

A Method for Model Based Test
Harness Generation

for Component Testing

Camila Ribeiro Rocha and Eliane Martins

Institute of Computing
State University of Campinas

P.O Box 6176 – Campinas – SP – Brazil – ZC: 13083-970
Phone: +55 (19) 3521-5847 (FAX)

camilar@gmail.com, eliane@ic.unicamp.br

Abstract

We present a model-based testing approach that
allows the automatic generation of test artifacts for
component testing. A component interacts with its
clients through provided interfaces, and request services
from other components through its required interfaces.
Generating a test artifact that acts as though it were the
client of the component under test is the easiest part,
and there already exists tools to support this task. But
one needs also to create substitute of the server
components, which is the hardest part. Although there
are also tools to help with this task, it still requires
manual effort. Our approach provides a systematic way
to obtain such substitute components during test
generation. Results of the application of the approach in
a real world component are also presented.

Keywords: Component testing, Model based testing,
Stubs, Test Case Generation.

1. INTRODUCTION
Component-based Software Engineering (CBSE)

is a process of developing software systems by
assembling reusable components. Components may
be delivered as single entities that provide, through
well-defined interfaces, some functionality required

by the system they integrate. Their services can be
accessed through provided interfaces. The operations
the component depends on are part of required
interfaces. Components may be written in different
programming languages, executed in different
platforms and may be distributed across different
machines. Reusable components may be developed
in-house, obtained from existing applications or may
be third-party or COTS (from Common Off The
Shelf), whose source code might not be available.

The existence of reusable components may
significantly reduce development costs and shorten
development time. However, the use of existing
components is no guarantee that the system will present
the required quality attributes. To ensure software
quality, among other things, a system must be
adequately tested. Moreover, components must be tested
each time they are integrated in a new system [34].

Since tests are to be repeated many times,
components have to be testable. Briefly speaking,
testability is a quality that indicates how hard it is to test
a component. The lower the testability the greater the
effort required for testing a component. Testability is not
only related to the ease of obtaining information
necessary to test a component. It also refers to the
construction of a generic and reusable test support
capability [17].

Camila Ribeiro Rocha A method for model based test harness
and Eliane Martins generation for component testing

 8

Test support capabilities comprise, among other
things, test case generation in a systematic manner,
preferably with the use of tools [18, Ch. 5]. Given the
diversity of languages and technologies used in
component development, the construction of this support
is still a challenge.

Also important is a systematic way to create and
maintain test artifacts such as test drivers and stubs. A
test driver is a client of the component under test (CUT)
exercising the functions of the provided interface. A
stub, on the other hand, replaces components that are
required by the CUT. Given that test case generation is
still predominantly a manual task, the same is true for
test artifacts creation, especially the stubs, which are
created in an ad-hoc manner and are generally
component specific. When component modifications are
frequent during development, as is the case in
incremental development, this ad-hoc approach is very
expensive and inefficient.

In a previous work we focused on the construction of
a testable component [30]. In this paper our interest lies
in the systematic creation of test cases and test harness
(test driver and stubs) for the testable component. We
propose a method for test case generation based on
UML models. One advantage of the model driven
approach is the possibility to automate test case
generation. Another advantage is that test cases can be
developed, as well as test harness, as soon as the
component behavior is specified, which allows their
design and specification to occur in parallel to the
component implementation.

There are various approaches for test case generation
from UML models, for example [4, 9, 14]. However,
they do not focus on test stubs generation; on the
contrary, the overall recommendation is that they should
be avoided or reduced to a minimum [8], [10]. However,
there are some situations where stubs are unavoidable.
For example, in test-driven development [5], one first
writes the tests and then writes the code that implements
the tested scenarios, the required external components
may not be available yet. Another situation is testing
exception handling mechanisms, for faulty situations are
often hard to simulate.

In this study we present how to generate test cases
and the stubs necessary to run them to completion, from
UML activity diagrams, that models the component
under test behavior. The model represents both normal
and exceptional behaviors, allowing test case generation
for exception handling mechanisms.

The test generation method presented here is part of
MDCE+ (Methodology for the Definition of Exception
Behavior) [12], a development process for component-

based systems which aims at building fault-tolerant,
testable components. Besides test generation, MDCE+
also includes guidelines for component testability
improvement. It is worth noting that our approach can
be used either by the component provider or by its users
since the model from which test cases are derived does
not contain any internal details about the component.

The rest of the paper is organized as follows:
Section 2 explains the concepts of test harness,
especially test cases and stubs. Section 3 briefly
describes the system used in the examples in this paper.
Section 4 describes the steps to define component’s
behavior Activity Diagram and to generate test cases
and stubs, detailing each phase. Section 5 presents an
evaluation of the proposed method, describing a case
study and its results. Section 6 compares our proposal
with previous work on test case generation and stubs
implementation. Section 7 concludes the paper and
proposes future work.

2. TEST HARNESS DESIGN
A test harness is a system that supports automated

testing. Among the capabilities a test harness provides,
we may mention test environment setup, test execution,
result logging and analysis [8, Ch 19.1]. The
implementation under test may be a single class or
procedure, a subsystem or an entire application.

The main elements of a test harness are drivers and
stubs, which replace the clients and the servers of the
CUT, respectively.

The driver coordinates test execution, performing
several services [6, Ch 13.6]: it initializes test cases,
interacts with the CUT by sending it test inputs and
collecting the outcomes, verifies whether the tests
covered required objectives, and reports failed test cases.
Test cases can be composed into test suites, a collection
of test cases that serves a particular test objective. When
a test suite is executed, all of its test cases are run. Test
execution results can be stored in a test log. The driver
also controls the test suite execution.

Nowadays there are a number of tools available to
support driver construction based on the CUT’s
provided interface. The well-known JUnit1, from Beck
and Gamma, which provides a framework and a tool for
unit testing of Java programs, is an example. In Maricks
page2 there are links to commercial and open source test
drivers. Also, Robert Binder’s book provides various
patterns for the design of drivers for object oriented
testing [8, Ch. 19.4].

1 http://www.junit.org
2 http://www.testingcraft.com/automation-code-interface.html

Camila Ribeiro Rocha A method for model based test harness
and Eliane Martins generation for component testing

 9

It may happen that the CUT depends on components
that cannot be used during test case execution. In this
case, these components can be replaced by others that do
not behave as the real one, but offer the same interfaces.

There are various reasons to replace a real required
component, designated here as a server component, by a
substitute [8, Ch. 19.3; 25]:

• the server component is not available, either because
it has not been developed or integrated with the CUT
yet. This situation may happen during unit testing or
incremental integration testing.

• the server component does not return the results
required by the test case or would cause
undesirable side effects.

• some parts of the CUT remain untested due to
the inability to control its indirect inputs. An
indirect input is data returned by a server
component that affects the CUT behavior.

• CUT’s outcomes that affect its servers, but are
not seen through its interface. These are
designated as indirect outputs, and may be
messages sent through a communication media,
for example.

• a test case would take too long to run when a real
server is used such that it is more interesting to
use a substitute component to allow tests to run
more quickly.

