C_3 and C_4 contain the vertex a'_1 , meaning that v_3v_4 is also an edge of $\Phi_q(K(H))$. Select a clique of the family C_4 and another of the family C_2 . Since they do not intersect, the corresponding vertices in K(H) are not adjacent. Hence there is no clique in H containing the completes C_2^K and C_4^K . Consequently v_2v_4 is not an edge of $\Phi_q(K(H))$. By the same argument, we conclude that v_5 is adjacent to the vertices v_1 and v_2 , but not to v_3 ; and v_6 is adjacent to v_2 and v_3 , but not to v_1 . Therefore, no vertex v_i , for $1 \le i \le 6$, is universal in T'.

Denote $A_4 = Q'_a \cup \{a'_1, a'_2\} \cup \{a_i : 1 \le i \le q\}$ and $A_5 = Q_b' \cup \{b_1', b_2'\} \cup \{b_i : 1 \le i \le q\}$. Note that all the cliques of C_4 and C_5 are subsets of A_4 and A_5 , respectively. Note also that $A_4 \cap A_5 = \emptyset$, and the only edge joining vertices of A_4 and A_5 is $a'_2b'_1$. Therefore, any clique sharing vertices simultaneoulsy with the cliques of C_4 and C_5 must contain this edge. The vertices that are adjacent simultaneously to a_2 and b_1 form the set $\{d_i': 1 \leq i \leq q\} \cup Q$. Consequently, each clique that contains a'_2 and b'_1 contains solely vertices of this latter set. Since Q is a complete and $\{d'_i : 1 \leq i \leq q\}$ is an independent set, there are q cliques of H that contain the edge $a_2'b_1'$, and they correspond exactly to the cliques of C_1 . Therefore the only cliques of H that share vertices with all the cliques of C_4 and C_5 are the cliques of C_1 . Since their cardinalities are all equal to q, C_1^K is the only q-complete of K(H) which is contained in a clique that contains $C_4^{\check{K}}$ or $C_5^{\check{K}}$. Hence v_1 is the only one vertex simultaneously adjacent to v_4 and v_5 in $\Phi_q(K(H))$. Consequently, T' does not have a universal vertex. By Theorem 5, it follows that K(H) is not (2,q)-clique-Helly.

Corollary 7 It is NP-hard to verify whether the Helly defect of a graph is at most one.

3 Conclusions

We have proved that the problem of recognizing whether a given graph has Helly defect at most one is NP-hard.

A related problem is to recognize whether the Helly defect of a given graph is finite. It is not known whether this problem is decidable.

References

- [1] H.-J. Bandelt and E. Prisner. Clique graphs and Helly graphs. *Journal of Combinatorial Theory* B, 51:34–45, 1991.
- [2] C. Berge. *Hypergraphes*. Gauthier-Villars, Paris, 1987.
- [3] C. Berge and P. Duchet. A generalization of Gilmore's theorem. In M. Fiedler, editor, *Recent* Advances in Graph Theory, pages 49–55. Acad. Praha, Prague, 1975.
- [4] C. F. Bornstein and J. L. Szwarcfiter. On clique convergent graphs. *Graphs and Combinatorics*, 11:213–220, 1995.
- [5] M. C. Dourado, F. Protti, and J. L. Szwarcfiter. A generalization of the Helly property applied to the cliques of a graph. Technical Report 01-02, NCE/UFRJ, Rio de Janeiro, RJ, Brazil, april 2002 (Submitted).
- [6] F. F. Dragan. Centers of Graphs and the Helly Property. PhD thesis, Moldava State University, Chisinău, Moldava, 1989. In Russian.
- [7] G. Durán, M. C. Lin, and J. L. Szwarcfiter. On clique transversals and clique independent sets. *Annals of Operations Research*, 2002. To appear.
- [8] P. Erdös, T. Gallai, and Zs. Tuza. Covering the cliques of a graph with vertices. *Discrete Mathe*matics, 108:279–289, 1992.
- [9] F. Escalante. Über iterierte Clique-Graphen. Abhandlungender Mathematischen Seminar der Universität Hamburg, 39:59–68, 1973.
- [10] E. Prisner. *Graph Dynamics*. Pitman Research Notes in Mathematics 338, Longman, 1995.
- [11] J. L. Szwarcfiter. Recognizing clique-Helly graphs. Ars Combinatoria, 45:29–32, 1997.