
ISSN 0104-6500Journal of the Brazilian Computer Society, 2009; 15(3):65-75.

*e-mail: valdinei.freire@gmail.com

Compulsory Flow Q-Learning:
an RL algorithm for robot navigation based on

partial-policy and macro-states

Valdinei Freire da Silva*, Anna Helena Reali Costa

Laboratório de Técnicas Inteligentes – LTI, Departamento de Engenharia de Computação e Sistemas Digitais – PCS,
Escola Politécnica da Universidade de São Paulo – EPUSP, São Paulo - SP, Brasil

Received: July 7, 2009; Accepted: August 27, 2009

Abstract: Reinforcement Learning is carried out on-line, through trial-and-error interactions of the agent with the environment,
which can be very time consuming when considering robots. In this paper we contribute a new learning algorithm, CFQ-
Learning, which uses macro-states, a low-resolution discretisation of the state space, and a partial-policy to get around
obstacles, both of them based on the complexity of the environment structure. The use of macro-states avoids convergence of
algorithms, but can accelerate the learning process. In the other hand, partial-policies can guarantee that an agent fulfils its
task, even through macro-state. Experiments show that the CFQ-Learning performs a good balance between policy quality
and learning rate.

Keywords: machine learning, reinforcement learning, abstraction, partial-policy, macro-states.

1. Introduction
A common class of tasks in mobile robotics is planning

an action policy to reach a desired goal state, usually through
maximisation of a value function which designates sub-ob-
jectives and helps choosing the best path. For instance, the
shortest path, the path with the shortest time, the safest path,
or any combination of different sub-objectives5, 20. The defi-
nition of a task in this class may contain, besides the value
function, some a priori knowledge about the domain, e.g.,
environment map, environment dynamics, goal position.
Such knowledge allows a robot planning, while the lack of
such knowledge obliges the robot either to learn it previously
or to make use of heuristic strategies, such as moving to goal
direction while avoiding obstacles19.

While the problem of mapping the environment has
received great attention from the robotics community,
mainly under the simultaneous localisation and mapping
approach3,1, less attention has been given to learn the envi-
ronment dynamics. Given a map and the robot localisation, if
a goal position is given, it is possible through path planning
to determine a path free of obstacles from the robot position
to such goal. However, even if a priori knowledge is consid-
ered about moving directions in the Euclidean space so that
an action policy can be computed, minor variations in the
environment dynamics, such as slippery, oblique, or crushed
ground, are not captured as well as are not inferred more
generic sub-objectives.

Reinforcement Learning (RL)21 is a learning method that
can be applied to the task of learning the dynamic environ-
ment and planning an action policy altogether. In RL, an

autonomous agent learns an action policy based on its own
experience. This policy is inferred from a process of trial
and error, which is guided by the agent itself and received
reinforcements that indicate a partial evaluation of executed
actions, besides perceiving transitions among different
situations – formally states – evidencing the environment
dynamics. The sequence of received reinforcements deter-
mines the value of each executed trajectory. Reinforcements
can indicate walked distance, time elapsed or any desirable
local situation faced by the robot.

Whereas the robotic task of reaching a goal state in an
environment populated with obstacles can be solved through
planning, robots based on RL can learn and recover from
big changes in the environment, like the appearance of new
obstacles, or small ones, like the appearance of oil in the
ground or of crushed ground2. Moreover, RL does not need
to start learning from the scratch, some partial solution can
be considered so that an RL algorithm fills the gaps or a sub-
optimal solution can be considered so that an RL algorithm
improve it.

Within the last fifteen years, many works about RL have
been published18, 10, 22, 4, 14 extending Sutton’s article22, which
brought a mathematical formalism to RL. However, most
methods depend strongly on the size of the state space
in which the learning process is done, and gives rise to a
trade-off between policy quality and learning speed.

Recent works in RL are attempts at finding methods
that accelerate the learning rate without degenerating the
policy quality. In such methods three objectives are pursued:

Journal of the Brazilian Computer Society66 Silva VF, Costa AHR

scalability, so that no exponential increase occurs in the
complexity of solving tasks when increasing the size of state
space; knowledge transfer, so that most of common knowl-
edge can be shared among different tasks; and stability, so
that a method can be applied to different domains.

In this paper we propose a method that concerns scal-
ability and knowledge transfer properties, so that an increase
in the learning speed for a specific task in mobile robotics
can be reached. On the other hand, we restrict our algorithm
to a specific domain, that of reaching a goal state within an
environment that contains obstacles where robots cannot
walk through. The proposed method uses a discretisation
of the state space combined with a previously learnt partial-
policy7, both defined in accordance to the complexity of the
environment structure. This method is implemented in the
CFQ-Learning algorithm, which stands for Compulsory
Flow Q-Learning.

We use both, temporal and spatial abstraction, in order to
accelerate the learning process. Spatial abstraction is applied
through low resolution discretisation of the state space11, 16 and
similar states are grouped such that they share characteristics
which will be learnt equal to all of them. Temporal abstrac-
tion is applied through macro-actions8, which are a sequence
of actions or a sub-policy that are applied to more than one
step, so that less chance for the robot choosing actions is left.
However, since there are discontinuity in the state space
because of obstacles, we may use a high resolution discre-
tisation near such discontinuity, or a macro-action to over
come the obstacles. We have chosen the second case, using a
compulsory flow as partial-policy, which takes control of the
robot near obstacles to get round them.

