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Abstract: In this paper, we combine a path planner based on Boundary Value Problems (BVP) and Monte Carlo Localization 
(MCL) to solve the wake-up robot problem in a sparse environment. This problem is difficult since large regions of sparse 
environments do not provide relevant information for the robot to recover its pose. We propose a novel method that distributes 
particle poses only in relevant parts of the environment and leads the robot along these regions using the numeric solution 
of a BVP. Several experiments show that the improved method leads to a better initial particle distribution and a better 
convergence of the localization process. 
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1. Introduction

The localization process is an essential component of any 
mobile robotic system during a navigation task in the envi-
ronment. It endows the robot with the capacity to determine 
its correct pose using the collected sensory data. This capacity 
is considered as a prerequisite to make a robot really autono-
mous. One of the basic problems in localization is position 
tracking that corresponds to a local localization problem 
and aims to estimate actively the robot’s pose (x, y, q) from 
a known initial pose. It tries to compensate for noise in the 
sensors and errors in odometric readings that can arise in 
a systematic or non-systematic way to determine the most 
likely world pose.

Local localization techniques are particularly impor-
tant during the exploration and building of environment 
maps. They enable the generation of a faithful representa-
tion of the environment while minimizing or eliminating 
the mapping distortion produced by odometric errors. The 
task of mapping and simultaneously self-localizing is diffi-
cult, because the robot needs to determine its pose based on 
a map that is being currently built and to map precisely the 
environment using the information on its pose. This problem 
is called Simultaneous Localization and Mapping (SLAM) 
and has attracted the attention of several researchers during 
last years21,3,2,4.

Besides the position tracking problem, there are other 
challenging localization problems like the kidnapped robot 
problem and the wake-up robot problem. They comprise a 
class of global localization problems. In the wake-up problem, 
the robot must determine its pose without prior knowledge 
about its initial location. In the kidnapped robot problem, a 
well-localized robot is carried to another position during its 
navigation without being told. In both problems, global local-
ization techniques must be able to handle multiple candidate 
poses at same time.

Most of the methods used for local localization are unable 
to solve global localization problems. The main reason is that 
global localization demands to track and to analyze multiple 
hypotheses simultaneously. For instance, methods for posi-
tion tracking based on Kalman filtering24,17 represent the 
robot’s estimated pose using an unimodal Gaussian distri-
bution, where the distribution mode provides the current 
robot position and the variance is the accuracy of the estima-
tion. This distribution limits the use of Kalman filters when 
there are several candidate poses. To circumvent this, Jensfelt 
and Kristensen14 propose a probabilistic approach that uses 
multiple hypotheses to represent the robot pose. These 
hypotheses are updated according to the observation made 
by robot sensors. The hypothesis corresponding to the true 
robot pose will be more distinguishable than false hypoth-
eses.

The most common approach to handle both global and 
local localization is the particle filter28. The algorithms based 
on particles belong to a class of methods known as Monte 
Carlo Localization (MCL). MCL algorithms are easily imple-
mented and computationally efficient since they focus the 
search on certain regions in the space with high likelihood to 
contain the real robot pose. There are lots of variations of the 
basic algorithm. For instance, Milstein et al.19 suggest the use 
of clusters of particles to handle symmetric environments. 
They claim that the basic algorithm converges quickly to a 
single high probability pose even if there are more than two 
similar likely poses. Kwon et al.16 minimize the number of 
samples used in MCL using topological information about 
the environment. This information aims to determine where 
the particles should be placed in the environment. In this 
case, the particles are drawn around the neighborhood of 
the topological edges reducing the number of particles and 
augmenting the algorithms’ efficiency. Gasparri et al.12 propose 
an evolutionary approach based on genetic algorithms with a 
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clustering method to handle the global localization problem. 
At each resampling step, the robot executes a dynamical 
clustering and at each time step, it executes an evolutionary 
action to find out the local maxima within each cluster.