The use of substitute components is not simple. First
of all, they are generally produced by hand; therefore,
time and effort to construct them is non negligible. The
same being true with their maintenance, as they are too
many, since they are test case specific. Besides, when
the interface of a real server component changes often,
their corresponding substitute must also be modified
accordingly. Also, the CUT, in some cases, can no
longer be treated as a black box, as one may have to
know the call sequences within its operations [32]. This
may be a problem when testing COTS, whose source
code may not be available. Another important point is
that, since the real component behaves differently from
its substitutes, it is recommended to reapply the tests to
the CUT when it is integrated with its actual servers.

When creation of substitute components is unavoidable,
their number should be reduced to a minimum, and various
approaches exist with that purpose [10]. The substitutes
should also have a minimal implementation to eliminate the
introduction or propagation of errors, as well as to reduce
the time for testing.

Two types of substitute components are commonly
used: stubs and mocks [25]. A stub is used to provide
indirect inputs required by a test case. A mock, or mock
object [24], was proposed by the Extreme Programming
(XP) community to unit testing of objects. Differently
from stubs, which are language independent, mocks are
intended for object-oriented languages. Another
difference is that mocks not only provide indirect inputs
to the CUT, but also verify whether the indirect outputs
produced by the CUT are as expected [15]. In this text,
since we are considering component testing, and we do
not make any assumption about component source code,
we are concerned with stubs, although we use object-
oriented design to represent them. So, from now on, we
use the term stub to designate a substitute component.

There are a number of ways to design stubs. A stub
may be hard-coded or configurable [25]; the latter
case, configuration consists in providing the values to
be returned, and is performed during test setup. Stubs
may be built either statically or dynamically. A static
stub is created, compiled and linked with component
under test before test starts [32]. Dynamic stubs are
generated at run time, using mechanisms such as
runtime reflection. This kind of approach is especially
useful when neither source code nor component
behavior models are provided.

The literature also presents several patterns for
stub design and implementation. For example, R.
Binder proposes two patterns: the server and the
proxy stub [8, Ch. 19.3]. The server stub completely
replaces the real component, whereas the proxy stub
can delegate services to the real object. Also, S. Gorst
proposes various idioms to implement stubs, such as
the responder and the saboteur stub [19]. The
responder stub returns valid indirect inputs to the
CUT, while the saboteur returns error conditions or
exceptions. For an extensive presentation of patterns
for stubs and mocks, G. Meszaros home page3 is a
good reference.

We propose a static, model based approach for
stub generation. In this way, stubs are independent of
implementation code since they are derived from a
behavior model of the CUT. The objective is also to
reduce the effort to generate the stubs, since they can
be produced automatically. In case server components
interfaces change, only the model is modified, also
reducing stub maintenance effort. Stubs can be
produced at the same time as the test cases; in that
way, it is easier to configure them to return specific
values or exceptions according to the test case needs.

3 http://xunitpatterns.com/Test\%20Double\%20Patterns.html

Camila Ribeiro Rocha A method for model based test harness
and Eliane Martins generation for component testing

 10

3. EXAMPLE DESCRIPTION
The remainder of this paper uses as example a steam

boiler controller specification proposed in [2], which is
part of a coal mine shaft. The implementation used was
developed by Guerra [21] and is based on the C2
architectural style [33]. In C2, the system is structured in
layers, where requests flow up the architecture and the
corresponding responses (notifications) flow down.

The logical architecture of the system is illustrated in
Figure 1, which is structured in four layers. Hardware4
sensors and actuators compose Layer 4; they constitute
the COTS components of the system. The layers are
integrated through connectors (conn1, conn2 and
conn3) responsible for message routing, broadcasting
and filtering. According to the C2 architectural style,
conn3 is considered a system boundary, as well as the
BoilerController component (Layer 1), which is
responsible for user interaction.

Figure 1: Steam boiler controller architecture.

We take as CUT the AirFlowController,
responsible for periodically checking if airflow rates are
stable and according to the specification, and adjusting
the airflow if necessary. It also adjusts the coal feed rate
when needed. This component was chosen because it
has a great number of exception handling mechanisms,
which is suitable to our purposes as the testing method
we propose is aimed to test these mechanisms too.

4. A COMPONENT TESTING METHOD
In this section we present the artifacts required and

produced by our testing method, and how test harness,
especially test stubs, are generated. One objective of the
method is to use artifacts produced during MDCE+
development phases to exercise CUT’s scenarios.
MDCE+ is based on the UML Components method [13],
and its main phases are:

4 In Guerras’s work they were simulated by software.

(i) Requirement specification: normal and
exceptional scenarios are described as use cases;

(ii) Component identification: provided interfaces
are defined, and then grouped as normal or
exceptional components;

(iii) Component interaction: each operation in
provided interfaces is analyzed in terms of
required services, using Activity Diagrams to
map the required operations;

(iv) Final component specification: normal and
exceptional interfaces are refactored in order to
reduce the number of interfaces; an Activity
Diagram is defined for each provided interface,
describing the execution flow of its operations
based on requirements produced in phase (i);

(v) Provisioning: components are selected (or
individually implemented) and tested;

(vi) Assembling: components are integrated and
tested as a system.

Testing activities start mainly at the end of Final
Component Specification phase (v), when component
models reach stability. The method is intended for
component unit testing and uses the models produced in
earlier phases for test generation. The interactions
specified in phase (iii) present an architectural view of
the system, showing the interaction behavior among the
components through their provided and required
interfaces. The execution flow specified in phase (iv)
defines CUT’s usage scenarios.

In order to be usable in practice, MDCE+ is entirely
based on UML, as UML is widely used. UML offers
various notations to represent different aspects of a
system. To represent system or component behavior, the
most used models are the interaction diagrams, mainly
the Sequence Diagram, which focus on messages
between objects or components of the system; also, State
Machines, which represent component behavior in terms
of its states and transitions among them. We propose, for
testing concerns, the use of Activity Diagrams (AD) to
represent component behavior as well as component
interaction. The reason is that AD allows representing
sequences of execution of operations in a way that is
closer to the control flow representation of programs,
used in structural testing techniques. In this way, control
flow analysis techniques can be used for test case
generation purposes at the behavioral level.

The testing method includes the following steps: (i)
convert the AD into a graph; (ii) select paths to exercise
from this graph; (iii) specify the test cases corresponding

Camila Ribeiro Rocha A method for model based test harness
and Eliane Martins generation for component testing

 11

to each selected path; (iv) identify data inputs needed to
cause each scenario path to be taken; (v) implement the
test cases in the programming language of choice.
Figure 2 presents the artifacts used in each step.

Some steps of the method are being automated, such

as the graph generation from the set of Activity
Diagrams, as well as test case generation [29]. In the
following we give a brief presentation of the AD model
that serves as test model; and we describe the steps of
our test method.

Figure 2: Test artifacts used in each step of the proposed method.

4.1. THE TEST MODEL
The model used to represent CUT’s behavior is the

UML Activity Diagram (AD), a flowchart representing
one or more threads of execution. The AD was chosen
because it allows representing control flow between
activities performed by a component in a form that is
easy to use for both developers and testers. It is easy
for developers because it is an evolution of flowchart
diagrams, which have been used for years to specify
functional design. From the tester’s point of view, it
allows control flow analysis, used for many years in
structural testing, to be applied.