Based on theoretical and experimental analysis, we show
that the CFQ-Learning performs a better balance between
policy quality and learning speed than the Q-Learning algo-
rithm does when applied to a discretised continuous state
space.

The remaining of this paper is organised as follows. Section
2 presents the RL formalisation together with Q-learning, the
most usual RL algorithm, then, the task domain of interest is
presented followed by reinforcement learning algorithm that
can solve it. In Section 3 we define formally the partial policy,
named compulsory flow, and describe how to learn such flow.
We then present the CFQ-Learning algorithm in Section 4,
which uses the compulsory flow and a discretisation of the
state space defined for the current task environment to learn
action policies. In Section 5 we compare the performance of
the CFQ-Learning algorithm with the Q-Learning algorithm
when different discretisations of the state space are consid-
ered. We describe the experiments performed and present the
results obtained. Finally, Section 6 summarises our conclu-
sions.

2. Reinforcement Learning and Task Domain
In works concerning RL, Markovian Decision Processes

(MDPs)17 are adopted as simplified models of real problems.
MDP models are built under a well-established mathematical

formalism, which compensates the simplifying conditions
used to describe the environment, as there are optimal algo-
rithms to solve problems expressed as MDPs17.

An MDP is defined by a tuple <A, S, P(st+1|st, at), r(s, a)>
where A is a finite set of possible actions a, S is a finite set
of possible states s, P(st+1|st, at) represents transition prob-
abilities and r(s, a) is a bounded expected reinforcement
function17.

2.1. Q-Learning algorithm

The basic idea behind RL is that the learning agent can
learn how to solve an MDP task through repeated interac-
tions with the environment. Note that all that is known by
the agent is the set of actions A and the set of states S, whereas
the functions P(s’|s, a) and r(s, a) must be learnt through
interaction within the environment.

The environment is described by the set of possible states
S, and the agent can perform any action from A. Each time it
performs an action a in some state s, the environment reaches
a new state and the agent receives a reinforcement r that indi-
cates the immediate value of this state-action transition (see
Figure 1).

The agent must find out a stationary policy of actions
a*t = π* (st) that maximises the expected value function Vπ(st),
which represents the expected reinforcement incurred for
a policy π, and π*(st) = arg maxπ [V

π (st)].
17 It is common to

assume the discounted-reinforcement value function, which
makes use of a discount factor γ ∈ (0,1] that forces recent rein-
forcements to be more important than remote ones. Vπ (st) is
thus defined by:

N t
t t 0

N t 0
V (i) lim E[r(s ,a)|s i]π

→∞ =
∑= γ = 	 (1)

The RL problem modelled as an MDP can be solved by
the Q-Learning algorithm24, which finds an optimal policy
incrementally without considering the transition probabili-
ties of the environment model. Q-Learning is based on the

Figure 1. A RL-learning agent interacting with its environment.

Environment

Reinforcement

Agent

r

a

s

67Compulsory Flow Q-Learning: An RL algorithm for robot navigation based on partial-policy and macro-states2009; 15(3)

TD(0) algorithm22, and estimates a value function Q(s,a)
for each state-action pair. This value function is recursively
calculated by:

+

+

= + α +
γ −

t 1 t t t t t t t t

a t t 1 t t t

Q (s ,a) Q (s ,a) [r(s , a)
 max Q (s ,a) Q (s ,a)]

	 (2)

where αt is the learning rate and γ is the discount factor.
During the learning process, at the time of choosing action

αt it is necessary to select one between two strategies: explora-
tion, which diversifies the policy in order to reach unknown
state-action pairs and may improve the best current known
policy, or exploitation, which chooses the best current known
policy. Frequently a combination of both strategies is used
(ε-greedy), where an exploration rate ε is defined9.

2.2. Task domain

 Goal-state tasks have many applications in robotics
– going to a desired room, holding an object, changing the
environment, and so on. Frequently it is required that the
robot plans the best possible path to solve the task within
a continuous state space. Although RL algorithms can sub-
optimally solve these tasks (for instance, by considering a
high-resolution grid world and using an unitary cost for each
action choice), too much time can result to obtain a reason-
ably good policy, resulting in an inefficient alternative in
many cases.

The interest here resides in applications where a set of goal-
state tasks are defined for the same kind of environment, so
that it is worth acquiring in advance some knowledge about
this kind of environment, and then reuse this knowledge in
future tasks, where different goal positions or different envi-
ronments are defined.

A mobile robot navigating in an one-floor house is a kind
of environment that is considered in this paper. Figure 2
shows the environment used in the experiments described in
Section 5, where a mobile robot can move in any direction.

The domain considered in this paper can be defined
in a continuous space. In this space we can define a set of
continuous states X that represents every possible position

of the robot in the environment. One of the characteristics of
such space is the notion of neighbourhood. For example, if a
position in a plane is considered, the Euclidean distance can
be considered to define a neighbourhood of each position,
meaning that the robot can reach a state in this neighbour-
hood in the near future.