In this paper, we propose a strategy that combines path 
planning based on boundary value problems (BVP) and MCL 
to solve the global localization problem in large and sparse 
environments. This problem is difficult since large parts of 
this kind of environment do not provide relevant structural 
information for the robot to recover its pose. We propose a 
method that puts particles only in relevant parts of the envi-
ronment and leads the robot along relevant regions using 
the numeric solution of a BVP. The main differences between 
our proposal compared to Coastal Navigation23 are that in 
our case the robot’s initial pose is unknown and our strategy 
takes advantage of the environment structure as a cue to 
particle generation.

This paper is organized as follows. Sections 2 and 3 
present the Monte Carlo Localization and the BVP-path 
planner, respectively. Section 4 introduces the method 
proposed to draw particles using BVP and in Section 5 we 
present an experimental evaluation of the new approach. 
Finally, Section 6 presents our conclusions.

2. Monte Carlo Localization

Monte Carlo Localization is a class of algorithms that 
computes a robot’s pose using a Bayesian approach and the 
assumption that the environment is Markovian. Basically, the 
posterior densities (beliefs), Bel (St), over the robot state St at 
instant t, are computed using the sensor data and odometric 
data in a recursive way through 

	 (1)

where h is a normalization constant, ot is the sensor measure 
gathered during the robot movement at time t and at-1 is the 
odometric data associated to the robot motion between the 
instants t–1 and t. The probability p(st | st-1, at-1) is associated 
to the probabilistic model of the robot motion and p(ot | st) 
is the probabilistic observation model. Both models assume a 
Gaussian distribution with zero mean.

To compute Equation 1 is not a simple task. The main 
problem is the computational requirements to calculate Bel(s) 
over the space of possible poses. To alleviate this problem, 
Thrun27 developed a particle filtering that uses only a fraction 
of samples drawn from the poses space.

The filtering represents the beliefs by a set of m samples 
i i m

t t t i=1S = {s , w }  where each sample represents a particular 
pose si = (x, y, θ) and the wi are non-negative importance 
factors, which sum up to one. The algorithm starts drawing 
m samples using the initial knowledge about the candi-
date robot poses given by S0. The initial importance factor 
of each sample is equal to 1/m, that is, all the samples are 
equiprobable to be the correct robot pose. Recursively, the 
new generations of samples are determined according to the 
steps below

1.	 Resampling: Sample −
i
t 1s   from the sample set repre-

senting −t 1S  according to the weights −
i
t 1w  . 

2.	 Sampling: The odometric data are used to deter-
mine the estimated robot pose, i

ts , at instant t, using 

− −
i

t t 1 t 1p(s |s ,a ) .

3. Importance sampling: The sample importance wi is 
evaluated using ηi i

t tw = p(o |s ) .

3. Path Planner Based on Boundary Value 
Problems

Recently, we proposed a framework for controlling a 
robot in navigational tasks, like the exploration of unknown 
environments and the planning of paths between known 
positions6,7,29,22,8. It is based on potential fields that do not have 
local minima generated through the numeric solution of the 
BVP using Dirichlet boundary conditions and the following 
equation 

∇ + ε ⋅∇2 p(r) v p(r) = 0 	 (2)

where v is a bias vector and e is a scalar value. The allowed 
values of the parameters e and v generate an expressive 
amount of action sequences that the robot can take to reach 
a specific target (goal position) or to explore an unknown 
environment. Basically, the method discretizes the environ-
ment into a fixed homogeneous mesh with identical cells, like 
an occupancy grid. Each cell (i, j) is associated to a squared 
region of the real environment and possesses a potential 
value pi,j. Dirichlet boundary conditions are such that the 
cells with high probability of having an obstacle are set to 
potential 1 (high) while cells containing the target are set to 
potential 0 (low).

In the exploratory tasks, the robot collects information 
on the obstacles using its sensor and updates the mesh cells. 
We consider the unknown regions as targets that the robot 
must reach then the unknown regions cells are assigned to 
a low potential value (see Prestes et al.22 and Trevisan et al.29 
for more information). By using this information, the Gauss-
Seidel algorithm is employed to update the potential cells 
according to 

− + − +

+ − + −

+ + + +

ε
− + −

i, j i 1, j i 1, j i, j 1 i, j 1

i 1, j i 1, j x i, j 1 i, j 1 y

1
p = (p p p p )

4

((p p )v (p p )v )
8 	 (3)

where v = (vx, vy) and ε ∈ − +[ 2, 2] . The robot uses the 
gradient descent of this potential to determine the path to 
follow towards the target position. This method is formally 
complete, i.e., if there is a path connecting the robot posi-
tion to the target, it will be found. The high potential value 
prevents the robot from running into obstacles whereas the 
low potential value generates an attraction basin that pulls 
the robot.

