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Abstract

In 1923, Eduard Helly published his celebrated theo-
rem, which originated the well known Helly property. Say
that a family of subsets has the Helly property when every
subfamily of it, formed by pairwise intersecting subsets,
contains a common element. There are many generaliza-
tions of this property which are relevant to some parts
of mathematics and several applications in computer sci-
ence. In this work, we survey computational aspects of
the Helly property. The main focus is algorithmic. That
is, we describe algorithms for solving different problems
arising from the basic Helly property. We also discuss
the complexity of these problems, some of them leading to
NP-hardness results.

Keywords: Computational Complexity, Helly prop-
erty, NP-complete problems.

1. Introduction
In 1923, Eduard Helly [24, 57] published the famous

theorem which originated the so called Helly property.
The theorem asserts that in a d-dimensional euclidian
space, if in a finite collection of n > d convex sets any
d + 1 sets have a point in common, then there is a point
in common to all sets. This theorem has been extensively
studied in distinct parts of mathematics and other areas,
as computer science. In fact, it has a central role in the
studies of geometric transversal theory, combinatorial ge-
ometry and convexity theory.

∗Partially supported by CNPq and FAPERJ.

A few surveys have been written on the Helly prop-
erty. We mention [27, 43, 51]. The Helly property has
been the object of studies in extremal hypergraph theory,
as [87], and in other topics of the study of graphs. For in-
stance, see [39, 88, 89]. There are many extensions of the
Helly property. One of the generalizations, the fractional
Helly property, is directly related to Alon and Kleitman’s
result [4], solving a famous conjecture by Hadwiger and
Debrunner.

Besides the purely theoretical interest, the Helly prop-
erty has applications to some different areas. For exam-
ple, in the context of optimization, it has been applied to
location problems [36], and generalized linear program-
ming [5]. In computer science, the Helly property has
been used in the theory of semantics [10], coding [9],
computational biology [79], data bases [45, 46], image
processing [22] and clearly graphs and hypergraphs.

In this work, we survey some of the results on the
Helly property, from the computational point of view. Our
purpose is to describe algorithms and complexity results
for many structural algorithmic problems, related to the
Helly property and some of its generalizations. In addi-
tion, we also include some new proposals of algorithms,
for some specific problems. Besides describing the al-
gorithms and complexity for the considered problems,
we also formulate the main structural characterizations,
which are the basis of the algorithms.

Following, we give some definitions and notation used
throughout this paper.

A hypergraph H is an ordered pair (V (H), E(H))
where V (H) = {v1, . . . , vn} is a finite set of vertices
and E(H) = {E1, . . . , Em} is a set of nonempty hyper-
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edges Ei ⊆ V (H). When there is no ambiguity we will
denote the number of vertices and of hyperedges of a hy-
pergraph H by n and m, respectively. Since the Helly
property and most variations considered in this work deal
with the hyperedges of a hypergraph, isolated vertices are
not relevant, and can be dropped. Hence, unless otherwise
stated, we assume in all the text that for a hypergraph H,
V (H) =

⋃

Ei∈E(H)

Ei.

Let H be a hypergraph. We say that H is a k-
hypergraph if |E(H)| = k; a k−-hypergraph if |E(H)| ≤
k; and a k+-hypergraph if |E(H)| ≥ k. We use the same
notation for a term standing for a set, for example, given
a set S with k elements, we can say that S is a k-set, or a
(k − 1)+-set, and so on.

The rank r(H) of a hypergraph H is the maximum
cardinality among the hyperedges of H. A hypergraph
H′ is a partial hypergraph of H if E(H′) ⊆ E(H); and
H′ is a subhypergraph of H induced by V ′ ⊆ V (H) if
H′ contains exactly the hyperedges Ei ∩ V

′ �= ∅, for
1 ≤ i ≤ m.

The core of H is defined as core(H) = E1 ∩ E2 ∩
. . . ∩ Em. We say that H is (p, q)-intersecting if every
partial p−-hypergraph of H has a q+-core. We employ
the terms intersecting and p-intersecting meaning (2, 1)-
intersecting and (p, 1)-intersecting hypergraphs, respec-
tively.

Two hypergraphs H,H′ are isomorphic if there exists
a bijection f : V (H) → V (H′) such that:

{v1, . . . , vp} ∈ E(H) ⇐⇒ {f(v1), . . . , f(vp)} ∈ E(H′).

Given a hypergraph H, we construct the dual hyper-
graph H∗ of H creating one vertex ej in V (H∗) for each
hyperedge Ej ∈ E(H); and one hyperedge Ai in E(H∗)
for every vertex ai ∈ V (H), defined as Ai = {ej : ai ∈
Ej}.

A hypergraph H is r-uniform when every hyperedge
of H contains exactly r vertices. Let r, n be integers, 1 ≤
r ≤ n. We define the r-complete hypergraph Kr

n to be a
hypergraph consisting of all the r-subsets of an n-set.

A graph is a 2-uniform hypergraph. Usually, a graph
is denoted byG. A hyperedge and a partial hypergraph of
a graphG are respectively called edge and subgraph ofG.
A spanning subgraph of G is a subgraph with vertex set
V (G), and the subgraph ofG induced by V ′,G[V ′], is the
maximal subgraph of G with vertex set V ′. Two vertices
u and v forming an edge of G are adjacent vertices or
neighbors in G, and we denote such edge by uv. The
open neighborhood of a vertex v, N(v), is the set formed
by the neighbors of v; the closed neighborhood of v is
N [v] = N(v) ∪ {v}; the disk of radius k is the set of

vertices whose distance to v is not lerger than k. A vertex
v is universal in G if N [v] = V (G).

A path is a sequence of distinct vertices v1, . . . , vq ,
q ≥ 1, such that vivi+1 ∈ E(G), for 1 ≤ i ≤ q − 1. If,
furthermore, q ≥ 3 and there exists the edge vqv1, this se-
quence is a cycle. A chord of a cycleC is any edge joining
two non-consecutive vertices in C. The distance between
two vertices is the number of edges of a minimum path
joining them.

A complete set (independent set) is a subset of pair-
wise adjacent (nonadjacent) vertices. A bipartite set is
a subset B ⊆ V (G), which can be partitioned into
B = V1 ∪ V2, where V1, V2 are nonempty independent
sets. If every vi ∈ V1 and vj ∈ V2 are adjacent, then B is
a complete bipartite set. A clique ofG is a maximal com-
plete set; and a biclique is a maximal complete bipartite
set. A (complete) bipartite graph is a graph induced by a
(complete) bipartite set. A graph is Kr-free if it does not
contain r-complete sets as subgraphs.

A graph is a tree if there exists exactly one path be-
tween every pair of vertices of it. If every cycle with at
least 4 vertices has a chord, then G is chordal. The com-
plement of a graphG, denotedG, has V (G) as vertex set,
and uv ∈ E(G) ⇐⇒ uv �∈ E(G). A graph is perfect if it
does not contain an odd cycle or a complement of an odd
cycle, with at least 5 vertices, as an induced subgraph.

The clique hypergraph of G, C(G), is the hypergraph
formed by the cliques of G. Given a hypergraph H, the
intersection graph, or line graph, of H is the graph con-
taining one vertex for every hyperedge of H, and two
vertices are adjacent if the corresponding hyperedges in-
tersect. The clique graph K(G) of G is the intersection
graph of the clique hypergraph of G. The i-th iterated
clique graph of G, denoted Ki(G), is defined as follows:
K0(G) = G, whileKi(G) = K(Ki−1(G)), i ≥ 1.

The contents of this survey is as follows. Section 2
presents the basic Helly property on hypergraphs, with
the description of some classical families of hypergraphs.
A test for the Helly property on hypergraphs is also in-
cluded. Section 3 also discusses the basic Helly property,
now for graphs. The commonest Helly classes of graphs
are described, together with their characterizations and
recognition algorithms. Section 4 considers the p-Helly
hypergraphs and a generalization of them, the list p-Helly
hypergraphs. Section 5 considers the Helly property on
subfamilies of limited size. That is, when the cardinality
of the subfamilies to be checked for a common vertex is
bounded by a positive k. Section 6 contains a generaliza-
tion of the p-Helly property which considers the cardinal-
ity of the intersections, the (p, q, s)-Helly property. Char-
acterizations generalizing classical results on p-Helly hy-
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pergraphs and conformal hypergraphs are given; the last
one is a new result. This concept is also used to gener-
alize the Helly number of a hypergraph. In Section 7 we
apply the (p, q, s)-Helly property to graphs. Character-
ization and recognition of (p, q)-clique-Helly graphs are
presented. Also the complexity of determining the Helly
defect of a graph is discussed. In Section 8 we consider
the hereditary Helly property applied to special families
of vertices of a graph, such as cliques, disks, bicliques,
open and closed neighborhoods. Furthermore we charac-
terize the hereditary p-Helly property on graphs and hy-
pegraphs. Section 9 contains a summary of the computa-
tional aspects of the problems related in this work. In the
last section we list some proposed problems.

2. Basic Helly Property on Hypergraphs
In this section, we discuss the basic Helly property on

hypergraphs. First, we describe some classical examples
of special families of objects satisfying the Helly prop-
erty. Afterwards, we consider general Helly hypergraphs,
and give an algorithm for recognizing this class. Fur-
ther, we describe some well known classes of hypergraphs
where the Helly property holds.

Relevant general references for this section are [11,
12, 14, 21, 38, 70].

2.1. General hypergraphs
A hypergraph is Helly when every intersecting par-

tial hypergraph of it has a nonempty core. For ex-
ample, the hypergraph H, having V (H) = {1, 2, 3, 4}
and E(H) = {{1, 2}, {1, 3}, {1, 4}} is Helly, while if
E(H) = {{1, 2}, {1, 3}, {2, 3}} then H is not Helly.

Some classical examples of objects satisfying the
Helly property are the following. Intervals of a straight
line form a Helly family, as it can be easily observed. An-
other classical example, known as the Chinese Theorem,
expresses a property of arithmetic expressions: let H be
the hypergraph having the integers as vertices, and the
arithmetic expressions formed by those integers as hyper-
edges. Then H is Helly. Another commonly employed
case of a Helly family is the family of subtrees of a tree.
The fact that subtrees of a tree are Helly is the basis for
many properties of chordal graphs.

From the computational point of view, a central ques-
tion is to describe a method for recognizing Helly hy-
pergraphs. Observe that simply applying the definition
would not lead to an efficient method, since the number
of intersecting partial hypergraphs could be exponential
in the number of vertices.

Problem 2.1 (HELLY HYPERGRAPH): Given a hyper-
graph H, decide whether H satisfies the Helly property.

The following algorithm [11] decides if a given hyper-
graph H is Helly.

Algorithm 2.1 [11] (RECOGNIZING HELLY HYPER-
GRAPHS): For every triple T of vertices of V (H), con-
struct the partial hypergraph HT of H formed by the hy-
peredges of H containing at least two of the vertices of the
T . Then H is Helly precisely when HT has a nonempty
core for every triple T .

The above algorithm corresponds to the case p = 2
of the method for deciding if H is p-Helly. Therefore its
correctness follows from Theorem 4.2 (see Section 4).