The AD we use for testing purposes is a subset of
UML 2.0 [27], as it offers more resources than previous
versions, especially with regard to the representation of
exceptional behavior. The subset chosen allows the
representation of actions and the control flow among
them. Actions are points in the flow of an activity that
executes a behavior. An operation is represented by a
behavior, through its signature. An action can be
decomposed into a complete diagram representing the
next level of hierarchical behavior. Also, the interaction
among components interfaces may be represented by the
use of partitions.

For our testing method, control flow specifies
sequential behavior: an action can only start execution
after the preceding one has finished. Control flow
among actions involves conditionals, loops and
exception handling. Concurrency and object flow may
be represented by AD’s, but these are not covered for
the moment.

We also assume that a component has a well defined
interface clearly separated from the implementation. In
this way, abstract test cases can be derived
independently of implementation details.

The AD is then used in this study to specify only
the external behavior of the component, in terms of its
interface(s) operations and exceptions. Like in other

related works [9, 14, 34], our approach also uses
control flow to represent a component usage scenario,
which corresponds to valid sequences of the operations
of the component provided interfaces. The scenarios
may be either normal or exceptional, since a
component may throw exceptions to abort the current
sequence of operations.

The first level of the hierarchy (main diagram) is
produced during the MDCE+ Final Specification phase,
and it is used mainly for test case generation. It represents
the control flow of operations at the CUT’s provided
interface, that is, the component behavior as seen by its
clients. Figure 3 contains the main diagram (MD) of the
IAirFlowController interface, from the
AirFlowController component (Section 3). In this
diagram, the operation flow is as follows: (1) the
setConfiguration() operation is called to set up the
configuration of the CUT. Then, three different flows may
happen: (2a) it may end exceptionally with
InvalidConfigurationSetpoint raising, which
is related to invalid parameters values of
setConfiguration() operation; (2b) the
setCoalFeederRate() operation may be called,
which adjusts coal feeder rate valves; (2c) the
timeStep() operation may be called, which calls
monitoring operations. The execution flow ends after
setCoalFeederRate() or timeStep() end,
either normally or exceptionally. The flow of exception
in UML 2.0 is represented by a lightning bolt line
labeled with the exception type.

A provided operation may invoke a set of required
operations as part of its execution. Differently from the
approaches mentioned thus far, we use hierarchical
decomposition to further describe the component
external behavior. If a CUT provided operation requires
an external service, the sequence of execution is
represented by a decomposition in the AD hierarchy.
The action that is decomposed is marked with a rake-
style symbol in the MD.

Activity
Diagram Graph Paths

Intermediate
Language

(XML)

Programming
Language

1 3 42Activity
Diagram Graph Paths

Intermediate
Language

(XML)

Programming
Language

1 3 42

Camila Ribeiro Rocha A method for model based test harness
and Eliane Martins generation for component testing

 12

void setConfiguration(P_ref: double, O2_ref: double)

void setCoalFeedRate(C_fr: double) void timeStep()

InvalidConfigurationSetpoint

InvalidO2Concentration

InvalidCoalFeederRate

CoalFeederRateOscillating

AirFlowRateOscillating

InvalidAirFlowRate
AirFlowRateOscillating

Start node

Exception

Structured Activity

End Node

Figure 3: Main diagram of the IAirFlowController interface.

Some authors use a gray box approach to

represent the behavior of an operation in terms of an
UML interaction diagram, mainly, the Sequence
Diagram (e.g. [9]). This approach is considered gray
box since it represents details about how the
component works in terms of objects that compose
it. Our approach, on the other hand, is strictly black
box as the behavior of an operation is specified in
terms of a control flow representation with
sequences, loops and alternatives, representing
interactions with its required interfaces. No internal
details about the component structure are used for
that purpose, only the relationships between the
required and provided operations. Therefore the
hierarchy has only two levels, since the details about
the required interfaces are not of interest for CUT
testing purposes.

In this way, for each operation represented as
structured activities in the first level, there is a second
level diagram, which we designate as operation
interaction diagrams (OID). Besides describing the
interfaces required, the diagrams (MD and OID) also
show the parameters of the operations.

These diagrams are recommended as part of MDCE+
Component Interaction phase. At this phase, some details
about the exact operations may not be present, such as the
exact parameters and their types. Such information must be
complemented at the end of the Provisioning phase, where
the real components are eventually known.

An OID is created as an activity. This activity may
contain formal input and output parameters. Formal
input parameters can be checked according to the
operation precondition. The output parameters, on the

other hand, may be normal or exceptional data, and they
can be checked against the operation postconditions. All
end nodes in the interaction diagram can be mapped to
flows in the MD.

Figure 4 presents the OID of the
setCoalFeederRate() operation from the
IAirFlowController interface. The interaction flow
begins with the checking of the operation precondition,
represented by guards on the input parameter, C_fr. If the
guard is not satisfied (C_fr < 0 or C_fr > 1), the
InvalidCoalFeederRate exception is raised and the
execution of setCoalFeederRate() ends. Otherwise,
the execution flow continues, which leads to the invocation of
required operations: (1) check_oscillate(), from the
OscillatorChecker interface (omitted in Figure 1),
which is responsible for checking whether oscillating variables
revert to a stable state; (2) controlInputA(), from the
PIDController interface (omitted in Figure 1), which
calculates the value to be passed to AirFlowActuator; (3)
setAirFlow(), from AirFlowActuator interface,
which sets the air flow rate value.

As mentioned previously, an operation flow may either
terminate with success or with an exception. For example,
in Figure 4, if check_oscillate() returns true (first
invocation), the result is considered invalid and,
consequently, the CoalFeederRatingException is
raised. Otherwise, the execution flow continues. A similar
behavior is modeled for controlInputA() and
check_oscillate() (second invocation).
SetAirFlow() does not raise any exception and when it
terminates it also ends the execution flow of
setCoalFeedRate().

Camila Ribeiro Rocha A method for model based test harness
and Eliane Martins generation for component testing

 13

CoalFeederRateOscillating

AirFlowRateOscillating

(OscillatorChecker)
boolean check_oscillate (double) [result == true]

[result == false]

(OscillatorChecker)
boolean check_oscillate(double)

(AirFlowActuator)
void setAirFlow (double)[result == false]

[result == true]

(PIDController)
double controlInputA(value: double) [(result < 0) or (result > 0,1)]

[(result >= 0) and (result <= 0,1)]

InvalidAirFlowRate

setCoalFeedRate
C_fr: double

C_fr InvalidCoalFeederRate[(C_fr < 0) or (C_fr > 1)]

[(C_fr >= 0) and (C_fr <= 1)]
Input
parameter
node

Decision

Thrown exceptionGuard condition in OCL related to
operation parameter values

Required
operation,
from
required
component

Normal
returnGuard condition in OCL related to

required operation return

Figure 4: Operation detail diagram of setCoalFeederRate operation.

4.2. DERIVING THE CONTROL FLOW GRAPH

Given that the Activity Diagram in our method
represents the control flow among component’s operations,
its conversion to a control flow graph (CFG) is
straightforward. A CFG represents the control flow relation
that exists in a program, where nodes represent statements
and a directed edge form a node s to a node t represents that
t could follow s in some execution of the program.