As the environment that we are handling is sparse, we 
need strategies that efficiently guide the robot towards the 
meaningful environment regions. In Trevisan et al.29, we 
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extend our strategy to incorporate environmental features. 
They can be used as good clues to orient the exploration of 
an unknown environment and to construct routes between 
locations of interest25. By selecting different features in 
the boundaries we can generate different strategies for the 
complete exploration of the environment. These strate-
gies are associated with the potential values attributed to 
the different boundary configurations used to calculate the 
potential in Equation 2. For example, consider the environ-
ment represented in Figure  1. Regions labeled as “e” are 
edges of walls. When the robot explores these regions first 
it should exhibit a wall-following behavior. But if the robot 
avoids the walls seeking to fill unexplored concave regions, 
like the ones labeled as “c”, it should exhibit a space-filling 
behavior.

As we stated above, the behavior of the robot is given by 
the boundary conditions, where the boundary is held at a 
potential defined by some function along the boundary, i.e., 

∈∂Γp( ) = f( ) forr r r 	 (4)

where ∂G is the borderline between the explored and unex-
plored space of the environment G. Wall-following exploring 
behavior is achieved just setting a low potential (f(r) = 0) in 
wall edges and their neighborhood. On the other hand, space-
filling exploring behavior is achieved setting low potential in 
unexplored concave regions.

4. Particle Selection Based on BVP
A standard particle filter draws samples uniformly at 

random from the environment free-space. This process has 
some disadvantages for localization. First, the process can 
demand a high number of particles to completely cover the 
environment in order to guarantee that the robot will be able 

to recover its pose. It is known that the performance of the 
Monte Carlo filter highly depends on having some particles 
with a pose close to the real robot pose in the initial distribu-
tion10. Second, all regions of the environment have the same 
a priori probability to contain the robot pose. In large open 
regions, the absence of structural information makes the 
system spend a lot of time processing irrelevant particles, 
that is, particles which cannot contribute to determine the 
robot pose, since the robot will only be able to localize itself 
when its sensors capture some information from obstacles. 
Third, the regions near the obstacles are in general improp-
erly covered with a low particle density that can not represent 
adequately the real robot pose. Taking these problems into 
consideration, a better solution is to distribute the particles 
near obstacles instead of distributing them uniformly over 
all the environment. To make such a strategy effective, it 
requires a robust algorithm that leads the robot preferentially 
along the obstacles while guaranteeing the exploration of the 
complete environment.

An approach to solve these problems has been proposed 
by Tae-Bum Kwon16. They suggest to distribute the particles 
along the edges of the environment’s topological map. As 
these edges represent only a fraction of the environment, the 
method will process a smaller set of particles, thus reducing 
the computational cost. To localize itself, the robot initially 
explores the local environment until reaching an edge of the 
topological map, and afterwards navigates on the edges of 
the topological map15. The particles’ belief is updated only 
during this second phase.

Kwon et al.’s method is very adequate when the robot 
is inserted in a dense environment. As the edges correspond 
to the middle of the corridors, the robot will navigate the 
environment always sensing the obstacles around. However 
in a sparse environment, the edges will conduct the robot 
through an area where it will not be able to sense any obstacle. 
Particles on topological edges contribute no information in 
sparse environments due to the absence of structural infor-
mation. Then, the method will fail because this area does 
not have any relevant information that can help the robot to 
recover its pose.