As for the complexity, there are O(n3) partial hyper-
graphs to be considered. Each one can be constructed and
checked in linear time, meaning an overall complexity of
O(n3

∑

Ei∈E(H)

|Ei|) = O(n4m).

2.2. Special hypergraphs
We now define some classes of hypergraphs with the

aim of showing that they are all Helly.
Say that H is an interval hypergraph when its vertices

can be embedded on a line, in such a way that its hyper-
edges correspond to intervals of the line. An example is
given in Figure 1(a).

A hypertree is a hypergraph H such that there exists
a tree T with vertex set V (H) where the hyperedges of
E(H) induce subtrees in T . See Figure 1(b). Hyper-
trees are also called arboreal hypergraphs. The dual of
hypertrees are employed in the theory of relational data
bases [45, 46].

The following theorem characterizes hypertrees in
terms of the Helly property.

Theorem 2.1 [37, 47, 81] A hypergraph H is a hypertree
if and only if H is Helly and its line graph is chordal.

Next, we define more families of hypergraphs, based
on the following notion. A special cycle of a hyper-
graph H is a sequence v1E1v2E2 . . . vkEkvk+1

, k ≥ 3
and vk+1 = v1, where v1, . . . , vk and E1, . . . , Ek are
distinct vertices and hyperedges of H satisfying Ei ∩
{v1, . . . , vk} = {vi, vi+1}. The value k is the length of
the cycle.

A hypergraph is balanced if it contains no special cy-
cle of odd length [11] and it is totally balanced if it has no
special cycles of any length [67]. Finally, a hypergraph is
normal if it is Helly and its line graph is perfect [67].

The following theorem asserts that all the above de-
fined classes of hypergraphs are Helly.
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Figure 1. An interval hypergraph and a hypertree

Theorem 2.2 Normal hypergraphs, hypertrees, bal-
anced, totally balanced, and interval hypergraphs are all
Helly.

The proof of the above theorem follows from the fact
that normal hypergraphs are Helly by definition, balanced
hypergraphs are normal [66, 68], and totally balanced hy-
pergraphs are balanced. On the other hand, hypertrees are
Helly because the subtrees of a tree satisfy the Helly prop-
erty, while interval hypergraphs are special hypertrees.

3. Basic Helly Property on Graphs
In the context of graphs, the Helly property has been

mainly applied to certain subsets of vertices, such as
cliques, disks, open neighborhoods, closed neighbor-
hoods, and bicliques. In general, any of these special
families of subsets may satisfy or not the Helly property.
In this section, we consider the classes of graphs where
the above families of subsets of vertices satisfy the Helly
property. The clique-Helly graphs are exactly the graphs
whose families of cliques satisfy the Helly property. Sim-
ilarly we define disk-Helly, open neighborhood-Helly,
closed neighborhood-Helly, and biclique-Helly graphs,
respectively. Disk-Helly graphs are also called simply
Helly graphs.

We describe characterizations and recognition algo-
rithms for these classes, as well as show the containment
relations among them. Finally, we consider another class
of graphs closely related to the Helly property, the Helly

circular-arc graphs.

3.1. Clique-Helly graphs
Clique-Helly graphs have been well studied, mainly

in connection with clique graphs. The first reference to
them is the following sufficient condition for a graph to
be a clique graph.

Theorem 3.1 [55] Every clique-Helly graph is a clique
graph.

This theorem has been generalized to an actual char-
acterization of clique graphs, as follows:

Theorem 3.2 [80] A graph G is a clique graph if and
only if it contains a family of complete subsets of vertices
which covers all its edges and satisfies the Helly property.

The above characterization has not lead so far to a
polynomial time algorithm for recognizing clique graphs.
In fact, it has been recently proved that recognizing clique
graphs is NP-complete [2].

Another result closely related to Theorem 3.1 can be
formulated, as follows.

Theorem 3.3 [44] The clique graph of a clique-Helly
graph is clique-Helly, and every clique-Helly graph is the
clique graph of a clique-Helly graph.

Clique-Helly graphs play a key role in the study of it-
erated clique graphs. Let G and H be graphs. Say that
G is convergent to H when Ki(G) = Ki+1(G) = H ,

10
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for some i ≥ 0. When H is the one-vertex graph,
call G, simply, convergent. On the other hand, when
lim

i→∞
|V (Ki(G))| = ∞, G is a divergent graph. Finally,

when K(G) = G, say that G is a self-clique graph.
If G is clique-Helly then Ki(G) is again clique-

Helly, and furthermore, K2(G) is an induced subgraph of
G [44]. The latter implies that divergent graphs cannot be
clique-Helly. The study of divergent graphs has both alge-
braic and geometric connections and has attracted much
interest, recently. For instance, see [59, 60, 61, 63, 75],
among other papers. A general theory for this class is
in [62, 72]. Finally, as for self-clique graphs, we can men-
tion that self-clique clique-Helly graphs have been fully
characterized [15, 64]. However, little is known about
self-clique graphs which are not clique-Helly. A survey
on clique graphs appears in [84].

Various other classes of graphs have been defined mo-
tivated by clique-Helly graphs, or are closely related to
them. See, for instance, [16, 19, 20, 85].

Figure 2. The Hajós Graph

The family of minimal non clique-Helly graphs has
been described in [69]. Here, the minimality refers both
to induced subgraphs and intersecting families of cliques.

The smallest graph which is not clique-Helly is the
Hajós graph, depicted in Figure 2. In general, for rec-
ognizing clique-Helly graphs the first idea would be to
apply the algorithm of Section 2.1, with the aim of check-
ing whether the clique hypergraph of the given graph is
Helly. However, since the number of cliques of a graph
might be exponential [71], this would not necessarily lead
to a polynomial time algorithm.

Problem 3.1 (CLIQUE-HELLY GRAPH): Given a graph
G, decide whether G is clique-Helly.

However, clique-Helly graphs can be recognized in
polynomial time, applying the following concept. Let G

be a graph and T a triangle of if. The extended triangle
of G relative to T is the subgraph induced in G by the set
of all vertices adjacent to at least two vertices of T . The
following theorem characterizes clique-Helly graphs.

Theorem 3.4 [35, 83] A graph is clique-Helly if and only
if each of its extended triangles contains a universal ver-
tex.

The above theorem leads directly to a polynomial time
algorithm for recognizing whether a given graph G is
clique-Helly.

Algorithm 3.1 (RECOGNIZING CLIQUE-HELLY

GRAPHS): For every triangle T of G, construct its
extended triangle and verify if it contains a universal
vertex. Then G is clique-Helly precisely when the answer
is positive for every triangle T .

We need O(nm) time to generate all the triangles of
G. The computation of the required operations, for each
of the triangles, requires O(m). Therefore the overall
complexity is O(nm2). This complexity can be reduced
by applying matrix multiplication for generating the tri-
angles.

However, the following generalization of recognizing
clique-Helly graphs seems to be more difficult.

A graph sandwich problem consists of given two
graphs G1 and G2, finding a graph G with some de-
sired property, the sandwich graph, such that E(G1) ⊆
E(G) ⊆ E(G2) . Graph sandwich problems were de-
fined in the context of Computational Biology and are a
natural generalization of recognition problems [50].

Problem 3.2 (CLIQUE-HELLY SANDWICH GRAPH):
Given two graphs G1, G2 such that E(G1) ⊆ E(G2),
is there a sandwich graph for G1 and G2 that is
clique-Helly?

Theorem 3.5 [28] CLIQUE-HELLY SANDWICH GRAPH

is NP-complete.

3.2. Disk-Helly graphs
Disk-Helly graphs can also be recognized in polyno-

mial time. Such recognition algorithms have been de-
scribed in [7, 35]. Disk-Helly graphs have been studied
in connection with retracts of a graph, e.g. [6, 8, 56]. This
class has been also characterized in terms of convergence,
as follows.

Theorem 3.6 [8] A graph is disk-Helly if and only if it is
clique-Helly and convergent.

The above theorem completely characterizes conver-
gent graphs which are clique-Helly, implying that such a
class can be recognized in polynomial time. In contrast,
it is an open problem whether it is even decidable to rec-
ognize general convergent graphs.

11
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3.3. Open and closed neighbourhood-Helly graphs
Open and closed neighbourhood-Helly graphs can

also be recognized in polynomial time, by applying Algo-
rithm 2.1, since the size of the neighbourhoods is polyno-
mially bounded. The same remark applies for disk-Helly
graphs. The following definition is useful for relating
clique-Helly and open neighbourhood-Helly graphs.

For a graph G, denote by B(G) the bipartite graph
with bipartition V1 ∪ V2, where V1 = V2 = V (G), such
that vi ∈ V1 and vj ∈ Vj are adjacent precisely when
vi = vj or vivj ∈ E(G).

Theorem 3.7 [6] A graph G is clique-Helly if and only if
B(G) is open neighbourhood-Helly.

The following concept generalizes extended trian-
gles. It has been employed both for characterizing open
neighbourhood-Helly graphs and biclique-Helly graphs.
For a graph G, let S ⊆ V (G), |S| = 3. Denote by BS

the family of bicliques of G, each of them containing at
least two vertices of S. Let GBS

be the subgraph of G
formed exactly by the vertices and edges of BS . Write
S∗ = V (GBS

). The induced subgraph of G formed by
the vertices of S∗ is called an extension of S. Finally, de-
note by S∗

2 ⊆ S∗ the subset of vertices which are adjacent
to at least two vertices of S.

Theorem 3.8 [53] A graph G is open neighbourhood-
Helly if and only if G has no triangles, and for every in-
dependent set S, |S| = 3, S∗ contains a vertex adjacent
to all the vertices of S∗

2 .

3.4. Biclique-Helly graphs
For biclique-Helly graphs, we need an additional def-

inition. For a graph G, say that a vertex v dominates an
edge e when one of the extremes of e either coincides or
is adjacent to v. When v dominates every edge of G then
v is an edge dominator of G. Biclique-Helly graphs can
be characterized as follows.

Theorem 3.9 [53] A graph G is biclique-Helly if and
only if G has no triangles and each of its extensions has
an edge dominator.

Problem 3.3 (BICLIQUE-HELLY GRAPH): Given a
graph G, decide whether G is biclique-Helly.

As for the question of recognizing biclique-Helly
graphs, first we remark that unlike neighbourhoods and
disks, the number of bicliques of a graph is not polynomi-
ally bounded, meaning that a direct application of Algo-
rithm 2.1 would not lead to an efficient method. In fact,
the number of bicliques of a graph might be exponential in

its number of vertices [78]. However, the above theorem
can be used to formulate a polynomial time algorithm, as
follows. Let G be the given graph.

Algorithm 3.2 [53] (RECOGNIZING BICLIQUE-HELLY

GRAPHS): First, verify if G has a triangle. If it does then
stop, as G is not biclique-Helly. Otherwise, for each 3-
subset of vertices of G, construct its extension and verify
if it contains an edge dominator. ThenG is biclique-Helly
precisely when the answer is affirmative in all cases.

There are O(n3) extensions to be considered. To con-
struct and check each of them, we require O(m). The
total complexity is O(n3m).