Although the continuous state space presents some impor-
tant characteristics when planning, the solution discussed
in this paper – RL algorithms – are only applied to discrete
spaces. This way, we can consider a high resolution discrete
space S that represents the continuous space of the domain
through a map s(x): X → S. We must also consider a set of
discrete actions A. The chosen discretisation should respect
the following constraints:

 1.	 The set of continuous states that is mapped into
the same discrete state must be compact, i.e.,
if s(xi) = s(xj) = s then s(αxi + (1 – α)xj) = s for all
α ∈ (0,1). This guarantees that the notion of neigh-
bourhood is maintained in the discrete state space
when we consider the continuous mean position
of every continuous state mapped into the same
discrete state;

 2.	 The agent moves only to neighbour states in the
discrete state space, i.e., P(st + 1 = s’ | st = s, at) > 0 if and
only if s and s’ are neighbours. This guarantees that
the notion of neighbourhood in the continuous state
space can be extended to the discrete state space; and

 3.	 There are actions that can move the agent, with
higher probability, to any direction in the state
space, except to places where obstacles exist, i.e.,
for all neighbouring states s, s’ ∈ S, there is an
action a ∈ A such that P(st + 1 = s’ | st = s, at = a) =
maxs” ∈ S P(st + 1 = s” | st = s, at = a). This implies that
if the set of discrete states allows k neighbour states,
then | A | ≥ k. This guarantees that the agent can
move from any state to its neighbours.

Figure 3 shows two patterns of discrete states that respect
such constraints. In the hexagon pattern, there are 6 possible
actions, whereas in the quadratic pattern, there are 8 possible
actions.

Figure 2. The task environment used in the experiments. The goal
region is localised in the top-left corner. Figure 3. Examples of discrete patterns.

Journal of the Brazilian Computer Society68 Silva VF, Costa AHR

2.3. Q-Learning and continuous space

 The Q-Learning algorithm, as described in Section 2.1,
is restricted to discrete spaces (states and actions), and when
applied to a continuous state (or action) space, a discretisation
process is necessary. It is usual to use a uniform discretisation
of the space (states and actions) as are shown in Figure 3, such
that a discrete action is chosen and performed (for a constant
period of time, until the agent makes a transition between
discrete states, or until another condition occurs) in a consid-
ered discrete state, which encompasses the current real state.

In a continuous space, when applying a continuous
control u(x(t)), its respective value function Vu(x(t))(x(t)) is
obtained such that:

τ

τ→∞
τ

τ

∫

∫

γ

γ

+ γ τ

u(x(t)) t
0

t
0

u(x(t))

V (x(0)) = E[r(x(t),u(x(t)))dt]lim

 = E[r(x(t),u(x(t)))dt

 = V (x())],

	 (3)

where x(t) is the current state, r(x,u) is the current reinforce-
ment per time and γ is the discount factor.

In the discretisation process, a set of continuous states
is associated with a discrete state s, s: X→S, where X is
the set of continuous states and S is the set of discrete
states. The function s(x) relates each continuous state x to
a discrete state s = s(x) and for each discrete state in S, it
is supposed that the value function of all its continuous
states has similar values and similar optimal policy, which
means that if s(x1) = s(x2) then V*(x1)V*(x2) and p*(x1) 
p*(x2).4 In general, the set of discrete actions A is chosen
in such way that the agent can move to all its discrete
neighbours, as it was seen in section 2.2, the reinforcement
function r(s,a) is derived from the continuous state space,
and the value function is recursively calculated by Munos
and Moore11:

x(t)
t t t

tt
t t t t tt

t t t t t
a

Q (s ,a) =

= Q (s ,a) [r(x(t),a))dt

Q (s ,a) Q (s ,a)],max

+τ
+τ

τ
+τ

∫+ α γ

+γ −

	 (4)

where αt is the learning rate, γ is the discount factor, st
x(t) is the

discrete state st mapped from the continuous state x(t), and τ
is the time taken to execute action at.

As a result of the discretisation process, finite cardinality
is obtained. However, the performance of the Q-Learning
algorithm is completely dependent on such cardinality and
in the way the discretisation is made. If cardinality is high, a
good policy can be obtained, but the learning speed is low,
whereas if cardinality is low, the learning speed is high,
but the learned policy is of lower quality. Then a trade-off
between learning speed and policy quality must be consid-
ered for the discretisation process. When a discretisation
is used, the convergence of Q-Learning algorithm is also
corrupted, since it is not possible to guarantee a stationary
transition function P(s’|s,a), but it will depend on the policy

executed, or, more specifically, the previous discrete state
occurred.

In most domains, a uniform discretisation is not the best
solution, since the environment structure is not considered.
Munos and Moore11 presented an algorithm that makes
a non-uniform discretisation based on the value function
variance of continuous states belonged to the same discrete
state and on the influence of the value function of a discrete
state in other discrete states. However, the system dynamics
is considered to be known and deterministic. Reynolds16
proposed an adaptive algorithm based on policy to the non-
uniform discretisation process, which acquires the dynamics
of the environment whilst executes on-line discretisation of
the state.

One reason for having discontinuity in optimal value
functions and policies is the existence of obstacles and
prohibited state transitions in the environment. Both
methods cited above discretises the space in a more useful
way, when compared to the uniform discretisation frequently
used. However, when applied to an environment with many
obstacles, high resolution is used near obstacles, since they
produce high variations in the value function and in the
policy, what decreases the learning speed.

We propose an alternative way to deal with this problem.
The idea is to previously define i) an obligatory partial policy,
named compulsory flow, that should be performed by the
learning agent when near obstacles, and ii) a low-resolution
discretisation of the state space based on the environment
structure together with constraints on the action policy to be
used in regions free of obstacles. Once the compulsory flow
and the low-resolution discretisation of the state space are
defined, this information can be reused in the policy learning
process for different tasks defined for the same environment.
Based on these definitions (compulsory flow and low-reso-
lution discretisation), we contribute a new algorithm, called
Compulsory Flow Q-Learning, aiming at a better balance
between learning speed and policy quality.