In fact, since we are also concerned with
exceptional behavior, we adapted the CFG as
proposed by [31] to the context of model based
testing. In their work, they define how to represent
control flow caused by exception handling constructs,
based on Java language features. We highlight two
factors here: (i) since we are considering a higher
level of abstraction than implementation level, the
exception model used here is simpler than the one
presented in the aforementioned reference; (ii) the
exceptions in this level of abstraction may not
correspond to the implemented ones. A refinement is
necessary to associate these specification exceptions
with the implemented ones, but this is out of the
scope of this text.

 Sinha et al. [31] also proposed an Interprocedural
Control Flow Graph (ICFG) to represent the
interactions of procedures within a program. In our
case, the ICFG combines the CFGs corresponding to
the MD and each OID. In the following we describe
how to construct the CFG and then how to generate
the ICFG.

The CFG contains several types of nodes to represent
different AD nodes, as well as edges corresponding to
each edge in the AD. Table 1 contains the mapping
between AD and CFG elements for MD and OIDs.
Edges are common for both diagrams. Column
“Symbol” contains the symbol used in the ICDG
presented. For the sake of space, some of the nodes have
different labels as Symbols.

The ICFG is constructed by connecting the MD and
the OID together. Each call node in the main CFG is
connected to an entry node of the CFG that contains the
same label. The edges connecting them are called call
edges. Return nodes of called operations are connected
to corresponding return nodes in the main CFG by
return edges.

Figure 5 presents the ICFG for the
IAirFlowController interface, whose main and
interaction ADs are presented in Figures 3 and 4,
respectively. For simplicity reasons, only the CFG of the
setCoalFeederRate() operation is represented.
SetCoalFeederRate() node in the MD is
represented by a call node which is linked by a call edge
to the entry node in the CFG corresponding to its OID.
The exit nodes in this diagram are connected by return
edges to the corresponding return nodes in the main
diagram. Although the CFGs for
setConfiguration() and timeStep() are
omitted, their corresponding call node and return nodes,
with the exceptional return edges, are represented in
order to complete the graph.

Camila Ribeiro Rocha A method for model based test harness
and Eliane Martins generation for component testing

 14

Table 1: Activity Diagram to CFG elements mapping.

Figure 5 : ICFG for IAirFlowControl component.

4.3. TEST CASE DERIVATION
Test cases are derived according to a given adequacy

criterion, which determines which elements (e.g., functions,
code instructions) are to be exercised during testing. In

graph-based test case generation, the criteria are generally
defined in terms of elements of the graph. So, for example,
the “all nodes” criterion requires test cases to be generated
so that each node of the graph is visited at least once. Our

AD Element CFG Element Symbol
Entry node Entry node designated as “main” (entry point of the diagram)

Action Node Operation node, containing operation signature

Structured Activity Operation node, containing operation signature, followed by a return node.

Decision node Predicate nodes

End node Node labeled as NE (normal exit node), or containing the exception raised
(exceptional exit node)

Entry node Entry node, labeled with the signature of the operation being modeled (this node
should be included even if the ODD have parameters nodes)

Action Node Call (containing the required operation signature) and return nodes (one to each data
type possible for return)

Parameter Node Parameter nodes, containing the parameter.

Decision node Predicate nodes

End node Node labeled as NR (normal return), or containing the exception raised (exceptional
return)

From predicate nodes Control Flow Edge, containing the guard condition

To exceptional exit node Exceptional Edge: Connects the operation node to the exceptional exit node.

Other Control flow edge

M
ai

n
D

ia
gr

am
O

D
D

Ed
ge

s

main

Vi

Vi

P

NEi

oper.

Di NR

Par.

P

NRi

OCL

EEi

ERi

Camila Ribeiro Rocha A method for model based test harness
and Eliane Martins generation for component testing

 15

goal is to satisfy the “all-edges” test criterion. In this
criterion, every edge is covered at least once. We choose
this criterion because it is easy to implement; for example,
a depth-first search algorithm (DFS) can be used for that
purpose. Also, its error detection capabilities are better than
the “all nodes” criterion.

Another concern of the approach is the derivation of
test cases that are independent of each other. This is
recommended since they are easier to execute and
maintain. For that purpose, we adopt a path-oriented test
case generation, where paths are obtained from the
graph until the criterion is satisfied. A path is a sequence
of edges from an origin to a destination node. Our
interest is in complete paths, that is, paths starting at the
main entry node and ending at an exit node of the ICFG.

One problem that we have to cope with is the
existence of loops (or cycles in the graph). We do not
address this problem here; we consider only loop-free
paths [6], where no node or edge is repeated in the path.
Of course, criteria that cover loops should also be
considered in the future, but for now, our concern is to
present how to derive test cases using a hierarchy of
ADs and to show the viability of the approach.

A path obtained from traversing the ICFG (Figure
5) with a DFS algorithm is shown in Figure 6. It
comprises main and interaction diagram nodes, and
has the CoalFeederRateOscillating
exception as the expected result. Node contents that
were replaced by symbols are specified in the
corresponding notes.

Figure 6: Path extracted from the ICDG graph.

4.4. TEST CASE SPECIFICATION
The paths obtained previously contain all

information necessary to create test cases. However,
they are not easily manipulated by a tool. To cope with
this limitation, we propose TestML, a notation that uses
XML (Extended Markup Language) to represent test
cases. TestML allows the specification of a test case
description that is platform independent but is readable
and processable by tools. We designate a test case
described in TestML as an abstract test case, as it is not
yet executable.

TestML was inspired in other works [8, Ch. 9; 11;
28] but in some previous languages test cases can
depend on others (e.g., [11]). This is not the case in our
testing method: test cases are independent by
construction, as each represents a complete usage
scenario of a component.

The main constructs of TestML are represented in
the metamodel shown in Figure 7. Each class in this
metamodel corresponds to a TestML tag. A
TestSuite is a set of test cases that satisfy a given
criterion. A TestCase, on the other hand, contains a
set of calls to the CUT interface operations
(OperationCall), and may also have an
ExpectedResult corresponding to the result
expected after the operation sequence execution.

Each operation may contain CallArguments,
with information of each input parameter, and may also
be associated with an ExpectedResult. In case the
operation requires other operations during execution, the
test case has a SetUp tag, containing a list of required
operations (StubCalls). These required operations
also have Results, which will be used for setting
stubs return values.

setConfiguration

main

V1

EE5

ER2

NR
NR

setCoalFeederRate

C_fr

P

D1 NR P

P

V2

[C2]

[C3]

void setConfiguration
(P_ref: double; O2_ref: double)

[(C_fr < 0) or
(C_fr > 1)]

[result = true](OscillatorChecker)
boolean check_oscillate

(double) CoalFeederRatingException

void setCoalFeedRate
(C_fr:double)

Camila Ribeiro Rocha A method for model based test harness
and Eliane Martins generation for component testing

 16

TestSuite
name : String

Expected
Result

SetUp

TestCase
name : String
objective : String

1..n1..n

OperationCall
component : String
interface : String
name : String

1..n1..n

Method
name : String

Attribute
name : String

StubCall
component : String
interface : String
name : String

Object
name : String

0..n0..n

0..n0..n

0..n0..n

CallArgument
index : Integer
name : String
datatype : String 0..n0..n

0..10..1

Data

0..1

Result
returnType : String
datatype : String

0..n0..n

0..n0..n

0..1

0..1

0..1

Figure 7: Test metamodel.