3.5. Relation among classes
Finally, we relate the Helly classes so far consid-

ered in this section. Clearly, clique-Helly graphs contain
open neighborhood-Helly and biclique-Helly graphs, be-
cause the two last classes are triangle-free (Theorems 3.8
and 3.9) and every triangle-free graph is clique-Helly.
Furthermore, if T is a triangle of some graph G whose
extended triangle does not contain a universal vertex, then
the closed neighbourhoods of the vertices of T contain an
intersecting subfamily with no common vertex. Conse-
quently, every closed neighbourhood-Helly graph is also
clique-Helly. On the other hand, it is clear that closed
neighbourhood-Helly graphs contain disk-Helly graphs.
However, open and closed neighbourhood-Helly graphs
do not contain each other. Clearly, a triangle is closed
neighbourhood-Helly and not open neighbourhood-Helly,
whereas aC4 is open neighbourhood-Helly and not closed
neighbourhood-Helly. See Figure 3, where some minimal
graphs are also shown.

3.6. Helly circular-arc graphs
A generalization of intervals of a straight line is to

consider arcs of a circle, instead. However, the arcs of a
circle do not form necessarily a Helly family. For exam-
ple, a family of three arcs which together cover the circle,
and such that none of them contains another one, is not
Helly. See Figure 4. In fact, we are interested in the inter-
section graph of arcs of a circle, called circular-arc graph
G. That is, G has a vertex for each arc, and two vertices
are adjacent when the corresponding arcs intersect. For a
circular-arc graph G, if there exists a Helly family of arcs
which representsG then say thatG is a Helly circular-arc
graph.

The above definition motivates the following problem.

Problem 3.4 (HELLY CIRCULAR-ARC GRAPH): Given
a graph G, decide whether G is a Helly circular-arc
graph.

12
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Figure 3. Relations among Helly classes

Figure 4. Non Helly families of arcs
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In order to characterize circular-arc graphs, the fol-
lowing concept is useful. For a (0, 1)-matriz M , say that
M has the circular 1’s property on the columns when the
1’s in each column appear consecutively, in the ordering
of the lines, considered circularly. The following theorem
characterizes Helly circular-arc graphs.

Theorem 3.10 [48] A graph is a Helly circular-arc graph
if and only if it admits a clique matrix possessing the cir-
cular 1’s property on the columns.

This theorem leads to the following algorithm for rec-
ognizing Helly circular-arc graphs. Let G be a graph.

Algorithm 3.3 [48] (RECOGNIZING HELLY

CIRCULAR-ARC GRAPHS): Find all cliques of G.
If G has more than n cliques then stop, as G is not Helly
circular-arc. Otherwise, verify if its cliques can be placed
in a circular ordering, so that the corresponding clique
matrix has the circular 1’s property on its columns. Then
G is a Helly circular-arc graph in the affirmative case,
otherwise it is not.

Helly circular-arc graphs can have no more than n
cliques, which can be computed in overall O(n3) time,
using the algorithm in [74]. Determining whether the
graph admits a clique matrix with the circular 1’s prop-
erty on the columns can also be done within the same
bound [48]. Therefore the complexity of the algorithm
is O(n3). See [82] for a discussion about this recognition
problem.

Recently, it has been described a forbidden subgraph
characterization for Helly circular-arc graphs, which
leads to a linear time recognition algorithm for the
class [65]. Helly circular-arc graphs have been also
studied in relation to clique graphs [16, 42] and clique-
perfectness [17].

The corresponding recognition problem of verifying
the Helly property for the case of chords of a circle, in-
stead of arcs, has not yet been solved. A circle graph is
the intersection graph of chords of a circle. A Helly cir-
cle graph is a graph admitting a representation by chords
of a circle satifying the Helly property, that is, any subset
of intersecting chords contains a common point. A con-
jecture [40] asserts that a graph is a Helly circle graph if
and only if it is a circle graph with no induced subgraph
isomorphic toK4 − e. See also [41].

3.7. Matrices of a graph
Another example of the use of the Helly property is in

the characterization of clique matrices of a graph, due to
Gilmore. It states that a (0, 1)-matrix with no zero lines

is the clique matrix of some graph if and only if the 1’s
of any row do not cover the 1’s of another row, while the
1’s of the columns satisfy the Helly property. Biclique
matrices of a graph have recently been characterized [54],
also in terms of the Helly property.

4. The p-Helly Property
Consider the following generalization of the Helly

property. A hypergraph H is p-Helly if every partial p-
intersecting hypergraph of H has a nonempty core. In
this section we present two characterizations of this con-
cept, one of them leading to a polynomial-time algorithm
for recognizing p-Helly hypergraphs when p is fixed.

4.1. k-Conformal hypergraphs
Define the k-section of a hypergraph H to be a hyper-

graph [H]k whose hyperedges are sets F ⊆ V (H) such
that |F | = k and F ⊆ Ei ∈ E(H); or |F | < k and
F ∈ E(H).

For k ≥ 2, a hypergraph H is k-conformal if every
maximal set of V (H), which induces aKk

j hypergraph of
[H]k, for k ≤ j, is a hyperedge of H.

For example, the hypergraph H, where V (H) =
{1, 2, 3, 4} and E(H) = {{1, 2}, {1, 3}, {1, 4}} is 2-
conformal. However, if E(H) = {{1, 2, 4}, {1, 3, 4},
{2, 3, 4}} then H is not 2-conformal. There is a close
relationship between k-conformal and k-Helly hyper-
graphs.

Theorem 4.1 [12] A hypergraph is k-conformal if and
only if its dual is k-Helly.

A generalization of the above theorem, Theorem 6.6,
is proved in Section 6.

4.2. Recognition
The following theorem characterizes p-Helly hyper-

graphs:

Theorem 4.2 [13] A hypergraph H is p-Helly if and only
if for every (p + 1)-subset V ′ of V (H), the partial hy-
pergraph formed by the hyperedges that contain at least
p elements of V ′ has a nonempty core.

This theorem leads directly to an algorithm for recog-
nizing if a given hypergraph H is p-Helly, for p ≥ 2.

Problem 4.1 (p-HELLY HYPERGRAPH): Given a fixed
integer p and a hypergraph H, decide whether H is p-
Helly.
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Algorithm 4.1 [13] (RECOGNIZING p-HELLY HYPER-
GRAPHS): For each (p+1)-subset V ′ of V (H), construct
the partial hypergraph H′ formed by the hyperedges of H
containing at least p vertices of V ′, and verify if H′ has
a nonempty core. Then H is p-Helly precisely when the
answer is positive in all cases.

There are O(np+1) partial hypergraphs to be con-
sidered. Each one of these partial hypergraphs as well
as its core, can be constructed in O(m(n + p)) time.
Then the overall complexity of the above algorithm is
O(m(n + p)np+1), that is, a polynomial for fixed p. As
we shall see in Section 6, this problem is NP-hard for the
case when p is variable, since it is a particular case of
Problem 6.3.

Observe that if a hypergraph is p-Helly, then it is
(p + 1)-Helly. From this fact, one can ask, for a given
hypergraph H, what is the least number h for which H is
h-Helly? This number is known as the Helly number of
the hypergraph [58]. The Subsection 6.4 is dedicated to
the Helly number and related topics.

What happens to the complexity of checking the p-
Helly property if we relax the definition, in the sense that
some specific partial p-intersecting hypergraphs with an
empty core are allowed?

Let H be a hypergraph and L be a list of partial p-
hypergraphs of H. Say that H is list p-Helly relative to L

if every partial p-intersecting hypergraph H′ of H satisfies
the following condition:

- if all the partial p-hypergraphs of H′ are listed in L ,
then core(H′) �= ∅.

In particular, if L is the list of all the partial p-
hypergraphs of H, then H is list p-Helly if and only if
H is p-Helly.

Problem 4.2 (LIST p-HELLY HYPERGRAPH): Let p ≥ 2
be a fixed integer. Given a hypergraph H and a list L of
partial p-hypergraphs of H, decide whether H is list p-
Helly relative to L .

Theorem 4.3 [33] LIST p-HELLY HYPERGRAPH is co-
NP-complete.

5. The Bounded Helly Property
Remember that a hypergraph H is p-Helly if every p-

intersecting partial hypergraph of H has a nonempty core.
As an example, consider V = {a1, . . . , ap+1} and the
hypergraph H formed by the hyperedges V \{ai}, i =
1, . . . , p + 1. Clearly, H is not p-Helly. This definition
can be restricted to subfamilies of limited size.

We say that a hypergraph H is k-bounded p-Helly
(k ≤ |E(H)|) if every p-intersecting partial k−-
hypergraph of H has a nonempty core. This defini-
tion implies that, in a k-bounded p-Helly hypergraph, p-
intersecting subfamilies of size strictly greater than k do
not necessarily contain a common element. As an exam-
ple, the hypergraph defined in the previous paragraph is
not (p+ 1)-bounded p-Helly, but it is p-bounded (p− 1)-
Helly. This concept, for the case p = 2, was first consid-
ered in [80].

Observe that any hypergraph is k-bounded p-Helly for
any p ≥ k; consequently, we only need to focus the case
p < k.

Problem 5.1 (k-BOUNDED p-HELLY HYPERGRAPH):
Let p ≥ 1 and k > p be fixed integers. Given a hy-
pergraph H, decide whether H is k-bounded p-Helly.

The following algorithm is straightforward from the
definition.

Algorithm 5.1 (RECOGNIZING k-BOUNDED p-HELLY

HYPERGRAPHS): For each partial k−-hypergraph H′ of
H, verify if it is p-intersecting. If some H′ which is p-
intersecting has an empty core, then stop, as H is not k-
bounded p-Helly. Otherwise H is k-bounded p-Helly.

There are O(|E(H)|k) partial k−-hypergraphs in H.
In order to test if one of them is p-intersecting and to
compute its core we requireO(pnkp) andO(nk), respec-
tively. Then the definition leads to an algorithm with time
complexity O(pnmkkp).

Problem 5.2 (k-BOUNDED p-HELLY HYPERGRAPH, k
VARIABLE): Let p ≥ 1 be a fixed integer. Given a hy-
pergraph H and an integer k, decide whether H is k-
bounded p-Helly.

When p is variable, Theorem 5.2 implies that the
above problem is NP-hard. When p is fixed and k vari-
able, Theorem 5.2 asserts the co-NP-completeness of
Problem 5.2. The proof of it applies Theorem 5.1.

Theorem 5.1 [26] (SATISFIABILITY): Deciding
whether a boolean expression in the conjuntive normal
form is satisfiable is NP-complete.

Theorem 5.2 [31] k-BOUNDED p-HELLY HYPER-
GRAPH, k VARIABLE is co-NP-complete.

Proof. It can be checked in polynomial time whether a
partial k−-hypergraph is not p-Helly, for fixed p, using
Algorithm 4.1. Thus, the decision problem belongs to co-
NP. For the hardness proof, we employ a transformation
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Mitre C. Dourado, Fábio Protti, Fábio Protti Computational Aspects of the Helly Property: a
Survey

from SATISFIABILITY. Let E be a boolean expression.
Denote by X = {x1, . . . , xn} the set of variables of E
and by C = {C1, . . . , Cm} the set of clauses. Build
a hypergraph H in the following way: for each variable
of X and each clause of C create one vertex in H. De-
note V (H) = VX ∪ VC , where VX = {v1, . . . , vn} and
VC = {c1, . . . , cm}, that is, the vertex vi ∈ VX is asso-
ciated to the variable xi ∈ X and the vertex cj ∈ VC to
the clause Cj ∈ C . For each variable xi ∈ X create the
hyperedges Exi

and Exi
in H, adding to them the ver-

tices of VX\{vi}. Furthermore, for each vertex cj ∈ VC ,
include cj in the hyperedge Exi

(Exi
) if and only if the

literal xi (xi) does not appear in the clause Cj . Finally,
define k = n.