3. Compulsory Flow
Partial policy is a mapping from a environmental region

to a subset of possible actions13, 7, 15 and it helps incorporating
a priori knowledge into RL learning methods. Differently
from previous work in the literature, we consider a priori
partial policy that reach a desired domain-dependent behav-
iour in the environment. In this paper, this action subset has
only one possible action for each state. In order to define the
compulsory flow, a high-resolution state space discretisation
is used. Although it can spend lots of time to determine the
compulsory flow, it is calculated only once for each envi-
ronment. The same environment structure can be used for
different tasks and the compulsory flow can be reused so that
the learning speed can be increased.

Also, we will see that the compulsory flow can be defined
locally, meaning that it is not sensitive to the global environ-
ment, but to situations faced by the robot. The compulsory
flow is a partial policy used when the agent is near obstacles,

69Compulsory Flow Q-Learning: An RL algorithm for robot navigation based on partial-policy and macro-states2009; 15(3)

so that the robot can get around obstacles6. In this sense, hard-
coded partial policy can be used to implement get-around
behaviour, being the only requirement that the agent keeps
some inertial movement.

The compulsory flow is defined by the tangential-flow

region RTF and the tangential-flow policy
at 1

TF t(s)−π , where
at 1
ts − ∈ ×  , since at 1

TF t(s)−π is a function that defines an

action a for each st, which is reached by performing at–1 in st–1.
The previous action at–1 is used in order to guarantee iner-
tial behaviour, trying to keep the same movement direction
when avoiding obstacles.

Definition 1: Let NTF(s, a) be the expected number of
actions performed by an agent to reach an obstacle when
executing the action a in the state s and then following a
random policy; at–1 and at be the last action executed and
the new action to be performed, respectively; min

TFN be the
number that determines the size of RTF; and a



 be the vector
which represents action a in the continuous space; then it is
defined:

 • Tangential-flow region RTF: si ∈ RTF if and only if

min
a TF i TF

1
N (s ,a) N

| | ∈∑ ≤
, that means, si is near

some obstacle, and

 • Tangential-flow policy πTF(.):

 a mint 1
TF t TF t TF

a ,a 0t 1

(s) = arg (|N (s ,a) N |),min−

〈 〉≥−

π −
 

where t 1a ,a−〈 〉
 

 represents the inner product of t 1a −



and a



. This means that the angle between the vector
a

TF(s)π


and the vector a


 is less than 90°, what keeps
the agent in a similar movement direction given by

t 1a −



 and near the boarder of RFT, making the agent
getting around obstacles.

Figure 4 illustrates a tangential-flow region (gray region)
and the corresponding tangential-flow policy when the agent
starts at point 1, performs an action i t 1a = a −



 that drives it
into RTF and activates πTF(.)(see Definition 1), which avoids

collision with the wall by conducting the agent through the
compulsory flow until point 2, when it is released and a new
action ai can be chosen to be performed. When the agent is
released from a compulsory flow will be explained in the
next section.

In order for a learning agent to autonomously define (by
exploration) the tangential-flow region RTF for an unknown
environment, we propose the use of the following modifica-
tion of the Q-Learning update rule:

t 1 t
TF t t TF t t t t t

t
TF t 1

a

t
TF t t

N (s ,a) = N (s ,a) [r(s ,a)
1

N (s ,a)
| |

N (s ,a)],

+

+
∈
∑

+ α

+γ

−


	 (5)

where αt is the learning rate and γ is the discount factor. We
use average instead of maximisation. The same rule can be
adapted for different RL-algorithms. The reinforcement func-
tion must be defined to detect obstacles, as it is used in this
work, but it can be used to detect other undesirable regions,
such as cliff12, strong magnetic field, high temperature, moist,
etc.

Figure 5 shows the value a t
1

N (s,a)
| | ∈∑ 

 obtained by

using the described modification of the Q-Learning algo-
rithm (Equation 1) with r(st, at) = 0 when hitting an obstacle
and r(st, at) = 1 otherwise, and discount factor γ = 1. The
tone of gray represents how far the agent is from reaching a
obstacle walking randomly (black is closer, white is further).
The tangential-flow region RTF of this environment can be
obtained by defining a desired min

TFN . Figure 6 shows the
tangential-flow region RTF obtained with min

TFN = 17.

Template de Figuras - JBCS
* Fontes Palatino (Roman) Tamanho 8.
* "Cenário" - linhas com 0.5 de Stroke.
* Linhas pertencente a "Dados gráficos" com 0.6 de Stroke.
* Preencimento de barras pb devem ter 10% de preto quando houver texto e 50% quando não.
* Dados na tabela ou figura devem estar no mesmo idioma do artigo.
* Legendas devem estar dentro de caixas de texto com 2 mm de distância nas extremidades.
* Texto da figura ou gráfico deve estar em "Sentence case".
* Setas devem ter 0.6 ponto de Stroke.
* Letras que representam figuras ex: ©, devem estar no canto superior direito com 2 mm de
distância das extremidades da figura.
* Retirar eixos sem valores de gráficos.
* Retirar efeito 3D dos gráficos, e deixar somente em gráfico de pizza.
* Padrão de cor Grayscale.
OBS: DELETAR ESTA CAIXA APÓS O TÉRMINO DAS FIGURAS.

ai
2

1
3

ai

Figure 4. An agent’s movement, which starts at point 1 and follows
the compulsory flow until reaching the point 2, when it is released,
reaching point 3.