Our approach solves these problems using a combina-
tion of an exploration based on the solution of a BVP22,9,29 
and a variation of the skeletization algorithm used in image 
processing13. For localization, the robot first explores the 
environment until sensing an obstacle. We then use the inter-
mediate results of the skeletization algorithm on the global 
map to determine relevant parts of the environment which 
represent all the positions where the robot can sense any 
obstacle. Afterwards we use the solution of a BVP defined 
on the skeleton and the global map to generate an initial 
distribution of the particles. Then, the robot continues the 
exploration, preferentially following obstacles, using our 
exploration method described in Section 3.

This approach has several advantages. First, the poten-
tial produced by the BVP focuses the particle distribution 
on regions more probable to contain the robot’s real pose 
avoiding large open regions. Second, the BVP does not 
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Figure 1. Region of the environment where the BVP is calculated. 
Searching for edges of walls, regions labeled as e, represents a wall-
following exploring behavior and for unexplored concave regions, 
labeled as c, it corresponds to a space-filling exploring behavior.
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constrain the robot movement through the middle of corri-
dors (or topological edges), which is not adequate in a sparse 
environment. The robot will explore, for instance, the envi-
ronment following walls as long as possible but switch to 
explore open regions if necessary. Therefore our method can 
be applied to any kind of environment.

Our proposal can be viewed as an integrated explora-
tion strategy11,5,26,18, since the robot is guided to regions that 
contain information to minimize the uncertainty about its 
pose. Strategies like this tend to produce better results than 
purely random strategies, since they use additional informa-
tion about the environment to determine the best next action 
to be executed. They differ mainly in the way they determine 
the region that must be visited, which can be chosen using 
a cost function. Amigoni1 shows that strategies that use cost 
functions to reach a balance between exploration and precision 
in mapping tend to be more efficient than random or greedy 
exploration strategies. As the environment used in the experi-
ment is sparse, regions near obstacles are more important 
than the others becoming more attractive to the robot. Then, 
our approach will lead the robot to the relevant environment 
region, instead of the regions that represent a sparse area.

The following sections describe our method in detail. 
Section 4.1 shows how we use skeletization and BVP to find 
a better initial distribution of the particles. In Section 4.2 we 
show how we can use the knowledge about the exploration 
behavior of the robot to further improve the distribution of 
the initial direction of the particles.

4.1. Extracting the intermediary environment skeleton

Our method determines the cells that the robot will prob-
ably visit during its navigation using the intermediary result 
of a skeletization process. Skeletization is a morphological 
thinning used in binary images that successively erodes away 
pixels from the boundary until no more thinning is possible. 
At the end, the pixels left over correspond to the image skel-
eton. In our case, the erosion acts on the free-space cells and 
at each erosion step, also called relaxation step, the free-space 
is shrunk at most one cell from its boundary.

If we want to guarantee that the robot always receives 
sensor readings, we must constrain it to navigate always at 
a maximum distance drobot from the obstacles. Depending 
on the environment, the robot can navigate always at a 
distance drobot. However, the robot may need to visit a 
narrow corridor with width less than drobot. Then the cells 
that should be visited comprise the intermediary result 
of the skeletization process after r relaxation steps, where 
r  =  drobot/wcell and wcell is the grid cell width. Even if the 
robot enters in a corridor with width less than 2drobot, the 
visited cells will be identified by this method. These cells, 
called visiting cells, are marked and receive a potential value 
of 0.5. The value 0.5 has been chosen to indicate good navi-
gation positions and because the potential values vary in 
interval [0,1]. Obstacles have a potential value of 1 and cells 
near the sparse regions have a potential of 0. The skeletiza-
tion process is continued for another r steps and the cells, 

called border cells, that represent the new intermediary skel-
eton have their potential values set to 0. Then, the harmonic 
potential of the other cells in the free-space is computed.

Figure 2a shows a sparse environment, the robot (solid 
black circle) and its view field (dashed circle). We can see that 
the robot can observe only a small fraction of the environment 
at a time. Figure 2b shows the potential field and the visiting 
and border cells generated using our approach. It also shows 
in gray scale the cells potential value, where the black and 
white correspond to the potential 1 and 0, respectively. The 
white cells have a potential value of 0 and a distance of 2drobot 
or more from the obstacles. In this case, the radius of robot 
vision field is 2drobot. Hence, the white cells represent positions 
where the robot will not sense any obstacle. Figure 2c shows 
the results if we double drobot in comparison to the experiment 
shown in Figure 2b. Figure 2d shows the skeleton extracted 
after the complete convergence of the skeletization algorithm.