Let H′ be a partial hypergraph of H. If H′ does not
contain at least one of the hyperedges Exi

or Exi
, cor-

responding to xi ∈ X , then vi belongs to the core of
H′. Hence, in order to verify whether H is k-bounded
p-Helly we need to consider only the partial hypergraphs
H′ with exactly k hyperedges such that, for every variable
xi ∈ X , either Exi

or Exi
is a hyperedge of H′. Then

let H′ be a partial k-hypergraph of H satisfying such a
property. Clearly, every vi ∈ VX does not belong to the
core of H′ and H′ is (k − 1)-intersecting. Hence, H′ is
p-intersecting, because p < k.

Since H′ contains Exi
or Exi

for every xi ∈ X , H′

defines a truth assignment for C . In this truth assignment
a literal has the value true if and only if the corresponding
hyperedge belongs to H′. Therefore, let us say that H′

satisfies E if and only if this truth assignment satisfies E .
Suppose that H′ satisfies E . Then any clause of C

contains at least one literal associated to some hyperedge
of H′. This means that for each vertex ci ∈ VC there ex-
ists one hyperedge in H′ which does not contain it; there-
fore the core of H′ is empty, meaning that H is not k-
bounded p-Helly.

Conversely, suppose that H′ does not satisfy E , and let
Cj ∈ C be a clause in which no literal has the value true.
Consider an arbitrary variable xi ∈ X . If Exi

is the edge
of H′ representing xi then xi 	∈ Cj , otherwise Cj would
be satisfied. This implies cj ∈ Exi

. Similarly, whenever
Exi

is the representing edge of xi, we have cj ∈ Exi
.

In either case, cj belongs to the edge representing xi, for
every i. Thus cj belongs to the core of H′, that is, H is
k-bounded p-Helly.

Applying this concept to the cliques of a graph, we
have the k-bounded p-clique-Helly graphs. Consider now
the recognition problem for graphs. The next theorem
states that this problem is co-NP-complete, even for fixed
k and p.

Problem 5.3 (k-BOUNDED p-CLIQUE-HELLY GRAPH):
Let k > p ≥ 1 be fixed integers. Given a graph G, decide
whether G is a k-bounded p-clique-Helly graph.

Theorem 5.3 [31] k-BOUNDED p-CLIQUE-HELLY

GRAPH is co-NP-complete.

By the definition, it is clear that CLIQUE-HELLY ⊂
k-BOUNDED CLIQUE-HELLY ⊂ k′-BOUNDED CLIQUE-
HELLY, for k′ < k.

However, for Kk+1-free graphs, the classes of clique-
Helly and k-bounded clique-Helly coincide.

Lemma 5.1 [80] A Kk+1-free graph is clique-Helly if
and only if it is k-bounded clique-Helly.

Let G be a planar graph. Since any planar graph is
K5-free, the number of cliques of G is O(n4). Using
Algorithm 5.1, we conclude that the next problem can be
solved in polynomial time.

Problem 5.4 (PLANAR 3-BOUNDED CLIQUE-HELLY

GRAPH): Given a graph G, decide whether G is planar
k-bounded clique-Helly.

A characterization which leads to a good algorithm
for recognizing planar 3-bounded clique-Helly graphs is
presented in [3], Next, we describe it.

For a given triangle T = {x, y, z} of G, we call:

• Vxy = {v ∈ V (G) : v ∈ N [x], v ∈ N [y], v 	∈
N [z]};

• Vxz = {v ∈ V (G) : v ∈ N [x], v ∈ N [z], v 	∈
N [y]};

• Vyz = {v ∈ V (G) : v ∈ N [y], v ∈ N [z], v 	∈
N [x]};

• Vxyz = {v ∈ V (G) : v ∈ N [x], v ∈ N [y],
v ∈ N [z]}.

Let G be a graph and T ′ the extended triangle of G

relative to the triangle T = {x, y, z}. Say that:

• T ′ is of type 1 if at least one of the sets Vxy , Vxz or
Vyz is empty;

• T ′ is of type 2 if Vxy = {z1}, Vxz = {y1},
Vyz = {x1}, Vxyz = {w}, and w is adjacent to x1,
y1 and z1;

• T ′ is of type 3 if Vxy = {z1}, Vxz = {y1}, Vyz =
{x1}, Vxyz = {w,w′}, and w is adjacent to x1, y1

and z1.
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Figure 5. Extended triangles of type 2 and 3

Notice that if T ′ is an extended triangle of type 2, or
type 3, of a planar graph, then T ′ is isomorphic to the
graph (a), or (b), in Figure 5, respectively.

Theorem 5.4 [3] Let G be a planar graph.

1. G is a clique-Helly graph if and only if every ex-
tended triangle of G is of type 1 or type 2.

2. G is a 3-bounded clique-Helly graph if and only if
every extended triangle of G is of type 1, type 2 or
type 3.

By this characterization, assintotically, the complex-
ities to recognize clique-Helly planar graphs and 3-
bounded clique-Helly planar graphs are the same. There-
fore we discuss only the algorithm for 3-bounded 2-
clique-Helly planar graphs.

Algorithm 5.2 (RECOGNIZING 3-BOUNDED CLIQUE-
HELLY GRAPHS): Construct the extended triangle for
every triangle of G. If some extended triangle is not of
type 1, type 2, nor of type 3, then stop as the graph is not
3-bounded clique-Helly graph, otherwise it is.

Since the triangles of a planar graph can be listed
in O(n) time [73], the above algorithm has complexity
O(n2).

6. Cardinality of the Intersections on Hyper-
graphs

In this section we extend the idea of the Helly property
by considering the cardinality of the intersections. Such
concept was introduced in [91].

6.1. (p, q)-Intersecting
We begin with a generalization of p-intersecting. Let

p ≥ 1 and q ≥ 0. A hypergraph H is (p, q)-intersecting
when every partial p−-hypergraph of H has a q+-core.

Clearly, the following implications hold for any hy-
pergraph H.

• If 1 ≤ q ≤ |core(H)|, then H is (p, q)-intersecting.

• For p ≥ 2, if H is (p, q)-intersecting, then H is (p−
1, q)-intersecting.

• If H is (p, q)-intersecting, then H is (p, q − 1)-
intersecting.

• H is (1, q)-intersecting if and only if every hyper-
edge of H contains at least q vertices.

• If H is (p, q)-intersecting, then every partial hyper-
graph of H is (p, q)-intersecting.

If p is fixed, then it is possible to test whether H is
(p, q)-intersecting in polynomial time by simply comput-
ing the core of every partial p-hypergraph of H. For the
case in which p is not fixed it was proved that deciding
whether H is (p, q)-intersecting is co-NP-complete.

Problem 6.1 ((p, q)-INTERSECTING HYPERGRAPH, p
VARIABLE): Let q be a fixed positive integer. Given
p ≥ 1 and a hypergraph H, decide whether H is (p, q)-
intersecting.

Theorem 6.1 [33] (p, q)-INTERSECTING HYPER-
GRAPH, p VARIABLE is co-NP-complete.
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Mitre C. Dourado, Fábio Protti, Fábio Protti Computational Aspects of the Helly Property: a
Survey

6.2. (p, q, s)-Helly hypergraphs
The following definition is a generalization of the p-

Helly property, and has been introduced in [91].
Let p ≥ 1, q ≥ 0 and s ≥ 0. A hypergraph H is

(p, q, s)-Helly when every partial (p, q)-intersecting hy-
pergraph of H has an s+-core.

The following implications are true for any hyper-
graph H.

• If H is (p, q, s)-Helly, then H is (p + 1, q, s)-Helly.

• If H is (p, q, s)-Helly, then H is (p, q + 1, s)-Helly.

• If H is (p, q, s)-Helly, then H is (p, q, s − 1)-Helly.

• H is (1, q, s)-Helly if and only if the partial hyper-
graph formed by the q+-hiperedges of H has an s+-
core.

The following definitions are employed in a character-
ization of (p, q, s)-Helly hypergraphs. Let H1 and H2 be
hypergraphs. Then H1 ✄ H2 is the partial hypergraph of
H1 defined in the following way:

H1 ✄ H2 = {E ∈ E(H1) : E contains at least

|E(H2)| − 1 hyperedges of H2}.

Lemma 6.1 Let H1 and H2 be hypergraphs and t =
|E(H2)| ≥ 2. If H′

1 is a partial hypergraph of H1 ✄ H2

and 0 < |E(H′
1)| < t, then core(H′

1) contains at least
t − |E(H′

1)| hyperedges of H2.

Theorem 6.2 [32] Let p ≥ 2, q ≥ 1, s ≥ 1 and H a
hypergraph. Define a = max{q − s, 0}, b = min{q, s}
and I as the Kb

n hypergraph with vertex set V (H). Then
H is (p, q, s)-Helly if and only if:

(i) for every partial (p + a + 1)-hypergraph H′ of I, if
the hypergraph H ✄ H′ is (p, q)-intersecting then it
has an s+-core; and

(ii) every partial (p, q)-intersecting (p + a)−-
hypergraph of H has an s+-core.

Proof. If H is (p, q, s)-Helly then Conditions (i) and (ii)
are clearly satisfied by the definition. Assume now that
H is not (p, q, s)-Helly. Then there exists a partial (p, q)-
intersecting hypergraph H′ of H such that |core(H′)| <

s.
If |E(H′)| ≤ p + a then H′ is a partial (p, q)-

intersecting (p + a)−-hypergraph of H that violates Con-
dition (ii).

Otherwise, if |E(H′)| ≥ p + a + 1, write E(H′) =
{E1, . . . , E|E(H′)|} and assume that H′ is minimal, that

is, E(H′) − E′ has an s+-core, for any E′ ∈ E(H′).
(If H′ is not minimal, one can successively remove hy-
peredges from H′ until obtaining either a minimal (p +
a + 1)+-hypergraph or a (p + a)−-hypergraph violating
Condition (ii)).

For each i, 1 ≤ i ≤ |E(H′)|, let Si ⊆ core(H′ − Ei)
be a b-subset of vertices such that Si �⊆ Ei and Si ⊆ Ej

for every j �= i. This means that there exists vi ∈ Si such
that vi �∈ Ei but vi ∈ Ej for every j �= i.

Let H1 be the hypergraph formed by the hyperedges
S1, . . . , Sp+a+1. Note that H1 is a partial (p + a + 1)-
hypergraph of I. Define H′′ = H ✄ H1. Since E(H′) ⊆
E(H′′), H′′ does not have an s+-core. Let us show that
H′′ is (p, q)-intersecting.