Figure 5. The values a t
1

N (s,a)
| | ∈∑ 

 obtained through the modifi-

cation of the Q-Learning algorithm with γ = 1, r(s, a) = 0 when hitting
an obstacle and r(st, at) = 1 otherwise, 100 × 100 discretisation, after
106 iterations.

Journal of the Brazilian Computer Society70 Silva VF, Costa AHR

Notice that, regions with similar structure (corners,
U-like form, gates) present similar tangential-flow region.
This characteristic is important so that an agent can learn the
tangential-flow region even before taking any action in the
environment where a task must be done. The learning of the
tangential-flow region and consequently the tangential-flow
policy can be learnt before hand if all typical situations can be
experimented by the agent and that such policy be defined in
the space of local situations.

It is worth noticing again that the tangential-flow policy
is just one possible compulsory flow. As it was already
mentioned, a hard-coded behaviour of getting around
obstacles can be programmed in the agent, even with other
prohibited regions. Also, the compulsory flow can be used
not only to get around regions where the agent cannot get
through, but it can be used as away of guaranteeing that the
agent does not damage itself.

4. Compulsory Flow Q-Learning
The CFQ-Learning algorithm addresses applications

where previous information about the structure of the envi-
ronment can be gathered and reused. It may happen when
the robot has had already access to the environment in
previous task or if the environment is of some kind previ-
ously known.

In our approach, while a high-resolution discretisation is
used for the a priori definition of the compulsory flow for a
task environment, a low-resolution discretisation is used in
the CFQ-Learning algorithm to learn the task policy, what
increases the learning speed while still keeping the agent safe
in dangerous regions.

Similarly to the discretisation process described in
Section 2.3, a set M of macro-states m is defined by a function
m: S → M, where in general the region in a macro-state m ∈ M
is much larger than the region in a discrete state s ∈ S. The set
of actions A for macro-states is the same as that defined for
discrete states.

The CFQ-Learning algorithm considers as input: 1) the set
S of high-resolution discrete states with the function s : X → S,

where X is the set of continuous states; 2) the set M of low-
resolution macro-states with the function m: S → M; 3) the
set A of discrete actions; and 4) the tangential-flow region RTF
and policy πTF with the function NTF: S × A → R.

In the algorithm there are three levels of states: 1) the
continuous level X, that is where the real interaction of the
agent with the environment occurs; 2) the high-resolution
discrete level S, that is where the CFQ-Learning algorithm
controls the real agent; and 3) the low-resolution discrete
level M, that is where the policy is learnt.

When an action a is chosen in S-level, a correspondent
action a



 is performed in X-level for a discrete time tn – tn–1.
When an action a is chosen in M-level, the agent can

operate in two modes: 1) obstacle free -- this mode is used
in regions free of obstacles and the action a is executed in the
S-level; and 2) compulsory flow -- this mode is used when
the agent reaches the tangential-flow region and the action
determined by pTF is executed. The agent enters in mode 1
every time a macro-state transition occurs or when the action
α takes the agent away from obstacles and there is not a great
change in the movement direction (angle between the direc-
tions of the previous and the actual actions is less or equal
than 90°). The agent enters in mode 2 every time the agent
enters in the tangential-flow region.

The idea behind the CFQ-Learning algorithm is that, once
an action a is chosen to be performed at the macro-state m,
the action a will be executed whilst the agent is in the same
macro-state and this action a does not drive the agent into
the compulsory-flow region RTF (previously defined for the
environment). Every time the agent invades the RFT region,
the compulsory flow πFT(.) drives the agent until it can either
perform the original action a again or a macro-state transition
occurs. In the latter case, the learning agent chooses a new
action. The compulsory flow πFT(.) is defined on the basis of
the NTF(s, a) previously calculated and stored for being used
in the current environment.

Table 1 describes the proposed CFQ-Learning algorithm.
Variable tmacro keeps the entrance step of the macro-state, vari-
able Rmacro keeps the cumulative reinforcement within current
macro-state and amacro keeps the first action chosen when
entering current macro-state (amacro is the action that causes
all the sequence of actions within current macro-state, i.e., the
action that can fire a partial policy).

As said in the Section 2.3, each possible action ai ∈ A repre-
sents a movement in some direction in the state space X. The
quality of a policy learnt using CFQ-Learning depends on the
sets A and M. Let p*(s) be the number of states visited from the
state s when applying an optimal policy and P(s) be the number
of states visited from the state s when applying an optimal
policy learnt under CFQ-Learning. The error (P(s)-p*(s)) can be
minimised if the set A represents well all directions of move-
ments: the larger the number of possible actions, the smaller the
distance between P(s) and p*(s), once it will be easier choosing
an action similar to the optimal policy. The same happens to
the discretisation process, because it can help minimising the
bounding error, enlarging macro-states when possible (for

Figure 6. Tangential-flow region using min
TFN = 17.

71Compulsory Flow Q-Learning: An RL algorithm for robot navigation based on partial-policy and macro-states2009; 15(3)

instance, narrow corridors) or making them smaller when there
are no obvious sub-optimal actions.

5. Experimental Results
In the previous section nothing has been said about

the CFQ-Learning algorithm convergence or optimal
policy found under CFQ-Learning. Experiments have been
conducted to empirically show that a high quality policy
can be found, i.e., close in performance to optimal policy,
and that in fact a convergence occurs to such high quality
policy. CFQ-Learning is compared with a modified version of
Q-Learning, here called Coarse Q-Learning, using the same
low-resolution discretisation of the state space.