To generate the initial particle distribution, we use 
the potential value of each cell to determine its prob-
ability to be selected to receive particles. Consider that 
we want to put k particles at a cell r = (i, j). The equation 

− − 2Pr(r is selected) = exp( c(p(r) 0.5) ) 	 (5)

provides the probability that each one of the k particles will 
be generated at space region related to the cell r, where p(r) is 
the potential of the cell r and c is a constant that determines 
what cells around the skeleton will be used to draw the parti-
cles based on their potential values. The smaller the constant 
value the more cells near the skeleton will have high prob-
ability to receive particles.

The advantage of using the solution of a BVP to deter-
mine the cells’ potential is that this method adapts itself to 
any kind of environment and produces a linear distribution 
of the potential from the obstacles.

Robot
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Visiting cells
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Figure 2. Results of the BVP and skeletization process in a sparse envi-
ronment. a) shows the sparse environment. b) shows the potential 
field and the visiting and border cells generated using our approach. 
The white cells are not used to draw the particles. c) shows the results 
obtained with a field of vision of double radius drobot compared to b. 
d) shows the skeleton extracted after the complete convergence of 
the skeletization algorithm.
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4.2. Using the potential to improve filter convergence

The BVP method allows us to further improve the initial 
distribution of the particles. Consider the initial phase of the 
exploration and localization. When the robot starts in a sparse 
region of the environment, where it cannot sense any obstacle, 
the BVP path planner will generate a space-filling behavior 
to explore this open region, until an obstacle is found. Then, 
the robot will determine its orientation and shows a wall-fol-
lowing behavior, moving perpendicular to the gradient of the 
current potential field. When encountering the first obstacle, 
the initial distribution of the particles is generated according to 
the method described in the previous section. We can improve 
the likelihood of producing good initial positions taking into 
consideration the robot’s orientation. Since it will follow walls 
in this phase, particles with orientation perpendicular to the 
gradient of the global vector field are more likely to repre-
sent the robot’s actual orientation. We therefore distribute the 
particle orientations uniformly over all directions which do no 
deviate more than a maximum angle f from a direction perpen-
dicular to the vector field. The angle f allows to compensate 
errors due to measurement and incomplete information of the 
robot’s local map. In our experiments, f = 30° has shown to 
produce good results (see section 5.4 below). Figure 3 shows an 
example of the particle distribution according to this method.

5. Experiments
This section presents several experiments conducted using 

the simulator MobileSim (version 0.4.0) of the robot Pioneer 
3DX.20. In Subsection 5.1, we give examples of the typical 
behaviour of the global localization process in environments of 
different density and connectivity. Afterwards, we present the 
results of three experiments. In a first, preparatory experiment, 
we compare the ability of the uniform distribution, Kwon et al.’s 
method and our method based on potential fields to distribute 
the particles in regions with high relevance for the localization 
process. The second experiment compares the quality of the 
localization of the three initial particle distributions. The third 
experiment studies the improvement of convergence using the 
method of Section 4.2 to distribute the initial orientation of the 
particles, according to the robot’s orientation. In all experiments, 
drobot is equal to half of the radius of the robot vision field.

Robot

a b

Figure 3. Initial distribution of particles according to initial direction 
of the robot. a) Global distribution of the particles and the robot’s 
pose after determining its initial orientation. b) Detailed view of the 
particles’ distribution in the region highlighted in (a).

Figure 4. Example of a successful localization in environment A. 
a) Map of the environment. b) Potential field (in grey) used to define 
the initial particle distribution. c)-g) Particle distribution when the 
robot is at positions 1-5 and simulation steps 1, 11, 21, 60, 76, respec-
tively, as shown in (h).