Consider any partial p-hypergraph H′′′ of H′′. By
Lemma 6.1, core(H′′′) contains at least a+1 hyperedges
of H1, say S1, . . . , Sa+1. Note that S1 ∪ {vi : 2 ≤ i ≤
a + 1} contains exactly b + a = q vertices. This means
that |core(H′′′)| ≥ q. Therefore, H′′ is (p, q)-intersecting
and does not have an s+-core. This violates Condition (i).

Problem 6.2 ((p, q, s)-HELLY HYPERGRAPH, s VARI-
ABLE): Let p, q ≥ 1 be fixed integers. Given a hyper-
graph H and s ≥ 1, decide whether H is (p, q, s)-Helly.

The above theorem leads to the following algorithm
for Problem 6.2. Let H be a hypergraph and I be the
hypergraph Kb

n with vertex set V (H).

Algorithm 6.1 (RECOGNIZING (p, q, s)-HELLY HY-
PERGRAPHS):

Part (i): for each partial (p + a + 1)-hypergraph H′

of Kb
H, construct the partial hypergraph H′′ choosing the

hyperedges containing at least p + a hyperedges of H′.
Then verify if H′′ is (p, q)-intersecting. If so, verify if H′′

has an s+-core.
Part (ii): for each partial (p + a)−-hypergraph of H,

check if it is (p, q)-intersecting. If so, verify if it has an
s+-core.

The complexity of Part (i) of the above algorithm
is O(pmpnb(p+a+1)+1), because there are O(nb(p+a+1))
partial (p + a + 1)-hypergraphs in I, and for each one
we spend (m(n + (p + a)b)) steps to construct every H′′,
O(pnmp) to check if it is (p, q)-intersecting and O(nm)
to compute its core. For Part (ii), the complexity is
O(pnmp+a(p + a)p+1). The overall time complexity is
the sum of both. This means that it is polynomial, for p, q

fixed and s variable.
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Problem 6.3 ((p, q, s)-HELLY HYPERGRAPH, p VARI-
ABLE): Let q, s ≥ 1 be fixed integers. Given a hyper-
graph H and p ≥ 2, decide whether H is (p, q, s)-Helly.

Theorem 6.3 [33] (p, q, s)-HELLY HYPERGRAPH, p
VARIABLE is NP-hard.

We deal now with the case in which q is not fixed.

Problem 6.4 ((p, q, s)-HELLY HYPERGRAPH, q VARI-
ABLE): Let p ≥ 2 and s ≥ 1 be fixed integers. Given
a hypergraph H and q ≥ 1, decide whether H is (p, q, s)-
Helly.

Theorem 6.4 [33] (p, q, s)-HELLY HYPERGRAPH, q

VARIABLE is co-NP-complete.

6.3. The case q = s

The case q = s is natural and interesting. For simplic-
ity, we write (p, q)-Helly hypergraphs, meaning (p, q, q)-
Helly hypergraphs. In special, bounds for (2, q)-Helly hy-
pergraphs were described in [90].

The following problem was proposed in [90].

Problem 6.5 ((p, q)-HELLY HYPERGRAPH, q VARI-
ABLE): Find a structural characterization of r-uniform
(2, q)-Helly hypergraphs for r > q + 1.

This problem remains open. However, if we consider
q = s fixed, we have a polynomial algorithm as a con-
sequence of Theorem 6.2. In this case, Condition (ii) of
Theorem 6.2 is trivially satisfied. Then we can rewrite the
characterization as follows.

Corollary 6.1 [32] A hypergraph H is (p, q)-Helly if
and only if H $ H′ has a q+-core for every partial
(p+ 1)-hypergraph H′ of the hypergraph Kq

n with ver-
tex set V (H).

Problem 6.6 ((p, q)-HELLY HYPERGRAPH, q FIXED):
Let q be a fixed integer. Given a hypergraph H, decide
whether H is (p, q)-Helly.

The complexity of recognizing (p, q)-Helly hyper-
graphs, given by this characterization and using Algo-
rithm 6.1, is O(nq(p+1)m(n + pq)). For the case p = 2,
we have O(mn3q+1). Note also that, if q = 1, we obtain
the same complexity as that of Algorithm 4.1.

Now we present two attempts to solve Problem 6.5,
which provide a solution for the case q variable with the
restriction that r − q is small.

Problem 6.7 ((2, q)-HELLY HYPERGRAPH, r − q

FIXED): Let q be an integer and H a hypergraph with
rank r. Decide whether H is (2, q)-Helly.

The first one is a consequence of the following propo-
sition.

Proposition 6.1 [90] If H is a minimal non-(2, q)-Helly
hypergraph of rank r with 1 ≤ q < r, then |E(H)| ≤
r − q + 2.

Algorithm 6.2 ((2, q)-HELLY HYPERGRAPHS): For ev-
ery partial (r − q + 2)−-hypergraph of a hypergraph H,
compute its core and verify if it contains at least q ele-
ments. Then H is (2, q)-Helly precisely when the answer
is affirmative in all cases.

There are
r−q+2

Σ
i=3

(m
i ) = O(mr−q+3) partial hyper-

graphs to be considered. In order to compute the core of
each one we need O(nm) time. The overall complexity
is O(nmr−q+4).

We present in the sequel another way to verify if a hy-
pergraph is (2, q)-Helly. The q-line graph of a hypergraph
H, denoted by Lq(H), has a vertex for every hyperedge
of H and two vertices are adjacent if the corresponding
hyperedges share at least q vertices.

Theorem 6.5 The number of cliques of Lq(H) for a
(2, q)-Helly hypergraph H of rank r is not greater than
m

(
r
q

)
.

Proof. Let H be a (2, q)-Helly hypergraph. First note that
if C ′, C ′′ are cliques of Lq(H) and H′,H′′ are the partial
hypergraphs of H formed by the hyperedges associated to
the vertices of C ′ and C ′′, respectively, then the cores of
H′ and H′′ are incomparable and each one has at least q
elements.

Let v be a vertex of Lq(H) and Ev be the hyperedge
of H corresponding to v. Since Ev contains all the cores
of the partial hypergraphs associated to the cliques which
v belongs to, v appears in at most (r

q) cliques of Lq(H).
Since the number of vertices of Lq(H) is m, the number
of cliques of Lq(H) is not greater thanm

(
r
q

)
.

The above theorem leads to the following algorithm.
Let H be a hypergraph, and q ≥ 0 an integer.

Algorithm 6.3 ((2, q)-HELLY HYPERGRAPHS):
Construct the graph Lq(H), and generate its cliques,

C1, . . . , Ci, . . .. For each Ci, proceed as follows.

• If i >
mr!

q!(r − q)!
then stop: H is not (2, q)-Helly.

• Otherwise, construct the partial hypergraph Hi of
H, formed by the hyperedges of H corresponding to
the vertices of Ci. If core(Hi) < q, then stop: H is
not (2, q)-Helly.

19
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Otherwise, if all the cliques of Lq(H) have been gen-
erated, then stop: H is (2, q)-Helly.

To construct Lq(H) we spend O(m2n) steps. We
generate at most m

(
r
q

)
cliques, each with time com-

plexity nm by the algorithm of [86]. To compute the
core of each partial hypergraph, O(nm) steps are re-
quired. The total complexity of the above algorithm is
O(m2n + n2m3

(
r
q

)
) = O(n2m3

(
r
q

)
).

The time complexity of this algorithm for solv-
ing Problem 2, when q is fixed, is O(n2m3rq) =
O(nq+2m3), while for Question 3, when r − q is small,
we require O(n2m3rr−q) = O(nr−q+2m3) steps.

6.4. Helly numbers
A hypergraph H has Helly number h if h is the least

number for which H is h-Helly [58]. For the general
(p, q, s)-Helly property it is possible to define variations
of the Helly number in the following ways:

– Let q, s ≥ 0 be fixed integers. The (p∗, q, s)-Helly
number of H is the least integer p, if it exists, such that H
is (p, q, s)-Helly.

– Let p ≥ 1 and s ≥ 0 be fixed integers. The
(p, q∗, s)-Helly number of H is the least integer q such
that H is (p, q, s)-Helly. This number is well defined
since H is (p, n + 1, s)-Helly for any p, s.

– Let p ≥ 1 and 0 ≤ q ≤ r(H) be fixed integers. The
(p, q, s∗)-Helly number of H is the largest s for which H
is (p, q, s)-Helly.

By Theorem 6.3, we conclude that determining the
(p∗, q, s)-Helly number is NP-hard. Similarly, Theo-
rem 6.4 implies that finding the (p, q∗, s)-Helly number is
also NP-hard. However, using Theorem 6.1, we can de-
termine the (p, q, s∗)-Helly number in polynomial time.

6.5. (p, q)-Conformal hypergraphs
Now we generalize Theorem 4.1. In order to do so,

we use the following generalizations of the concepts of
k-section and k-conformal hypergraphs.

Define the (p, q)-section of H to be a hypergraph
[H]p,q whose hyperedges are sets F ⊆ V (H) such that
|F | = p and F is contained in at least q hyperedges of H;
or |F | < p and F is a maximal set contained in at least q

hyperedges of H.
A hypergraph H is (p, q)-conformal if every maximal

set of V (H), which induces a K
p
j hypergraph of [H]p,q ,

for p ≤ j, is contained in at least q hyperedges of H.

Theorem 6.6 A hypergraph H is (p, q)-Helly if and only
if its dual is (p, q)-conformal.

Proof. Let H be a hypergraph and H∗ its dual hyper-
graph. Suppose first that H∗ is not (p, q)-conformal.

Hence in [H∗]p,q there is a maximal set that induces a p-
complete hypergraph I, such that V (I) is not contained
in q hyperedges of H∗. However, the hyperedges of H,
associated to the vertices of I, form a (p, q)-intersecting
partial hypergraph with no q+-core.

Conversely, suppose that H is not (p, q)-Helly. Con-
sider a maximal (p, q)-intersecting partial hypergraph H′

of H with no q+-core. The hyperedges of H′ correspond
to a subset of vertices C of H∗ with the property that ev-
ery p of them belong to at least q hyperedges of H∗ simul-
taneously. This means that C is a maximal set inducing a
p-complete partial hypergraph I of [H∗]p,q . Furthermore,
if V (I) = C is contained in at least q hyperedges of H∗,
this implies that H′ contains a q+-core, which contradicts
the hypothesis.

7. Cardinality of the Intersections on
Cliques of Graphs

In this section we apply the (p, q, s)-Helly property
to the clique hypergraph of a graph. Thus, a graph is
(p, q, s)-clique-Helly if its clique hypergraph is (p, q, s)-
Helly. According to this definition, (2, 1)-clique-Helly
graphs are the clique-Helly graphs. First we focus on
the recognition problem of the case q = s, which we
call (p, q)-clique-Helly graphs, and after we deal with
the problem of deciding if the clique graph of a graph is
clique-Helly.

7.1. (p, q)-Clique-Helly graphs
We begin with an example. Define, for two in-

tegers p and q, the graph Gp,q as follows: V (Gp,q)
is formed by a (q − 1)-complete set Q, a p-complete
set Z = {z1, . . . , zp}, and a p-independent set W =
{w1, . . . , wp}. Further, there are the edges ziwj , for
i �= j, and the edges qx, for q ∈ Q and x ∈ Z ∪ W .