CallArguments and Results tags may also
contain TestCaseConstraints, which store guard
conditions related to arguments or return values. In test data
generation phase, these conditions are replaced by Data or
Object tags, which contain actual data.

In order to convert a selected path into an abstract
test case, it is necessary to define a mapping between a
path (nodes and edges) of the ICFG and a construct of
TestML. This mapping is as follows:

• Entry node: if on the MD, initiates a new test case;
else, initiates a SetUp tag inside the
corresponding OperationCall.

• Action node: if on the MD, creates an
OperationCall tag and its corresponding
CallArguments (based on the operation
signature); else, it is a required operation call,
which is converted to StubCall.

• Call node: initiates an OperationCall tag on
the MD.

• Parameter node: if it follows an entry node, then it
creates a CallArgument; else, if it precedes an
exit node, it can be part of the
ExpectedResult.

• Predicate node: each guard condition is converted to
TestCaseConstraint, placed after the
CallArgument or in StubCall.Result that
precedes the Predicate node. After
StubCall.Result receives the
TestCaseConstraint, StubCall is closed.

• Normal or exceptional return node: create the
ExpectedResult tag, closing the
OperationCall.

• Normal or exceptional exit node: close
TestCase, indicating the
TestCase.ExpectedResult.

Figure 8 shows the abstract test case corresponding
to the path in Figure 7. Line 3 contains an
OperationCall tag corresponding to the V1 call
node in Figure 7. Since this node is in the main diagram,
a SetUp tag is also created.

4.5. TEST DATA AND ORACLE GENERATION
A test case as specified in Figure 8 is not complete,

as the operations parameter values, as well as their
expected results, are not present. These steps are not yet
automated, but we give some guidelines on how these
can be obtained.

In what concerns test data generation, the goal is
to select parameter values that satisfy the path
conditions [6], i.e., the predicates that must be true
for the path to be exercised during execution. The
TestCaseConstraint tags represent these
conditions; they are shown in lines 8 and 13 of Figure
8. The first is related to the input parameter of the
provided operation setCoalFeedRate, and the
second to a return value for the required operation
check_oscillate, implemented by a stub. Data
values that instantiate a test case must satisfy the
predicates on TestCaseConstraint. After
obtaining data values, TestCaseConstraint tags
are replaced by Data tags, containing actual values.
These tags have the form “<Data>V</Data>”,
where V represents values such as int, float, string or
char. An example is shown in Figure 9; the first box
is extracted from the specification given in Figure 8
and the last presents the modified specification after
data selection.

Camila Ribeiro Rocha A method for model based test harness
and Eliane Martins generation for component testing

 17

1
2

3

4
5

6

7

8
9

10

11

12
13
14
15
16

17
18
19

20
21
22
23

<TestSuite>
 <TestCase seq="0" name="testIP1" objective="">
 <!—- This OperationCall corresponds to V1 node --!>
 <OperationCall component="AirFlowController" interface="IAirFlowController"
 name="setConfiguration">
 ...
 </OperationCall>
 <!—- This OperationCall corresponds to V2 node --!>
 <OperationCall component="AirFlowController" interface="IAirFlowController"
 name="setCoalFeedRate">
 <!—- This CallArgument corresponds C_fr node --!>
 <CallArgument index="0" name="C_fr" datatype="double">
 <!—- This TCConstraint corresponds to C_fr following edge --!>
 <TestCaseConstraint>[(C_fr >= 0) and (C_fr <= 1)]</TestCaseConstraint>
 </CallArgument>
 <SetUp>
 <!—- This StubCall corresponds to D1 node --!>
 <StubCall type="interface" name="OscillatorChecker"
 operation="check_oscillate">
 <Result type="normal" datatype="boolean">
 <TestCaseConstraint>[result == true]</TestCaseConstraint>
 </Result>
 </StubCall>
 </SetUp>
 <!—- This OperationCall.ExpectedResult corresponds to ER2 node --!>
 <ExpectedResult resultType="exceptional" datatype="CFRO">
 </ExpectedResult>
 </OperationCall>
 <!—- This TestCase.ExpectedResult corresponds to EE2 node --!>
 <ExpectedResult resultType="exceptional" datatype="CFRO">
 </ExpectedResult>
 </TestCase>
</TestSuite>

Figure 8 : File in TestML generated from path in Figure 6.

7
8
9

<CallArgument index="0" name="C_fr" datatype="double">
 <TestCaseConstraint>[(C_fr >= 0) and (C_fr <= 1)]</TestCaseConstraint>
</CallArgument>

7
8
9

<CallArgument index="0" name="C_fr" datatype="double">
 <Data>0</Data>
</CallArgument>

Figure 9: Converting path conditions into test data.

TestML also allows objects as parameters, as
indicated in the metamodel of Figure 7. In this case,
the Object tag is used instead. Object attributes can
either initialized using the Attribute tag or using
the object operations, in which case the Method tag
is indicated.

In the future, test data selection can be automated.
There are tools that can generate test data based only on
the test case syntax and on the type of data values such

as RIDDLE [19] and PROTOS5. We are investigating
the use of heuristics to this problem [1].

Another important issue in test case generation is the
production of an oracle, a mechanism to decide whether
or not a given output is correct for a given input. We
propose two mechanisms for that purpose. One consists
in the use of assertions that are embedded into the
component to detect interface violations at runtime.
These assertions are part of the built-in testing

5 http://www.ee.oulu.fi/research/ouspg/protos/index.html.

Camila Ribeiro Rocha A method for model based test harness
and Eliane Martins generation for component testing

 18

capabilities of a testable component [30]. The
ExpectedResult tags of TestML provide the other
oracle mechanism. In this case, test analysts fill the
expected outputs manually. The operation postcondition,
when stated in the specification, can also be used to
guide this task.

4.6. IMPLEMENTATION ISSUES
In this section we present the guidelines on how to

convert test cases in TestML to an executable form. For
this example we considered test cases implemented in
Java, based in the JUnit framework.

The test architecture is composed of four main
elements: the driver (which is derived from the
TestSuite class of the JUnit framework), the test
cases (which are subclasses of the JUnit TestCase
class), the CUT and the stubs (which implement the
CUT’s required interfaces).

In the following we describe how test cases and
stubs are implemented from the TestML specification.

4.6.1. TEST CASE IMPLEMENTATION
A test case in JUnit executes four steps: set up,

exercise, verify and clean up. Erro! A origem da
referência não foi encontrada. presents the Java code
corresponding to the TestML specification of Figures 8
and 9.

During the setup phase (implemented by the setup()
method of the TestCase class), the test configuration
(also called fixture) is created for each test case. The
CUT is instantiated, as well as stubs necessary for the
test case as indicated in the StubCall tags.