5.1. Global localization in environments of different 
density

In this subsection, we give three examples of a global 
localization process using our method based on BVPs for the 
exploration combined with the improved initial particle distri-
bution described in Section 4. We compare the behavior of 
the method in environments of different density, as shown in 
Figures 4a, 5a, and 6a. Environment A is dense, environment 
B sparse, but with a connected boundary and environment 
C sparse and non-connected. The environments have been 
chosen to verify that our method can be applied to any kind 
of environment, including sparse and non-connected ones, 
where a simple wall-following strategy will fail to explore 
the complete environment. The three environments have 
different sizes and grid cell widths as shown in Table 1. 

In all three environments, we try to localize the robot, 
where it can sense any obstacle at a maximum distance of 
2 m. The initial potential field and the resulting initial particle 
distribution are shown in Figures 4b, 5b, 6b.
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Figure 5. Example of a successful localization in environment B. 
a) Map of the environment. b) Potential field (in grey) used to define 
the initial particle distribution. c)-h) Particles distribution when the 
robot is at positions 1-6 and simulation steps 1, 14, 20, 26, 39, 65 
respectively, as shown in i.

Table 1. Characteristics of the three environments used in the experi-
ments.

  Type  Size 
[m] 

 Cell size 
[cm]

r

A  Dense 10 × 10 10 × 10 10

B  Sparse, connected 30 × 24 24 × 24 4  

C  Sparse, unconnected 26 × 20 24 × 24 4

a
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g

i
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5 6

Figure 6. Example of a successful localization in environment C. a) 
Map of the environment. b) Potential field (in grey) used to define 
the initial particle distribution. c)-h) Particle distribution when the 
robot is at positions 1-6 and simulation steps 2, 38, 65, 95, 108, 183, 
respectively, as shown in i.

For environment A, Figures 4c-g show the particle distri-
bution when the robot is at positions 1-5, respectively, as 
shown in Figure 4h. The path followed by the robot during 
the process is the curve in Figure 4h. For environment B, 
Figures 5c-h illustrate the convergence of the particles to a 
limited region in the environment. The path followed by the 
robot during the process is the curve in Figure 5i. For envi-

ronment C, Figures 6c-h show the distribution of the particles 
when the robot is at positions 1-6, respectively, as shown in 
Figure 6i. The path followed by the robot during the process 
is the curve in Figure 6i.

Figure 7 shows a typical example of the evolution of the 
localization error during the localization process in environ-
ment C. The localization error is calculated as the difference 
between the predicted position of the robot and the actual 
position in the simulator. The error tends to decrease 
according to the data acquired by the robot and stay bounded 
near to zero. In this case, the localization error is bounded by 
96 cm which corresponds to four times of the environment’s 
cell size.

The magnitude of the localization error in our experi-
ments stems from two main sources:

1. 	 The robot maintains a discrete map of the environ-
ment, with a varying cell size (see Table 1). Therefore 
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the expected sensor reading of a particle can be deter-
mined to a precision of at best one cell size. 

2. 	 To determine the true localization error in the simu-
lation, we have to map the current position estimate 
of the robot’s position, into the simulator’s coordinate 
system. This is done using a linear transformation. It 
can cause an additional, artificial error, if the robot’s 
map contains non-linearities introduced during the 
initial exploration. 

For this reason, in the following experiments, we consider 
a localization trial being successful, if the final localization 
error is less than four times the map’s cell size. Observe that 
the error introduced by the discretization can be decreased 
by reducing the cell size during exploration, at a higher 
processing cost.

5.2. Experiment 1: Comparison of the initial particle 
distribution of the three methods

With this preparatory experiment we want to verify 
that our method produces good environment coverage 
when compared to the uniform distribution and the topo-
logical distribution. To this aim, we focus this experiment 
on the particle distribution generated by each method, more 
precisely, in the amount of selected cells that will contain the 
particles instead of the amount of particles per cell. So, we 
consider that each free-space cell can be selected or not to 
contain just one particle.

The uniform distribution selects a free-space cell with 
probability 0.5. The topological distribution selects cells that 
comprise the environment’s topological map or neighboring 
cells up to a distance of two cells with probability 0.5. Our 
method chooses a cell based on its potential value using 
Equation 5 and c = 20, that is, the cells with potential values 
in the interval [0.4, 0.6] are more likely to be used to draw the 
particles.