The general graph Gp,q appears in Figure 6, where a
thick line joining two sets means that every vertex of a set
is adjacent to all vertices of the other. Furthermore, for
every vertex of Z, there is a dotted line joining it to the
only vertex of W which is not adjacent to it.

The graph Gp,q contains exactly p + 1 cliques of size
p + q − 1, namely: Q ∪ Z and Q ∪ (Z\{zi}) ∪ {wi},
for 1 ≤ i ≤ p.

Observe that Gp,q is (p, q)-clique-Helly, but it is not
(p − 1, q)-clique-Helly. Therefore, Gp,q is (t, q)-clique-
Helly for t ≥ p, and is not (t, q)-clique-Helly for t < p.

Furthermore, Gp+1,q is not (p, q)-clique-Helly, but it
is (p, t)-clique-Helly for any t �= q. Consequently, for
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Figure 6. Graph Gp,q

distinct q and t, the classes of graphs (p, q)-clique-Helly
and (p, t)-clique-Helly are incomparable.

The following theorem describes a class of (p, q)-
clique-Helly graphs.

Theorem 7.1 [30] Let p, r > 1, q > 0 such that p + q ≥
r. If G is a Kr-free graph, then G is (p, q)-clique-Helly.

Our aim is now to characterize (p, q)-clique-Helly
graphs. We divide the characterization in two cases, the
first deals with p = 1.

Theorem 7.2 [30] Let G be a graph, and let W be the
union of the q+-cliques of G. Then G is a (1, q)-clique-
Helly graph if and only if G[W ] contains q universal ver-
tices.

The second case corresponds to p ≥ 2 and we employ
some additional definitions.

Let G be a graph and C a p-complete set of G. The
p-expansion relative to C is the subgraph of G induced
by the vertices w such that w is adjacent to at least p − 1
vertices of C.

We remark that the p-expansion for p = 3 has been
used for characterizing clique-Helly graphs [35, 83]. It is

clear that constructing a p-expansion relative to a given
p-complete set can be done in polynomial time.

Let F be a partial hypergraph of C(G). The clique
subgraph induced by F in G, denoted by Gc[F ], is the
subgraph of G formed exactly by the vertices and edges
belonging to the cliques of F .

Lemma 7.1 Let G be a graph, C a p-complete set of it,
H the p-expansion of G relative to C, and C the par-
tial hypergraph C(G) formed by the cliques that contain
at least p − 1 vertices of C. Then Gc[C ] is a spanning
subgraph of H .

Let G be a graph. The graph Φq(G) is defined as fol-
lows. The vertices of Φq(G) correspond to the q-complete
sets of G, two vertices being adjacent in Φq(G) if the cor-
responding q-complete sets in G are contained in a com-
mon clique. As an example see Figure 8.

We remark that Φq is precisely the operator Φq,2q de-
scribed in [77], p.136, and the graph Φ2(G) is the edge
clique graph of G, introduced in [1].

An interesting property of Φq is that it preserves the
q+-cliques of G, that is, every q+-clique of G is a clique
of Φq(G), and vice versa. Then, given a q+-clique C of
G, denote by ϕq(C) the clique of Φq(G) associated to C.

Let G be a graph and C(G) its clique hypergraph. Let
F be a partial hypergraph of C(G) containing some q+-
cliques of G. Define ϕq(F ) to be the set of cliques
{ϕq(C) : C ∈ E(F )}. If C is a partial hyper-
graph of C(Φq(G)), define ϕ−1

q (C ) as the set of cliques
{ϕ−1

q (C) : C ∈ E(C )}. As a consequence we have:

Corollary 7.1 Let G be a graph, F a partial hypergraph
of C(G), containing some q+-cliques of G, and C , such
that E(C ) = ϕq(F ). Then |core(F )| ≥ q if and only if
|core(C )| ≥ 1 .

Lemma 7.2 Let C be a (p + 1)-complete set of a graph
G, and let C be a partial p−-hypergraph of C(G) such
that every clique of C contains at least p vertices of C.
Then core(C ) �= ∅.

The next result is a characterization of (2, 2)-clique-
Helly graphs.

Theorem 7.3 [25] A graph G is (2, 2)-clique-Helly if and
only if every extended triangle of Φ2(G) contains a uni-
versal vertex.

Problem 7.1 ((2, 2)-CLIQUE-HELLY GRAPH): Given a
graph G, decide whether G is (2, 2)-clique-Helly.
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Figure 7. A graph G and the 4-expansion relative to {a, b, c, d}.
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Algorithm 7.1 (RECOGNIZING (2, 2)-CLIQUE-HELLY

GRAPHS): To construct Φ2(G) create one vertex for each
edge of G. Then join two vertices by an edge if the corre-
sponding edges are contained in a same clique of G.

Next, for every triangle T of Φ2(G), we construct the
extended triangle of T and verify if it contains a universal
vertex. If we find one extended triangle which does not
have a universal vertex, then we stop as G is not (2, 2)-
clique-Helly, otherwise it is.

In order to calculate the complexity of this algorithm,
first note that the number of vertices of Φ2(G) is m. The
time complexity to construct Φ2(G) isO(m2), and to ver-
ify if there exists one extended triangle without universal
vertex is O(m5). Therefore one can verify if a graph is
(2, 2)-clique-Helly in time O(m5).

Now we present a generalization of this result.

Theorem 7.4 [30] Let p > 1 be an integer. Then a
graphG is (p, q)-clique-Helly if and only if every (p+1)-
expansion of Φq(G) contains a universal vertex.

Proof. Suppose that G is a (p, q)-clique-Helly graph and
there exists a (p + 1)-expansion T , relative to a (p + 1)-
complete set C of Φq(G), such that T contains no univer-
sal vertex.

Denote H = Φq(G). Let C be the partial hyper-
graph C(H) that contains at least p vertices of C. Con-
sider a partial p−-hypergraph C ′ of C . By Lemma 7.2,
core(C ′) �= ∅. This implies that C is (p, 1)-intersecting.
By Corollary 7.1, F = ϕ−1

q (C ) is (p, q)-intersecting.
Since G is (p, q)-clique-Helly, we conclude that F has
a q+-core. By using Corollary 7.1 again, C has an 1+-
core, which means thatHc[C ] contains a universal vertex.
Moreover, by Lemma 7.1, Hc[C ] is a spanning subgraph
of T . However, T contains no universal vertex. This is a
contradiction. Therefore, every (p + 1)-expansion of H
contains a universal vertex.

Conversely, assume by contradiction that G is not
(p, q)-clique-Helly. Let F be a minimal (p, q)-
intersecting partial hypergraph of C(G) which does not
have a q+-core. Denote E(F ) = {C1, . . . , Ck}, Ci ∈
C(G). Clearly, k > p.

The minimality of F implies that there exists a q-
subset Qi ⊆ core(F − Ci), for i = 1, . . . , k. It is clear
that Qi �⊆ Ci. Moreover, every two distinct Qi, Qj are
contained in a common clique, since k ≥ 3. Hence the
sets Q1, Q2, . . . , Qp+1 correspond to a (p+ 1)-complete
set C in Φq(G).

Let C ′ be the partial hypergraph of C(H) formed by
the cliques that contain at least p vertices of C. Let
C = ϕq(F ). Since every Ci ∈ E(F ) contains at least

p sets from Q1, Q2, . . . , Qp+1, it is clear that the clique
ϕq(Ci) ∈ E(C ) contains at least p vertices of C. There-
fore, ϕq(Ci) ∈ E(C ′), for i = 1, . . . , k.

Let T be the (p+1)-expansion ofH relative to C. By
Lemma 7.1, Hc[C

′] is a spanning subgraph of T . There-
fore, Q ⊆ V (T ), for every Q ∈ E(C ′). In particular,
V (ϕq(Ci)) ⊆ V (T ), for i = 1, . . . , k. By hypothesis, T
contains a universal vertex x. Then x is adjacent to all the
vertices of ϕq(Ci)\{x}, for i = 1, . . . , k. This implies
that ϕq(Ci) contains x, otherwise ϕq(Ci) would not be
maximal. Thus, core(C ) �= ∅. By Corollary 7.1, F has
a q+-core, a contradiction. Hence, G is a (p, q)-clique-
Helly graph.

From the above theorem one can recognize (p, q)-
clique-Helly graphs in polynomial time if p and q are
fixed.

Problem 7.2 ((p, q)-CLIQUE-HELLY GRAPH): Let
p, q ≥ 1 be fixed integers. Given a graph G, decide
whether G is (p, q)-clique-Helly.

We present now the algorithm, for the case p ≥ 2. Let
G be a graph.

Algorithm 7.2 (RECOGNIZING (p, q)-CLIQUE-HELLY

GRAPHS): Construct the graph Φq(G), having as vertices
the p-complete sets of G, and making two vertices ad-
jacent when the corresponging p-complete sets are both
contained in a same clique.

Next, for every (p + 1)-complete set C of Φq(G), we
construct the (p + 1)-expansion relative to C and verify
if it contains a universal vertex. If we find a (p + 1)-
expansion which does not have a universal vertex, then
we stop as G is not (p, q)-clique-Helly, otherwise it is.

In order to calculate the complexity of this algo-
rithm, first note that the number of vertices of Φq(G) is
t = O(nq). The time complexity to construct Φq(G) is
O(n2qq2), whereas to verify if there exists a (p + 1)-
expansion with no universal vertex is O(tp+1m′) =
O(nq(p+1)m′), wherem′ = O(t2) is the number of edges
of Φq(G). Therefore one can verify if a graph is (p, q)-
clique-Helly in O(nq(p+3)) time.

If p or q is variable, this procedure does not lead to a
polynomial time algorithm. Indeed, the problem is NP-
hard in both cases.

Problem 7.3 ((p, q)-CLIQUE-HELLY GRAPH, q VARI-
ABLE): Let p be a fixed positive integer. Given a graph
G and a positive integer q, decide whether G is (p, q)-
clique-Helly.
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Theorem 7.5 [30] (p, q)-CLIQUE-HELLY GRAPH, q

VARIABLE is NP-hard.

Problem 7.4 ((p, q)-CLIQUE-HELLY GRAPH, p VARI-
ABLE): Let q be a fixed positive integer. Given a graph
G and a positive integer p, decide whether G is (p, q)-
clique-Helly.

Theorem 7.6 [30] (p, q)-CLIQUE-HELLY GRAPH, p

VARIABLE is NP-hard.

7.2. Helly defect
For any clique-Helly graph, its clique graph is also

clique-Helly [44]. However, if a graph is not clique-Helly
it is still possible for its clique graph to be clique-Helly.
This motivated the definition of Helly defect [8], a pa-
rameter that informs how many times the clique operator
must be applied for a graph to become clique-Helly. The
Helly defect of a graphG is the smallest i such thatKi(G)
is clique-Helly. There are graphs with any desired finite
Helly defect [18]. However if Ki(G) is not clique-Helly,
for any finite i, we say that its Helly defect is infinite.
Trivially, the Helly defect of a clique-Helly graph is 0,
while that of a divergent graph is infinity.

Problem 7.5 (HELLY DEFECT ONE): Given a graph G,
decide whether the Helly defect of G is at most one.