In the exercise step, the test case invokes the
operations of the CUT’s provided interfaces. Since
exceptions may be returned by these operations, the
invocation is in a try-catch block. The operations are
obtained from OperationCall tags, using
CallArgument tags contents as parameter values. If
the called operation requires some stub setup, this is
done before its invocation, using information obtained
from Result tags in the corresponding StubCalls.
Lines 4 to 6 on Erro! A origem da referência não foi
encontrada. shows the invocation of the
setCoalFeederRate() operation. Before calling
this operation, the OscillatorChecker stub is
configured (Line 7).

In the verification phase, actual results are
compared to expected ones, which are given in the
ExpectedResult tag in TestML. Verification is
implemented using assert methods from JUnit. There is
one verification for normal values at the end of the try
block, and another in the catch block to check if the
expected exception was raised. In the example of
Erro! A origem da referência não foi encontrada., it
can be noticed that the assertion inside the try block
returns false, as an exception was expected for this test
case. On the other hand, the assertion on the catch
block returns true if the raised exception is the one
expected.

Outside the try-catch block, the cleanup step ends
the test case, releasing resources allocated during the
declaration part. In the example, this step was not
implemented, as Java’s provided garbage collection was
enough in that case.

1
2
3
4

 5
6
7
8
9

10
11
12
13
14
15
16
17

public void testIP1 () {
 //set up phase: stubs instantiation and link to the CUT (omitted)
 try {
 //exercise phase
 cut.setConfiguration(0,0);
 //setCoalFeederRate stub preparation before method invocation
 stubOscillatorChecker.setcheck_oscillate(new Boolean(true));
 cut.setCoalFeederRate(0);
 //phase evaluation: As an exception is expected, a normal return
 //means a failure
 assertFalse("Exception not raised", true);
 } catch (Exception e) {
 DeclaredException ed = (DeclaredException)e;
 //exception type is compared
 assertEquals(ed.getInitialCause().getClass().getName(),"CFRO");
 }
}

Figure 10: Java code for the test case presented in Figure 8.

Camila Ribeiro Rocha A method for model based test harness
and Eliane Martins generation for component testing

 19

4.6.2. STUBS IMPLEMENTATION
In Section 2 we presented some patterns for stub

generation. From these patterns, we used Binder’s server
stub, which is configurable according to Meszaro’s
proposal. In this way, in addition to the CUT’s required
interfaces, the stub should also have a setup interface to
allow its configuration for test case execution. The stubs are
implemented as a combination of Gorst’s responder and
saboteur idioms.

The stub’s setup interface contains a FIFO queue to
store the values to be returned each time it is called during
test case execution. As the execution proceeds, the used
values are removed from the queue [20]. Differently from
Gorst’s proposal, the stub may return either normal or
exceptional values. For this to occur, the stub receives a
generic data type as input parameter (e.g. an Object in
Java). This flexibility is important to facilitate stub
implementation, as normal and exceptional values may
occur in an execution of an operation.

Figure 11 presents the Java code of the stub that
implements the check_oscillate operation from the
OscillatorChecker component. This stub could
simulate other OscillatorChecker’s operations if
they are required in other OIDs. The operation
setcheck_oscillate() belongs to the stub setup
interface, and it is called by the test case during setup to
include values in the queue,
check_oscillateVector. These values are obtained
from StubCall.Result tags.

The check_oscillate() operation belongs to the
required interface implementation. The stub execution is as
follows: first, the element in the front of the response
queue (check_oscillateVector) is removed,
corresponding to the value to be passed to the CUT at that
point of the test case execution. Then, its type is analyzed:
if it is a Boolean, it is converted to the primitive type and
returned. If it is an Exception, that exception is raised.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

private Vector check_oscillateVector = new Vector(100); //queue

//Stub setup: method receives and includes the values in the queue
public void setCheck_oscillate(Object ito) {
 check_oscillateVector.add(ito);
}
//Required method implementation
public boolean check_oscillate(double value) throws Exception{
 Object o = check_oscillateVector.firstElement();
 check_oscillateVector.removeElementAt(0);
 //normal return
 if (o.getClass().getName().equalsIgnoreCase("java.lang.Boolean")) {
 Boolean it = (Boolean)o;
 return it.booleanValue();
 }
 //exception raising
 else if (o instanceof java.lang.Exception)) {
 Exception e = (Exception)o;
 throw e;
 }
 throw (new Exception("Stub OscillatorChecker internal error."));
}

Figure 11 : Java code of the stub of OscillatorChecker.check_oscillate operation.

5. CASE STUDY
This case study consisted on the development and
testing of a subsystem that was part of a financial
system. The subsystem was being developed by a
Brazilian company specialized in banking automation.
The subsystem that we used has the responsibility for:
(i) handling requests, deliveries and cancellations of
checkbooks; (ii) handling account contracts and (iii)
including additional credit limits. Two MSc students
(for the development and testing process, respectively)
and two company employees composed the team.

The system was developed using the MDCE+ method
(Section 4), which extends the UML Components
methodology [13] to allow the development of idealized
fault-tolerant components (IFTC) [1]. An IFTC is a
component in which the normal and abnormal activities are
implemented as separate components which communicate
with each other during error situations; connectors can be
used to link both parts. The goal of an IFTC is to provide a
means to structure fault-tolerant systems, so that the
exception handling mechanisms used to achieve fault-
tolerance do not cause a great impact on system
complexity.

Camila Ribeiro Rocha A method for model based test harness
and Eliane Martins generation for component testing

 20

Eight IFTCs were developed; four of them to
implement system use cases, called system components
[13]; and another four to implement data storage
services, designated business components. For testing
purposes, only system components were chosen as they
implement system functionalities. These components are
listed in Table 2.

MDCE+ proposes exception handlers reuse,
allowing an abnormal component to be part of
different IFTCs. If different (system or business)
components can raise similar exceptions, their
handlers can be grouped in a single abnormal
component. An example is the agencyHandler
component, which groups all the exceptions related to
the agency data type, raised either by business or
system components. Using this approach, system
components were constructed by combining normal
components (a total of four) and exception handlers (a
total of nine); these components are listed in Table 3.

Table 2 summarizes our main test results. The number
of nodes and edges shows the complexity of each
component’s ICFG. The number of generated test cases is
also presented, together with the number of failures that
occurred during test execution. The number of failures
detected by each oracle mechanism, described in Section
4.5, is also indicated. Both mechanisms detected the same
failures, except in one case, where the expected result in the
test cases detected one more failure. The reason is that the
built-in assertions are not good in detecting whether a
specific output is produced for a given input, which justifies
the verification step in a test case (c.f. 2).

Table 2 : Test execution statistics

Component* ICFG
nodes

ICFG
edges

Test
Cases

Failures
detected
by test
cases

Failures
detected
by built-
in self-

checking
CaptureCheck
Operations

37 51 27 2 2

suspendCheck
Operations

50 64 23 2 2

account
Operations

106 135 47 4 3

checkbook
Operations

102 140 47 2 2

We also measured the code coverage achieved by the

test cases. The results are presented on Table 3. Notice
that, although our approach does not consider the source
code for test case generation, the code coverage
achieved was high. The average coverage for normal
components was 94%, and for handlers, 83%.