The experiments have been conducted in the environ-
ment shown in Figure 2a since it contains sparse and dense 
regions depending on the robot’s field of vision. If the robot’s 

field of vision is small, then the environment is completely 
sparse, otherwise it can be dense inside the rooms and sparse 
in the center, or dense everywhere.

To compare the resulting particle distributions, we deter-
mine the amount of free-space cells that can provide sensor 
information, to help the robot to recover its pose. Figure  8 
shows an example of the cells selected using the three 
methods. The cells in Figure 8a have been selected using 
the uniform distribution, while the cells in Figure 8b and 
Figure 8c have been selected using our method and the topo-
logical distribution, respectively. Considering that the robot 
has a small field of vision, as shown in Figure 2a, we can see 
that most of cells selected by the uniform distribution and 
the topological distribution will be placed in the center of the 
environment. On the other hand, our method selects the cells 
near the robot that are more likely to correspond to the real 
robot pose.

These observations are confirmed by the following exper-
iment. We subdivide the real environment of approximately 
30 × 24 m into grid cells of size 24 × 24 cm. We consider that 
the robot navigates at maximum distance drobot from the obsta-
cles and that the radius of vision field is 2drobot. The distance 
drobot has been varied from 50 cm up to 2.5 m, in increments 
of 25 cm. For each value cells relevant for localization are at 
maximum distance 2drobot from the obstacles, since cells more 
distant than this comprise the sparse region of the environ-
ment. The environment has in average over different fields of 
vision 4520 relevant cells and 5250 irrelevant cells.

A comparison of the three methods is shown in Figure 9. 
The uniform distribution selected in average 2260 relevant 
particles and 2650 irrelevant ones. The relevant cells corre-
spond to ≈43% of relevant free-space cells. The topological 
distribution selected in average 571  relevant particles and 
821 irrelevant ones. The relevant cells correspond to ≈12% of 
relevant free-space cells. Our method selected ≈63% of the 
relevant free-space cells and only 0.3% of irrelevant cells. The 
processing using our method focuses just on the regions that 
can contribute for the robot to recover its pose.
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Figure 7. Example of an evolution of the localization error in envi-
ronment C.
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Figure 8. Particle density in the environment using the three distri-
butions. a) Cells selected using the uniform distribution. b) Cells 
selected using our method. c) Cells selected using the topological 
distribution.
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In conclusion, our method is able to generate an initial 
particle distribution which almost entirely consists of posi-
tions relevant for the localization of the robot. This leads to a 
higher convergence rate, as the following experiments show.

5.3. Experiment 2: Influence of the initial distribution 
on the convergence

In this set of experiments we compare the convergence 
of the Monte Carlo filter for different initial particle distri-
butions, where the particle orientation is random. The 
experiments have been conducted in the environment shown 
in Figure 6a. This environment is challenging for a global 
localization, since it is sparse, non-connected and has several 
symmetries.

In each experiment we generated 50 different initial posi-
tions of the robot. For each position we try to localize the 
robot using the uniform distribution, the topological distri-
bution and our method, with sample sizes of 2000, 4000, 6000 
and 8000 particles. Each localization trial has been run for 
150 time steps. A trial is considered to be successful, when the 
difference between the predicted and actual robot position is 
less than 96 cm (four times the cell size) at the end of the run. 
A trial which did not converge in this time frame is consid-
ered a failure. Figure 10a and Table 2 show the convergence 
rate, i.e. the number of successful localizations, as a function 
of the number of particles and the initial particle distribu-
tion.

 The chosen environment is large and sparse, and there-
fore the probability of generating an initial particle close to 
the true position of the robot is small. Since, the perform-
ance of the Monte Carlo filter highly depends on this (see the 
discussion in section 4), we observe low overall convergence 
rates between 10 and 66%. As expected, the convergence rate 
increases with the number of particles for all three initial 
distributions. The proposed method performs better than 
the other distributions, with 11 to 46% more successful local-
izations. In particular, it obtains with 4 k particles a better 
convergence rates than the uniform distribution with 8 k 
particles.