The Coarse Q-Learning algorithm used in these experi-
ments is applied to the same set of macro-states used by
the CFQ-Learning algorithm. In coarse Q-Learning, once
an action is chosen inside a macro-state, the same action is
executed until a transition between macro-states occurs or
the agent collides with an obstacle. In the first case a new
action is chosen after the macro-state transition. In the latter
case, a random action is selected.

In order to evaluate the algorithm here defined, we
choose to experiment in a discrete simulated environment.
Figure 7 shows the original high-resolution state space,
which has 10,000 states (100 × 100), whereas Figure 8 shows
four different discretisations for the same environment used

Figure 7. The original high-resolution discretisation of the environ-
ment with 10,000 states (100 × 100). The goal region is localised in the
top-left corner.

Figure 8. The 4 different discretisations of the environment used to
compare Q-Learning, Coarse Q-Learning and CFQ-Learning algo-
rithms.

Template de Figuras - JBCS
* Fontes Palatino (Roman) Tamanho 8.
* "Cenário" - linhas com 0.5 de Stroke.
* Linhas pertencente a "Dados gráficos" com 0.6 de Stroke.
* Preencimento de barras pb devem ter 10% de preto quando houver texto e 50% quando não.
* Dados na tabela ou figura devem estar no mesmo idioma do artigo.
* Legendas devem estar dentro de caixas de texto com 2 mm de distância nas extremidades.
* Texto da figura ou gráfico deve estar em "Sentence case".
* Setas devem ter 0.6 ponto de Stroke.
* Letras que representam figuras ex: ©, devem estar no canto superior direito com 2 mm de
distância das extremidades da figura.
* Retirar eixos sem valores de gráficos.
* Retirar efeito 3D dos gráficos, e deixar somente em gráfico de pizza.
* Padrão de cor Grayscale.
OBS: DELETAR ESTA CAIXA APÓS O TÉRMINO DAS FIGURAS.

Table 1. The CFQ-Learning algorithm.

In the beginning of each episode:

1. Q(m, a) = 0 for all m and all a,

2. tmacro = t0, Rt
m

0

acro = 0,

3. st0
= s(x(t0)), mt0

= m(st0
)

4. Choose at0
 according to the current policy and do amacro =at0

At any discrete time tn, 0 ≤ n < ∞ the agente:

1. Executes action atn during interval [tn, tn+1] and calculates the

reiforcement
macrot t tn 1

t t ttn n nn
r(s ,a) = r(x(t),a)dt−+ γ∫

2. Does macro macro
t tt t n nn 1 n

R = R r(s ,a)
+

+

3. Observes the next continuous state x(tn+1)

4. Does t n 1 t tn 1 n 1 n 1
s = s(x(t)) and m = m(s)++ + +

5. If t tn 1 n
m m

+
≠

– Then updates macro
t tn 1 n

Q (m ,a)
+

 according to:

macro
t tn 1 n

macro macro
t t t tn n n n 1

macro(t t)n 1 a t tn n 1

macro
t tn n

Q (m ,a) =

= Q (m ,a) [R

max Q (m ,a)

Q (m ,a)],

+

+

−+
+

+ α +

γ

−

chose an action tn 1
a

+
 according to the current policy and

does macro
n 1t = t + , macro

tn 1
R = 0

+
,

+
macro

tn 1
a = a

– Else if
macro

tn
a ,a 0〈 〉 ≥
 

 and

macro min
TF t TF TF tan 1 n 1

1
N (s ,a) > min{N , N (s ,a)}

| | ∈+ +
∑ 

 * Then macro
tn 1

a = a
+

 * Else
atn

t TF tn 1 n 1
a = (s)

+ +
π

Journal of the Brazilian Computer Society72 Silva VF, Costa AHR

Template de Figuras - JBCS
* Fontes Palatino (Roman) Tamanho 8.
* "Cenário" - linhas com 0.5 de Stroke.
* Linhas pertencente a "Dados gráficos" com 0.6 de Stroke.
* Preencimento de barras pb devem ter 10% de preto quando houver texto e 50% quando não.
* Dados na tabela ou figura devem estar no mesmo idioma do artigo.
* Legendas devem estar dentro de caixas de texto com 2 mm de distância nas extremidades.
* Texto da figura ou gráfico deve estar em "Sentence case".
* Setas devem ter 0.6 ponto de Stroke.
* Letras que representam figuras ex: ©, devem estar no canto superior direito com 2 mm de
distância das extremidades da figura.
* Retirar eixos sem valores de gráficos.
* Retirar efeito 3D dos gráficos, e deixar somente em gráfico de pizza.
* Padrão de cor Grayscale.
OBS: DELETAR ESTA CAIXA APÓS O TÉRMINO DAS FIGURAS.

0 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000 9.000 10.000

700

600

500

400

200

300300

100

0

105

104

103

102

101

A
ve

ra
ge

 n
um

be
r

of
 s

te
ps

 to
 g

oa
l

Q-Learning: 10,000 states
CFQ-Learning:

17 Macro-states
36 Macro-states
64 Macro-states

141 Macro-states
Best Q-Learning

Figure 9. Comparison of the Best Q-Learning performance with the learning rate of the algorithms: Q-Learning and Coarse Q-Learning. Each
value in the graphic represents the average performance over 200 runs and 50 episodes.

to compare CFQ-Learning and Coarse Q-Learning. These
discretisations were made respecting the three properties of
the set of macro-states M in Section 2.2.