For normal components, the code that was not
covered corresponds to metadata operations (used to
define component interfaces, for example). These

operations are part of the MDCE+ architecture but were
not used during component operation.

For the testing of exceptional components, the
code not covered comprised handlers for exceptions
only raised by business components. This way, they
were considered as being part only of business IFTCs
and, consequently, out of test scope.
AgencyHandler, for example, groups three
exceptions: (i) agencyIsClosed and (ii)
agencyNotRegistered, which may be thrown by
all system components (except
suspendCheckOperations); and (iii)
invalidAgency, which is only thrown by the
business component AgencyManager. As
AgencyManager is out of testing scope, the handler
for the invalidAgency exception was not covered
during the tests.

Table 3 : Code coverage statistics.

Component* LOC Code
Coverage

Decision
Coverage

captureCheckOperations 109 88% 96%
suspendedCheckOperations 88 96% 97%

accountOperations 154 95% 100%
checkbookOperations 167 98% 100%

agencyHandler 7 71% 100%
suspendedCheckHandler 8 87% 100%

captureCheckHandler 19 84% 100%
clientHandler 7 85% 100%
bankHandler 5 80% 100%

accountHandler 13 76% 100%
typeHandler 6 83% 100%

checkbookHandler 22 80% 100%
transactionHandler 5 100% 100%

*Not all the component internal classes were considered during the
measurement, but only classes that implement interfaces intead. The
ones that were part of the architectural framework structure were not
considered.

6. RELATED WORK
In this section, we present related work on test case

generation from behavior models, and on stub
generation. Of course, we are far from being exhaustive.
Our intent is to present the work that in some sense
served as a basis for the approach presented here.

6.1. TEST CASE GENERATION
Edwards [14] proposes a method using both built-in

(BIT) mechanisms and test case generation. BIT
mechanisms are embedded code used for testability
improvement. In this case, BIT mechanisms are used for
CUT contract checking during execution, working as a
test oracle. Test cases are derived from flow graphs,
which model component behavior. This work is very
similar to ours, although they do not consider test of
isolated components, only integrated ones. In this case,
BIT mechanisms are included in all the involved

Camila Ribeiro Rocha A method for model based test harness
and Eliane Martins generation for component testing

 21

components to facilitate fault locations. However, they
do not present guidelines for stubs generation. Also, the
graph is not obtained from UML models in our method.

Briand and Labiche [9] propose TOTEM (Testing
Object-orienTed systEms with the unified Modeling
language). Many different models created by
development teams are used for test case generation: use
cases, interaction diagrams (sequence or collaboration)
and class diagrams. Test cases are generated from
activity and interaction diagrams, characterizing a gray
box testing method, as the class structure of the system
must be known. This is the main limitation of TOTEM
for component testing, as it cannot always be assumed
that a component’s internal structure is available. Our
approach, instead, is completely black box, and needs no
information about a component’s internal details.

Bundell et al. [11] propose the Component Test
Bench tool (CTB) for test case development and
execution. This tool offers an editor where a tester can
code test cases using a format based on XML.
Functionalities like oracle generation and test coverage
are also provided. When dealing with COTS
components, test specifications and a CTB module are
also delivered with the COTS, allowing test cases to be
customized and executed in in the client’s environment.
However, test case generation facilities are not offered,
nor component specification is available to the client. In
our case, component specification is packed together
with the component, according to the testable
component architecture [30]. Besides contributing for
client understanding, the specifications are also used for
test case generation.

Another difference between our approach and the
ones previously mentioned is that ours explicitly
considers the testing of exception handling mechanisms.

6.2. TEST STUBS
Kaiser et. al. [22] present Infuse, a software

development environment that supports testing by aiding
users in constructing both drivers and stubs. Infuse
supports testing of systems implemented in procedural
languages such as C. Headers (in C parlance) for the
stubs are automatically generated but their contents must
be created by hand or by some external mechanism. The
main differences from our approach are that our test
cases and stubs are automatically generated from a
behavior model, and not from the code, and our test
cases and stubs are language independent. Although we
present an object-oriented design for test harness, tests
are generated in XML and can be converted to any
language.

SeDiTeC is a tool that uses Sequence Diagrams (SD)
to generate tests for Java programs [16]. Drivers are

produced automatically from SDs representing the
behavior of the program under test. Test stubs for
selected classes are generated independently of test
cases; the stubs communicate with the driver at runtime
to know what they are supposed to do. The advantage is
that the stubs are regenerated only when the interface of
the stubbed class changes. The stub behaves as specified
in the SD. In our case, the stubs are test case specific,
hence we do not need a behavior model for the
component being stubbed.

Lloyd and Malloy [23] present a study for testing
objects in the presence of stubs. Their work describes
how to construct minimal implementations for stubs, in
order to reduce the generation effort. Test cases for a
class are obtained from a Method Sequence Graph,
which allows the generation of the sequence of method
invocations to test a class. However, they do not
describe how to produce stubs automatically. Besides,
since the stubs cannot throw exceptions, this poses a
problem to test exceptionhandling mechanisms.

Bertolino et al. [7] present Puppet (Pick UP
Performance Evaluation Test bed) for evaluating Quality
of Service (QoS) characteristics of Web Services (WS).
Their method provides tools for the automatic
generation of a test bed, based on QoS specifications of
both the service under test and the interacting services.
Stubs are generated in order to replace required services;
their generation is based on service description in
WSDL, a standard in WS communities, and in service
agreements specification. The former is used to generate
the stub skeleton, whereas the latter is used to obtain the
parameterizable code that simulates the QoS constraints.
They also transform XML definitions into Java code.
Stubs generation is mostly automatic, however data
values are generated randomly. The main difference is
that Puppet considers only non functional scenarios (as
latency, delay, reliability), and our method exercises
functional implementation. Also, the tool is based on
WSDL, which constrains the tools to the WS domain,
whereas in our case, we are based on a higher level
description, which allows our approach to be applied in
other domains.

There are also various tools that support test case
implementation and execution. JUnit [26] is an example.
However, it is not concerned with test case generation.
There are also tools to support the creation of mock
objects, which may be useful for stub implementation,
but generally they have some limitations, as discussed in
Section 2. They are generally implementation language
dependent, which can be a problem for components that
can be written in different programming languages, and
whose source code may not be available.

Camila Ribeiro Rocha A method for model based test harness
and Eliane Martins generation for component testing

 22

7. CONCLUSIONS AND FUTURE WORK
In this paper we presented a method to generate a

test harness from UML models. The approach can be
useful in situations where stubs are unavoidable, like test
driven programming and testing of exception handling
mechanisms.

The method considers UML activity diagrams,
which models component behavior. The component is
considered black box, since only its provided and
required interfaces are considered. In this way, test cases
generated from this model contain information to
exercise the component through its provided interfaces,
as well as to prepare the stubs replacing the external
components required for test case execution.

As both normal and exceptional behaviors were
considered, test cases could exercise exception-
handling code. In a case study executed in an industrial
environment, for an application where more than 2/3 of
the code corresponds to exception handling
constructions, test coverage was highly satisfactory.
For normal components, the average branch coverage
achieved was 94%, and for the exceptional ones, the
average was 83%. For exception handling mechanisms,
high code coverage was achieved mainly because of
stubs, allowing the simulation of required components
failures. The code not covered, both in normal and
abnormal scenarios, were relative to parts not related to
the functional behavior (e.g., component architecture
configuration) of the components under test.