The Helly defect of a graph is less than or equal to 1
when it or its clique graph is clique-Helly. In fact, this
problem corresponds to the case q = 1 if one asks if, for a
given fixed q, the graph or its clique graph is (2, q)-clique-
Helly.

Problem 7.6 (CLIQUE GRAPH IS (2, q)-CLIQUE-
HELLY): Let q ≥ 1 be a fixed integer. Given a graph G,
decide whetherK(G) is (2, q)-clique-Helly.

Theorem 7.7 [29] CLIQUE GRAPH IS (2, q)-CLIQUE-
HELLY is NP-hard.

Corollary 7.2 [29] HELLY DEFECT ONE is NP-hard.

8. Hereditary Helly Property
A hypergraph is strong Helly if for every partial hyper-

graph H′ of H, there exist two hyperedges in H′ whose
core is equal to the core of H′. A hypergraph H is heredi-
tary Helly if all subhypergraphs of H are Helly. In this
section we present algorithms and characterizations on
generalizations of these two variants of the Helly prop-
erty.

In fact, we show that these two concepts are equiva-
lent. First we characterize hereditary p-Helly hypergraphs
and then consider the hereditary Helly property applied
to special families of vertices of a graph, such as cliques,
disks, bicliques, open and closed neighbourhoods.

8.1. Hypergraphs
Since the number of partial hypergraphs and of subhy-

pergraphs of a given hypergraph can be exponential in the
size of the hypergraph, the definitions do not lead directly
to algorithms to verify, in polynomial time, if a hyper-
graph is strong Helly or hereditary Helly.

Problem 8.1 (HEREDITARY HELLY HYPERGRAPH):
Decide whether a hypergraph is hereditary Helly.

In [92] it has been shown that a hypergraph H is strong
Helly if and only if for every three hyperedges of H there
exist two of them whose core equals the core of the three
hyperedges. This characterization leads to an algorithm
for recognizing strong Helly hypergraphs with time com-
plexityO(rm3), where r andm are, respectively, the rank
and the number of hyperedges of the hypergraph.

In [23] it was presented an algorithm for recognizing
hereditary Helly hypergraphs that needs O(m∆r4) time
and O(mr2) space, where ∆ is the maximum degree of
the hypergraph.

Generalizing these concepts, it follows that a hyper-
graph H is strong p-Helly if for every partial (p + 1)+-
hypergraph H′ of H, there exist p hyperedges in H′

whose core equals the core of H′. Also, a hypergraph
H is hereditary p-Helly if all subhypergraphs of H are
p-Helly.

Theorem 8.1 [49]
(i) A hypergraph in which every hyperedge is a set of
edges of some path of a tree is strong 3-Helly.

(ii) A hypergraph in which every hyperedge is a set
of edges of some subtree of a tree with k leaves is strong
k-Helly.

The following theorem characterizes strong p-Helly
and hereditary p-Helly hypergraphs. It implies that they
are equivalent.

Theorem 8.2 [34] The following statements are equiva-
lent for a hypergraph H:

(i) H is strong p-Helly;

(ii) H is hereditary p-Helly;

(iii) H is (p, q)-Helly, for every q;
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(iv) every partial (p+1)-hypergraph of H is (p, q)-Helly
for every q;

(v) there is no subhypergraph of H having a partial hy-
pergraph isomorphic toKp

p+1.

Proof. (i) ⇒ (ii) Suppose that H contains a subhyper-
graph H′ that is not p-Helly. Let H′′ be a partial hyper-
graph of H′ which is p-intersecting with an empty core.
Define a partial hypergraph H1 of H choosing for every
hyperedge E′′ ∈ E(H′′) the hyperedge of H that origi-
nated it. Since any p hyperedges of H′′ contain one vertex
that is not in the core of H′′, the same is true for any p hy-
peredges and the core of H1. Therefore H is not strong
p-Helly.

(ii) ⇒ (iii) Suppose that H is not (p, q)-Helly, for
some q. Let H′ be a (p, q)-intersecting partial hypergraph
of H without a q+-core. Denote the core of H′ by C ′.
Every hyperedge of H′ properly contains C ′ because it
belongs to a (p, q)-intersecting partial hypergraph, and C ′

is a (q − 1)−-set. Hence, in the subhypergraph H′
1 of H

induced by V (H) \ C ′, there is one hyperedge for ev-
ery hyperedge of H′. Consider the partial hypergraph H′′

1

of H′
1 formed by these hyperedges. Note that H′′

1 is p-
intersecting and has an empty core. Therefore H′

1 is not
p-Helly.

(iii) ⇒ (iv) Trivial.
(iv) ⇒ (v) Let H′ be a partial hypergraph of a subhy-

pergraph of H isomorphic to Kp
p+1. Clearly, H′ is not

(p, 1)-Helly. Moreover, there exists a partial (p + 1)-
hypergraph H′′ of H in which every hyperedge contains
a different hyperedge of H′. Hence, if the core of H′′ has
size c, we can say that H′′ is (p, c + 1)-intersecting, that
is, H′′ is not (p, c+ 1)-Helly.

(v) ⇒ (i) Suppose that H is not strong p-Helly. Then
there is a partial hypergraph H′ of H such that the core
of every p hyperedges of H′ properly contains C ′ =
core(H′). Perfom the following process: if H′ contains a
hyperedgeE′ such that the core of H′−E′ is C ′, redefine
E(H′) = E(H′) \ {E′}, and repeat; otherwise, stop.

After completion, observe that for any Ek ∈ E(H′)
there is a vertex vk �∈ Ek in the core of H′ − Ek.
This means that the subhypergraph of H induced by
{v1, v2, . . . , vp+1} has a partial hypergraph isomorphic to
the hypergraph formed by all p-subsets of a (p + 1)-set.

We can apply the equivalence (i)-(iv) in order to
formulate an algorithm for recognizing strong p-Helly
graphs, as follows. First observe that the affirmative (iv)
is equivalent to state that for every (p+1)-hypergraph H′

of H there exist p hyperedges with the same core as H′.

Problem 8.2 (HEREDITARY p-HELLY HYPERGRAPH):
Let p ≥ 2 be a fixed integer. Given a hypergraph H,
decide whether H is strong p-Helly.

Algorithm 8.1 (RECOGNIZING HEREDITARY p-HELLY

HYPERGRAPHS): For every partial (p + 1)-hypergraph
of H, compute its core and the core of every partial p-
hypergraph of it. If every partial (p + 1)-hypergraph H′

of H has a partial p-hypergraph whose core equals the
core of H′, then H is strong p-Helly, otherwise it is not.

Computing the cores of a (p+1)-hypergraph and all its
partial p-hypergraphs can be done in O(p2r) steps. Since
there areO(mp+1) partial (p+1)-hypergraphs in a hyper-
graph, this algorithm has time complexity O(p2rmp+1).
For fixed p, the above algorithm terminates within poly-
nomial time. The following theorem refers to p variable.

Problem 8.3 (HEREDITARY p-HELLY HYPERGRAPH, p
VARIABLE): Given a hypergraph H and an integer p ≥ 2,
decide whether H is strong p-Helly.

Theorem 8.3 [34] HEREDITARY p-HELLY HYPER-
GRAPH, p VARIABLE is co-NP-complete.

8.2. Cliques of graphs
We say that a graph is strong p-clique-Helly if its

clique hypergraph is strong p-Helly, and that it is hered-
itary p-clique-Helly if all induced subgraphs of it are p-
clique-Helly. As usual, we write clique-Helly to mean
2-clique-Helly.

Since every p-clique-Helly graph is also (p + 1)-
clique-Helly, every hereditary p-clique-Helly graph is
also hereditary (p+1)-clique-Helly. The following result
says that the clique hypergraph of a intersection graph of
a family of edge paths of a tree is strong 4-Helly.

Theorem 8.4 [49] If G is an intersection graph of edge
paths of a tree, then G is strong 4-clique-Helly.

Next, we consider the question of characterizing
hereditary p-clique-Helly graphs.

Theorem 8.2 is valid for general hypergraphs, and in
particular for the clique hypergraph of a graph. How-
ever, since the number of cliques of a graph may be ex-
ponential in the size of the graph [71], it does not lead
to a polynomial-time algorithm for recognizing strong
p-clique-Helly graphs. Similarly, the algorithm for rec-
ognizing p-clique-Helly graphs is also not suitable for
recognizing hereditary p-clique-Helly graphs because the
number of induced subgraphs may also be exponential in
the size of the graph.
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Figure 9. Forbidden subgraphs for hereditary clique-Helly graphs

The characterization of hereditary clique-Helly graphs
given below uses the following definition. An edge e of a
triangle T is good, relative to T , if any vertex adjacent to
the vertices of e is also adjacent to the other vertex of T .

Theorem 8.5 [92, 76] The following statements are
equivalent for any graph G:

(i) G is hereditary clique-Helly;

(ii) G is strong clique-Helly;

(iii) G does not contain an ocular graph as an induced
subgraph;

(iv) every triangle of G has a good edge.

Figure 9 shows the ocular graphs.

Problem 8.4 (HEREDITARY CLIQUE-HELLY GRAPH):
Given a graph G, decide whether G is hereditary clique-
Helly.

Algorithm 8.2 (RECOGNIZING HEREDITARY CLIQUE-
HELLY GRAPHS): For every triangle T of G, verify if
T contains a good edge.

All the triangles of a graph can be computed in time
O(nm). We need O(n) time to verify, for each one, if
it contains a good edge. Therefore the complexity of the
algorithm for recognizing hereditary clique-Helly graphs
is O(n2m).

We can define the sandwich problem for hereditary
clique-Helly graphs as we did in Section 3 for clique-
Helly graphs.

Problem 8.5 (HEREDITARY CLIQUE-HELLY SAND-
WICH GRAPH): Given two graphs G1, G2 such that
G1 ⊆ G2, is there a sandwich graph for G1 and G2

which is hereditary clique-Helly?

Theorem 8.6 [28] HEREDITARY CLIQUE-HELLY

SANDWICH GRAPH is NP-complete.

For every integer p ≥ 3, a graphG is p-ocular if V (G)
is the union of the disjoint sets W = {w1, w2, ..., wp}
and U = {u1, u2, ..., up}, where W is a complete set,
U induces an arbitrary subgraph, and wi, uj are adjacent
precisely when i �= j. The 3-ocular graph corresponds to
the ocular graph defined in [92]. A graph is p-ocular-free
if it has not a p-ocular graph as an induced subgraph.

Lemma 8.1 [34] Any (p + 1)-ocular graph is not p-
clique-Helly, p ≥ 2.

The following characterization of hereditary p-clique-
Helly graphs is a generalization of the one presented
above for hereditary clique-Helly graphs. We need one
more concept, which is a generalization of that of a good
edge. A p-complete subset C ′ of a (p+1)-complete set C
is good, relative to C, if any vertex adjacent to all vertices
of C ′ is also adjacent to the vertex in C\C ′.

Theorem 8.7 [34] The following statements are equiva-
lent for any graph G:

(i) G is strong p-clique-Helly;

(ii) G is hereditary p-clique-Helly;

(iii) G is (p+ 1)-ocular-free;

(iv) every (p + 1)-complete set of G contains a good p-
complete subset.