Table 2. Percentage of successful localizations. For each initial 
particle distribution and number of particles the convergence rate 
over 50 trials without and with orientation of the particles is given.

 Without orientation
  Number of particles

Distribution  2 k 4 k 6 k 8 k

Uniform  18%  22%  45%  50% 

Topological  10%  20%  16%  20% 

Our method  43%  58%  56%  66% 

With orientation

  Number of particles

Distribution  2 k  4 k  6 k  8 k

Uniform  43%  62%  77%  66%

Topological  20%  22%  20%  25%

Our method  58%  75%  83%  79%
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Figure 9. Comparison of relevant and irrelevant particles selected by 
different methods.

Figure 10. Results of localization experiments for different initial particle 
distributions and different numbers of particles. a) Percentage of 
successful localizations. b) Localization error of successful localizations.
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5.4. Experiment 3: Influence of the improved initial 
orientation of the particles

In this set of experiment we study the convergence rate 
when distributing the orientation according to the known 
initial orientation of the robot as described in Section 4.2, 
and compare it to the strategy of the previous experiment, 
which distributes the orientation uniformly over all possible 
angles. The experimental setup is the same as in the previous 
experiment: we report averages over 50 trials, for each initial 
particle distribution, and samples sizes of 2.000, 4.000, 6.000 
and 8.000 particles. All experiments have been conducted 
in the environment shown in Figure 6a choosing the robot’s 
initial pose randomly.

From the results shown in Figure 11 and Table 2 we can 
see that the use of the vector field significantly improves the 
convergence rate of the particle filter. The main reason is that 
it adds information on the expected robot pose during the 
localization process instead of using random particles with 
low likelihood of being a real robot pose. Generating the 
particles without regarding the expected robot behavior is to 
produce useless particles that will tend to rapidly disappear 
and will not contribute to the localization only increasing the 
processing cost. For instance, our method, using the vector 
field allows the filter to converge with 4000 particles in 75% 
of the trials (Figure 11a). Without using the information about 
the initial orientation, the standard Monte Carlo filter with 
uniform initial distribution achieves only a convergence rate 
of 66% with twice the number of particles (Figure 10a).

As in the previous experiment, we performed one additional 
evaluation with 20 k particles to verifiy the convergence of the 
methods. For both, the uniform and the proposed method, we 
obtained a convergence rate of 85% in this experiment.

6. Conclusions
In this paper, we propose a strategy that combines a path 

planner based on boundary value problems and MCL to 
solve the global localization problem in sparse environments. 
The proposed method has the advantage, that the poten-
tial produced by the BVP focuses the particle distribution on 
regions more probable to contain the robot pose avoiding large 
open regions. Furthermore, the BVP path planner does not 
constrain the robot’s motion through the middle of corridors 
and can be used in dense as well as sparse environments. The 
localization driven by the solution of a BVP on the environment 
guides the robot along its significant parts. Our experiments 
show, that we can make a better use of the knowledge about the 
initial position in the environment extracted from the potential 
than the particle filter alone, improving the convergence rate 
about 10 to 20% in a sparse environment. The localization is 
precise up to about four times the resolution of the underlying 
grid. This allows to achieve the same convergence rates and 
localization errors using fewer particles.

For future work, we intend to deal with symmetric environ-
ments and to use the information collected on the environment 
to determine where the robot must explore in order to minimize 
the odometric errors and produce a trustful environment map.
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Figure 11. Results of localization experiments for different initial 
particle distributions and different numbers of particles. The parti-
cle’s initial orientation is distributed using the orthogonal vector 
field according to the method proposed in Section 4. a) Percentage of 
successful localizations. b) Localization error of successful localiza-
tions.

The average final localization error of the successful local-
izations is shown in Figure 10b. For all three methods, and 
independent of the number of particles, a successful locali-
zation leads to an average localization error of about 63 cm 
equivalent to 2.6 cells, with a standard deviation of less than 
one cell width.

For a large number of particles we expect the uniform 
distribution and our method to converge to an always 
successful location in all trials. To confirm this, we performed 
one additional experiment with 20 k particles, and obtained 
convergence rates of 75 and 85% for the uniform distribution 
and our method, respectively.
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