For a large set of components, it is not possible to
create test artifacts for all. We recommended prioritizing
the components according to criticality, possibility of
reuse, and requirement stability. Components with less
priority will be tested during integration and system
testing phases. Large components can be treated
similarly: only the most critical parts are modeled and
tested individually. This should include exception
handlers, which usually handles critical functions that
are not easily simulated without stubs.

The main advantage of our method is test case
generation in a language independent way including
exceptional behavior coverage. The method also
presents the possibility of stubs creation. The stubs are
synchronized with the test cases from UML models,
allowing both test cases and stubs to be built early in the
development process.

In the future, we intend to address some of the
method’s limitations, especially those related to
automation. For example, concurrency is an aspect that can
be represented in UML Activity diagrams but is not yet
addressed, due to the difficulty to generate test paths to
cover these situations. Another important aspect is the

generation of test data. It is our intent to provide automated
support to the whole process, that is, from building a
testable component through test case generation and
execution as well as results analysis.

ACKNOWLEDGMENT
The authors wish to acknowledge the support of

CNPq for a MSc fellowship, and the financial support of
Finep (1843/04).

REFERENCES
[1] B. Abreu et al. Automatic Test Data Generation

for Path Testing using a New Stochastic
Algorithm. In Proceedings of 19th Brazilian
Symposium on Software Engineering (SBES),
Uberlandia, pp. 247-262, 2005.

[2] T. Anderson, P. Lee. Fault Tolerance: Principles
and Practice, 2nd edition. Prentice-Hall, 1990.

[3] T. Anderson, et al. Protective wrapper
development: A case study. Lecture Notes in
Computer Science, 2580: pp. 1–14, 2003.

[4] D. Barbosa et al. Spaces - a tool for component’s
functional testing (in portuguese). In Proceedings
of XVIII Brazilian Symposium of Software
Engineering - XI Tool Session. pp. 55–60, 2004.

[5] K. Beck. Test Driven Development: By Example.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, 2002.

[6] B. Beizer. Sofware Testing Techniques, 2nd
Edition. International Thomson Computer Press,
1990.

[7] A. Bertolino, G. De Angelis, A. Polini. A QoS
Test-Bed Generator for Web Services. Lecture
Notes in Computer Science, 4607:17-31, 2007.

[8] R. Binder. Testing object-oriented systems:
models, patterns, and tools. Addison-Wesley
Longman Publishing Co., Inc, 1999.

[9] L. Briand, Y. Labiche. A uml-based approach to
system testing. In Proceedings of 4th International
Conference on The Unified Modeling Language,
Modeling Languages, Concepts, and Tools.
Springer-Verlag, London, pp. 194–208, 2001.

[10] L. Briand, Y. Labiche, Y. Wang. An investigation
of graph-based class integration test order
strategies. IEEE Trans. on Software Engineering,
29(7):594–607, 2003.

[11] G. Bundell et al. A software component
verification tool. In Proceedings of International
Conference on Software Methods and Tools

Camila Ribeiro Rocha A method for model based test harness
and Eliane Martins generation for component testing

 23

(SMT). IEEE Computer Society Press, pp. 137–
146, 2001.

[12] P. Brito, et. al. A method for modeling and testing
exceptions in component-based software
development. Lecture Notes in Computer Science,
3747:61–79, 2005.

[13] J. Chessman, J. Daniels. UML Components: A
Simple Process for Specifying Component-Based
Software. Paperback, 2002.

[14] S. H. Edwards. Black-box testing using
flowgraphs: an experimental assessment of
effectiveness and automation potential. Software
Testing, Verification and Reliability, 10(4):249–
262, 2000.

[15] M. Fowler. Mocks aren’t stubs.
http://www.martinfowler.com/articles/
mocksArentStubs.html. Apr-2007.

[16] F. Fraikin, T. Leonhardt. Seditec: Testing based on
sequence diagrams. In Proceedings of 17th IEEE
international conference on Automated software
engineering. IEEE Computer Society,
Washington, p. 261, 2002.

[17] J. Gao. Component testability and component
testing challenges. In: Proceedings of Star’99,
1999.

[18] J. Gao et al. Testing and Quality Assurance for
Component-Based Software. Artech House Inc.,
2003.

[19] A. Ghosh, M. Schmid, and V. Shah. Testing the
robustness of Windows NT software. In
Proceedings of 9th International Symposium on
Software Reliability Engineering (ISSRE '98). Los
Alamitos, CA, pp 231-235, 1998.

[20] S. Gorts. Unit testing with hand crafted mocks.
http://refactoring.be, Jun. 2006.

[21] P. Guerra et al. A dependable architecture for cots-
based software systems using protective wrappers.
Lecture Notes in Computer Science, 3069:144–
166, 2003.

[22] G. Kaiser, et al. Infuse: Fusing integration test
management with change management. In
Proceedings of 13th Annual International
Computer Software and Applications Conference.
Orlando, pp. 552–558, 1989.

[23] E. Lloyd, B. Malloy. A study of test coverage
adequacy in the presence of stubs. Journal of
Object Technology, http://www.jot.fm, 2004.

[24] T. Mackinnon, S. Freeman, P. Craig. Endotesting:
Unit testing with mock objects.

http://citeseer.ist.psu.edu/mackinnon00endotesting
.html, 2000.

[25] G. Meszaros. A pattern language for automated
testing of indirect inputs and outputs using xunit.
In Proceedings of 11th Conference on Pattern
Languages of Programs (PLoP2004), 2004.

[26] ObjectMentorInc. Junit.org. http://www.junit.org,
Jun. 2007.

[27] OMG, 2004a. UML 2.0 Superstructure Final
Adopted Specification. URL =
http://www.omg.org/cgi-bin/apps/doc?ptc/03-08-
02.pdf

[28] OMG, 2004b. UML 2.0 Testing Profile
Specification. http://www.omg.org/cgi-
bin/apps/doc?formal/05-07-07.pdf, 2005.

[29] I. Perez, et al. Using UML Models in Component
Testing (in Portuguese). In Proceedings of
Brazilian Workshop on Fault –Tolerant
Computing (WTF), 2007.

[30] C. Rocha, E. Martins. A strategy to improve
component testability without source code. In:
Beydeda, S. et al. (Eds.), SOQUA/TECOS. Vol. 58
of LNI. GI, pp. 47–62, 2004.

[31] S. Sinha, M. Harrold. Analysis and testing of
programs with exception handling constructs.
Software Engineering, 26(9): 849–871, 2000.

[32] S. Stewart. Approaches to mocking.
http://www.onjava.com/pub/a/onjava/
2004/02/11/mocks.html, 2004.

[33] R. Taylor et al. A component- and message-based
architectural style for gui software. IEEE
Transactions on Software Engineering 22 (6),
390–406, 1996.

[34] E. J. Weyuker. Testing component-based
software: a cautionary tale. IEEE Software, 15(5):
54–59, 1998.