Problem 8.6 (HEREDITARY p-CLIQUE-HELLY

GRAPH): Let p ≥ 2 be a fixed integer. Given a
graph G, decide whether G is hereditary p-clique-Helly.

Algorithm 8.3 (RECOGNIZING HEREDITARY p-
CLIQUE-HELLY GRAPHS): For every (p + 1)-complete
set C of G, verify if C contains a good p-complete set.
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Figure 10. Forbidden subgraphs for hereditary disk-Helly graphs

The number of (p + 1)-complete sets in a graph with
n vertices is O(np+1). We need O(np) time to verify, for
each one, if it contains a good p-complete set. Therefore
the complexity of the above algorithm is O(pnp+2). For
fixed p, the algorithm terminates within polynomial time.
For p variable, we have the following result.

Problem 8.7 (HEREDITARY p-CLIQUE-HELLY GRAPH,
p VARIABLE): Given a graph G and an integer p ≥ 2,
decide whether G is hereditary p-clique-Helly.

Theorem 8.8 [34] HEREDITARY p-CLIQUE-HELLY

GRAPH, p VARIABLE is NP-hard.

8.3. Other Hereditary Helly Classes of Graphs
A hereditary disk-Helly graph is a graph whose

induced subgraphs are disk-Helly. Similarly, define
hereditary biclique-Helly, hereditary open and closed-
neighbourhood-Helly graphs. The following theorems
describe characterizations for these classes, in terms of
forbidden induced subgraphs.

Problem 8.8 (HEREDITARY DISK-HELLY GRAPH):
Given a graph G, decide whether G is hereditary
disk-Helly.

Theorem 8.9 [35] A graph is hereditary disk-Helly if and
only if it does not contain the graphs of Figure 10, as
induced subgraphs.

Problem 8.9 (HEREDITARY BICLIQUE-HELLY

GRAPH): Given a graph G, decide whether G is
hereditary biclique-Helly.

Theorem 8.10 [52] A graph is hereditary biclique-Helly
if and only if it does not contain the graphs of Figure 11
as induced subgraphs.

Problem 8.10 (HEREDITARY OPEN NEIGHBOURHOOD-
HELLY GRAPH): Given a graph G, decide whether G is
hereditary open neighbourhood-Helly.

Theorem 8.11 [52] A graph is hereditary open
neighbourhood-Helly if and only if it does not con-
tain the graphs of Figure 12 as induced subgraphs.

Problem 8.11 (HEREDITARY CLOSED

NEIGHBOURHOOD-HELLY GRAPH): Given a graph G,
decide whether G is hereditary closed neighbourhood-
Helly.

Theorem 8.12 [52] A graph is hereditary closed
neighbourhood-Helly if and only if it does not contain
the graphs of Figure 13 as induced subgraphs.

It follows directly from the characterizations of the
above considered classes that they can be recognized in
polynomial time.

By comparing the above forbidden families, we can
also conclude:

Corollary 8.1 Let G be a graph with girth at least 7.
Then G is hereditary clique-Helly, hereditary biclique-
Helly, hereditary open neighbourhood-Helly and hered-
itary closed neighbourhood-Helly.

9. Summary of Results
Table 1 summarizes the complexity results of the var-

ious algorithmic problems considered in the paper. The
complexities expressed in terms of O-notation in the ta-
ble correspond to straighforward algorithms realizing the
associated characterizations.

10. Proposed Problems
To conclude, we propose the following problems.

1. [90] Describe a structural characterization for (2, q)-
Helly hypergraphs.

2. Determine the complexity of recognizing (p, q)-
Helly hypergraphs, for fixed p. In special, consider
p = 2.

3. Conjecture: “Every clique-Helly graph contains a
vertex whose removal maintains it as a clique-Helly
graph”.

4. A graph G is matching-Helly when the family of
maximum matchings of G is Helly. Characterize
matching-Helly graphs.

5. Characterize (p, q, s)-clique-Helly graphs.
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Figure 11. Forbidden subgraphs for hereditary biclique-Helly graphs

Figure 12. Forbidden subgraphs for hereditary open neighbourhood-Helly gragphs

Figure 13. Forbidden subgraphs for hereditary closed neighbourhood-Helly graphs
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Problem Complexity Reference

2.1 HELLY HYPERGRAPH O(n4m) [13]
3.1 CLIQUE-HELLY GRAPH O(nm2) [35, 83]
3.2 CLIQUE-HELLY SANDWICH NP-complete [28]
3.3 BICLIQUE-HELLY GRAPH O(n3m) [53]
3.4 HELLY CIRCULAR-ARC GRAPH O(n3) [48]

O(n + m) [65]
4.1 p-HELLY HYPERGRAPH O(np+2m) [13]
4.2 LIST p-HELLY HYPERGRAPH Co-NP-complete [33]
5.1 k-BOUNDED p-HELLY HYPERGRAPH O(nmkkp) Algorithm 5.1
5.2 k-BOUNDED p-HELLY HYPERGRAPH, k VARIABLE Co-NP-complete [31]
5.3 k-BOUNDED p-CLIQUE-HELLY GRAPH Co-NP-complete [31]
5.4 PLANAR 3-BOUNDED CLIQUE-HELLY GRAPH O(n2) [3]
6.1 (p, q)-INTERSECTING HYPERGRAPH, p VARIABLE Co-NP-complete [33]
6.2 (p, q, s)-HELLY HYPERGRAPH, s VARIABLE O(nb(p+a+1)+1mp + nmp+a) [32]
6.3 (p, q, s)-HELLY HYPERGRAPH, p VARIABLE NP-hard [33]
6.4 (p, q, s)-HELLY HYPERGRAPH, q VARIABLE Co-NP-complete [33]
6.6 (2, q)-HELLY HYPERGRAPH, q FIXED O(n3q+1m) [33]
6.7 (2, q)-HELLY HYPERGRAPH, r − q FIXED O(nmr−q+4) [90]

O(nr−q+2m3) Algorithm 6.3
7.1 (2, 2)-CLIQUE-HELLY GRAPH O(m5) [25]
7.2 (p, q)-CLIQUE-HELLY GRAPH O(nq(p+3)) [30]
7.3 (p, q)-CLIQUE-HELLY GRAPH, q VARIABLE NP-hard [30]
7.4 (p, q)-CLIQUE-HELLY GRAPH, p VARIABLE NP-hard [30]
7.5 HELLY DEFECT NP-hard [29]
8.1 HEREDITARY HELLY HYPERGRAPH O(rm3) [92]

O(r4m2) [23]
8.2 HEREDITARY p-HELLY HYPERGRAPH O(rmp+1) [34]
8.3 HEREDITARY p-HELLY HYPERGRAPH, p VARIABLE Co-NP-complete [34]
8.4 HEREDITARY CLIQUE-HELLY GRAPH O(n2m) [76, 92]
8.5 HEREDITARY CLIQUE-HELLY SANDWICH GRAPH NP-complete [28]
8.6 HEREDITARY p-CLIQUE-HELLY GRAPH O(np+2) [34]
8.7 HEREDITARY p-CLIQUE-HELLY GRAPH, p VARIABLE NP-hard [34]
8.8 HEREDITARY DISK-HELLY GRAPH O(n2m) [35]
8.9 HEREDITARY BICLIQUE-HELLY GRAPH O(n2m3) [52]
8.10 HEREDITARY OPEN NEIGHBORHOOD-HELLY GRAPH O(n2m2) [52]
8.11 HEREDITARY CLOSED NEIGHBORHOOD-HELLY GRAPH O(n2m2) [52]

Table 1. Summary of complexity results
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6. Determine the complexity of recognizing (p, q, s)-
clique-Helly graphs, for fixed p, q.

7. Is there an algorithm to decide if the Helly defect of
a graph G is finite?
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Mitre C. Dourado, Fábio Protti, Fábio Protti Computational Aspects of the Helly Property: a
Survey

[25] M. R. Cerioli. Edge-clique Graphs (in portuguese).
Ph.D. Thesis, COPPE - Sistemas, Universidade Fed-
eral do Rio de Janeiro, Rio de Janeiro, 1999.

[26] S. A. Cook. The complexity of theorem-proving
procedures. Proc. 3rd Ann. ACM Symp. on Theory
of Computing Machinery, New York, pages 151–158,
1971.
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Mitre C. Dourado, Fábio Protti, Fábio Protti Computational Aspects of the Helly Property: a
Survey

[76] E. Prisner. Hereditary clique-Helly graphs. Journal
of Combinatorial Mathematics and Combinatorial
Computing, 14:216–220, 1993.

[77] E. Prisner. Graph Dynamics. Pitman Research
Notes in Mathematics, Longman, 1995.

[78] E. Prisner. Bicliques in graphs I: Bounds on their
number. Combinatorica, 20(1):109–117, 2000.

[79] T. M. Przytycka, G. Davis, N. Song, and D. Durand.
Graph theoretical insights into evolution of multido-
main proteins. In RECOMB 2005 (LNBI, vol. 3500),
pages 311–325, 2005.

[80] F. S. Roberts and J. H. Spencer. A characterization
of clique graphs. Journal of Combinatorial Theory,
Series B, 10:102–108, 1971.

[81] P. J. Slater. A characterization of SOFT hyper-
graphs. Canadian Mathematical Bulletin, 21:335–
337, 1978.

[82] J. P. Spinrad. Efficient Graph Representation. Amer-
ican Mathematics Society, Providence, RI, 2003.

[83] J. L. Szwarcfiter. Recognizing clique-Helly graphs.
Ars Combinatoria, 45:29–32, 1997.

[84] J. L. Szwarcfiter. A survey on clique graphs. In B. A.
Reed and C. L. Sales, editors, Recent Advances
in Algorithms and Combinatorics, pages 109–136.
Springer-Verlag, New York, N. Y., 2003.

[85] J. L. Szwarcfiter and C. F. Bornstein. Clique graphs
of chordal and path graphs. SIAM Journal on Dis-
crete Mathematics, 7(2):331–336, may 1994.

[86] S. Tsukiyama, M. Ide, H. Ariyoshi, and I. Shi-
rakawa. A new algorithm for generating all the max-
imal independent sets. SIAM Journal on Computing,
6(3):505–517, sep 1977.

[87] Zs. Tuza. Extremal Problems on Graphs and Hyper-
graphs. PhD Thesis, Acad. Sci., Budapeste, 1983.
[Hungarian].

[88] Zs. Tuza. Helly-type hypergraphs and Sperner fam-
ilies. Europ. J. Combinatorics, 5:185–187, 1984.

[89] Zs. Tuza. Helly property in finite set systems. Jour-
nal of Combinatorial Theory, Series A, 62:1–14,
1993.

[90] Zs. Tuza. Extremal bi-Helly families. Discrete
Mathematics, 213:321–331, 2000.

[91] V. I. Voloshin. On the upper chromatic number of a
hypergraph. Australasian Journal of Combinatorics,
11:25–45, 1995.

[92] W. D. Wallis and G.-H. Zhang. On maximal clique
irreducible graphs. Journal of Combinatorial Math-
ematics and Combinatorial Computing, 8:187–193,
1990.

33