Parameters used in the experiments are: discount factor
γ = 0.99, learning rate α = 0.3 decreasing in each episode
with rate 0.9999 and exploration rate ε = 0.2 decreasing in
each episode with rate 0.99975. The Best Q-Learning results
(bold line in Figures 9, 10 and 11) were found following the
procedure: 1) execute Q-Learning for 90,000 episodes in the
high-resolution discretisation (100 × 100) and finds the “best
policy”; 2) apply the “best policy” to 10,000 episodes and calcu-
lates the average performance among those 10,000 episodes;
and 3) repeat this procedure for 200 runs and calculate the
average performance among those 200 runs. This result is
shown in graphics as the “Best Q-Learning”, which is used as
a reference to a very good performance.

Figure 9 shows the results using Coarse Q-Learning for
different discretisations compared with high-resolution
Q-Learning (100 × 100). It is possible to see the great depend-
ence of the policy quality on the number of states. The
number of steps to reach the goal region taken by the Coarse
Q-Learning using 36 macro-states is more than 2 times
greater than the number of steps taken by the high-resolution
Q-Learning, after 10,000 episodes. If the number of macro-
states used is 16, the result is 5 times worse.

Experiments were conducted with CFQ-Learning and its
on-line version (when there is no knowledge about the envi-
ronment and the tangential-flow policy must be obtained

during the learning process). In the first steps of on-line
CFQ-Learning, for all s ∈ S and a ∈ A, NTF (s, a) = min

TFN +
e, where ε > 0, what means that, any state s is not in the
tangential-flow region RTF and the tangential-flow policy πTF
does not take control of the agent. As the agent collides with
obstacles, the Equation 1 is applied and the function NTF(.) is
learnt, defining the real tangential-flow region and policy. In
this version of CFQ-Learning the macro-state policy and the
tangential-flow policy are learnt concurrently.

Differently from Coarse Q-Learning, CFQ-Learning
obtains a policy with results closer to high-resolution
Q-Learning. Figure 10 and Figure 11 show the results for
CFQ-Learning and on-line CFQ-Learning, respectively.
Both of them show that CFQ-Learning does not have a great
dependence on the number of states: even when 16 states
are considered, the number of steps is only 20 percent worse
than the number of steps obtained by Q-Learning. When
CFQ-Learning and on-line CFQ-Learning are compared,
the greatest differences are in the first 1,000 episodes, when
on-line Q-Learning is learning the tangential-flow policy and
tangential-flow region, whereas the final performance of the
policies is similar.

It is worth mentioning that the policy to be considered as
the best Q-Learning is not really optimal, since it was learnt
and there is no guarantee of its convergence. Also, the value
shown in Figures 9, 10 and 11 is a sample of learnt policies.
Then, it is allowed statistic variance, occurring that some
policy reach better result than the best Q-Learning policy.

73Compulsory Flow Q-Learning: An RL algorithm for robot navigation based on partial-policy and macro-states2009; 15(3)

0 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000 9.000 10.000

110110

105

95

100

85

80

90

75

7070

100

65

60

105

104

103

102

101

A
ve

ra
ge

 n
um

be
r

of
 s

te
ps

 to
 g

oa
l

Q-Learning: 10,000 states
On-line CFQ-Learning:

17 Macro-states
36 Macro-states
64 Macro-states

141 Macro-states
Best Q-Learning

Figure 10. Comparison of the Best Q-Learning performance with the learning rate of the algorithms: Q-Learning and CFQ-Learning. Each
value in the graphic represents the average performance over 200 runs and 50 episodes.

0 1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000 9.000 10.000

110

105

100

95

90

85

80

75

70

105

104

103

102

101

A
ve

ra
ge

 n
um

be
r

of
 s

te
ps

 to
 g

oa
l

Q-Learning: 10,000 states
CFQ-Learning:

17 Macro-states
36 Macro-states
64 Macro-states

141 Macro-states
Best Q-Learning

Figure 11. Comparison of the Best Q-Learning performance with the learning rate of the algorithms: Q-Learning and on-line CFQ-Learning.
Each value in the graphic represents the average performance over 200 runs and 50 episodes.

Journal of the Brazilian Computer Society74 Silva VF, Costa AHR

6. Conclusion
In this paper we presented a new learning algorithm,

which makes use of high-resolution state-space discretisation
in the control process, while using low-resolution discretisa-
tion in the policy-learning process. Using this algorithm the
learning agent is capable of reaching the goal and finding out
a good policy faster than by using algorithms based on high-
resolution discretisation of the state space.

The proposed CFQ-Learning algorithm worked very well
in the experiments conducted, having a performance close to
the optimal policy, even when using low resolution discre-
tisation of the state space. Although it is necessary to have
a previous knowledge about the environment, such knowl-
edge can be extract during the execution of the first tasks in
the environment and reused later on in order to accelerate the
learning process for future tasks.

In cases where it is not possible defining the tangential-
flow region and policy a priori different solutions can be
adopted. It is possible to use sensors (sonars, laser) to sense
the distance and the direction of the robot to the undesirable
regions and then, based on this sensing, to create the compul-
sory flow. It must be defined a priori the tangential-flow
region based on distance and the tangential-flow policy to
get around undesirable regions. Another option is to learn
NTF(s, a) in the sensor space, which can be generalised for
different parts of the environment or even different environ-
ments. This sensor space depends only on the regions nearby
the agent and their relative positions, not considering the
global position of the agent in the environment.

Ackowledgements

This research was conducted under the CAPES/GRICES
Project MultiBot (Grant no. 099/03), FAPESP project Logprop
(Grant no. 2008/03995-5) and CNPq project Ob-SLAM (Grant
no. 475690/2008-7). Valdinei F. Silva is grateful to FAPESP
(proc. 02/13678-0) and Anna H. R. Costa is grateful to CNPq
(Grant No. 305512/2008-0).

References

1	 Bailey T and Durrant-Whyte H. Simultaneous localisation
and mapping (slam): Part ii - state of the art. Robotics and
Automation Magazine 2006; 13(3):1-10.

2.	 Bianchi RAC. Uso de heurísticas para a aceleração do aprendizado
por reforço. [PhD thesis]. São Paulo, SP: Universidade de São
Paulo; 2004.

3.	 Durrant-Whyte H and Bailey T. Simultaneous localisation
and mapping (slam): the essential algorithms. Robotics and
Automation Magazine 2006; 13(2):1-9. (part I)

4.	 Foster D and Dayan P. Structure in the space of value
functions. Machine Learning 2002; 49(2/3):325-346.

5.	 Jarvis R. Robot path planning: complexity, flexibility and
application scope. In: Proceedings of the 2006 international
symposium on Practical cognitive agents and robots; 2006; Perth,
Australia. New York, SP: ACM; 2006. p. 3-14.

6.	 Lee H, Shen Y, Yu CH, Singh G and Andrew Y. Ng: quadruped
robot obstacle negotiation via reinforcement learning. In:
Proceedingsof the IEEE International Conference on Robotics and
Automation; 2006; Orlando, Florida. Los Alamitos, CA: IEEE
Computer Society Press; 2006. p. 3003-3010.

7.	 Marthi B, Russell SJ, Latham D and Guestrin C. Concurrent
hierarchical reinforcement learning. In: Kaelbling LP and
Saffiotti A. (Eds.). Proceedings of the Nineteenth International
Joint Conference on Artificial Intelligence; 2005; Edinburgh. San
Francisco, CA: Morgan Kaufmann; 2005. p. 779-785.

8.	 Mcgovern A, Sutton RS and Fagg AH. Roles of macro-actions
in accelerating reinforcement learning. In: Proceedings of the
Grace Hopper Grace Hopper Celebration of Women in Computing;
1997; San Jose, CA. Palo Alto, CA: Anita Borg Institute for
Women and Technology; 1997. p. 13-18.

9.	 Mitchell TM. Machine learning. San Francisco: WCB/McGraw-
Hill; 1997.

10.	 Moore AW and Atkeson CG. Prioritized sweeping:
reinforcement learning with less data and less real time.
Machine Learning 1993; 13(1):237-285.

11.	 Munos R and Moore A. Variable resolution discretization in
optimal control. Machine Learning 2002; 49(2/3):291-323.

12.	 Murarka A, Sridharan M and Kuipers B. Detecting obstacles
and drop-offs using stereo and motion cues for safe local
motion. In: Proceedings of International Conference on Intelligent
Robots and Systems; 2008; Nice, France. Los Alamitos, CA:
IEEE Computer Society Press; 2008. p. 702-708.

13.	 Parr R and Russell S. Reinforcement learning with hierarchies
of machines. In: Proceedings of 10 Advances in Neural Information
Processing Systems; 1998; Denver, CO. Cambridge, MA: The
MIT Press; 1998.

14.	 Precup D, Sutton RS and Singh SP. Theoretical results on
reinforcement learning with temporally abstract behaviors.
In: Proceedings of the Tenth European Conference on Machine
Learning; 1998; Berlin. New York: Springer; 1998. p. 382-393.

15.	 Ramon J, Driessens K and Croonenborghs T. Transfer
learning in reinforcement learning problems through partial
policy recycling. In: Proceedings of the 18 European Conference
on Machine Learning; 2007; Warsaw. New York, NY: Springer;
2000. p. 699-707.

16.	 Reynolds SI. Decision boundary partitioning: variable resolution
model-free reinforcement learning. In: Proceedings of the 17
International Conference on Machine Learning; 2000; Palo Alto, CA.
San Francisco, CA: Morgan Kaufmann; 2000. p. 783-790.

17.	 Ross SM. Applied probability models with optimization
applications. San Francisco: Holden-Day; 1970.

18.	 Rummery GA and Niranjan M. On-line q-learning using
connectionist systems. Cambridge: Cambridge University;
1994. (technical report CUED/F-INFENG/TR 166).

19.	 Selvatici AHP and Costa AHR. A hybrid adaptive architecture
for mobile robots based on reactive behaviors. In: Proceedings of
the 15 International Conference on Hybrid Intelligent Systems; 2005;
Rio de Janeiro. Los Alamitos: IEEE Computer Society; 2005.
p. 29-34.

75Compulsory Flow Q-Learning: An RL algorithm for robot navigation based on partial-policy and macro-states2009; 15(3)

20. Strandberg M. Robot path planning: an object oriented
approach. [PhD Thesis]. Sweden: Royal Institute of
Technology; 2004.

21.	 Sutton RS and Barto AG. Reinforcement learning: an
introduction. Cambridge: MIT Press; 1998.

22.	 Sutton RS. Learning to predict by method of temporal
differences. Machine Learning. 1988; 3(1):9-44.

23.	 Sutton RS. Integrated architectures for learning, planning and reacting
based on approximating dynamic programming. In: Proceedings of the
7 International Conference on Machine Learning; 1990; Austin, TX. San
Francisco, CA: Morgan Kaufmann; 1990. p. 216-224.

24.	 Watkins JCHC. Learning from Delayed Rewards. [PhD thesis].
Cambridge: University of Cambridge; 1989.

