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Abstract: Reinforcement Learning is carried out on-line, through trial-and-error interactions of the agent with the environment, 
which can be very time consuming when considering robots. In this paper we contribute a new learning algorithm, CFQ-
Learning, which uses macro-states, a low-resolution discretisation of the state space, and a partial-policy to get around 
obstacles, both of them based on the complexity of the environment structure. The use of macro-states avoids convergence of 
algorithms, but can accelerate the learning process. In the other hand, partial-policies can guarantee that an agent fulfils its 
task, even through macro-state. Experiments show that the CFQ-Learning performs a good balance between policy quality 
and learning rate.
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1. Introduction
A common class of tasks in mobile robotics is planning 

an action policy to reach a desired goal state, usually through 
maximisation of a value function which designates sub-ob-
jectives and helps choosing the best path. For instance, the 
shortest path, the path with the shortest time, the safest path, 
or any combination of different sub-objectives5, 20. The defi-
nition of a task in this class may contain, besides the value 
function, some a priori knowledge about the domain, e.g., 
environment map, environment dynamics, goal position. 
Such knowledge allows a robot planning, while the lack of 
such knowledge obliges the robot either to learn it previously 
or to make use of heuristic strategies, such as moving to goal 
direction while avoiding obstacles19.

While the problem of mapping the environment has 
received great attention from the robotics community, 
mainly under the simultaneous localisation and mapping 
approach3,1, less attention has been given to learn the envi-
ronment dynamics. Given a map and the robot localisation, if 
a goal position is given, it is possible through path planning 
to determine a path free of obstacles from the robot position 
to such goal. However, even if a priori knowledge is consid-
ered about moving directions in the Euclidean space so that 
an action policy can be computed, minor variations in the 
environment dynamics, such as slippery, oblique, or crushed 
ground, are not captured as well as are not inferred more 
generic sub-objectives.

Reinforcement Learning (RL)21 is a learning method that 
can be applied to the task of learning the dynamic environ-
ment and planning an action policy altogether. In RL, an 

autonomous agent learns an action policy based on its own 
experience. This policy is inferred from a process of trial 
and error, which is guided by the agent itself and received 
reinforcements that indicate a partial evaluation of executed 
actions, besides perceiving transitions among different 
situations – formally states – evidencing the environment 
dynamics. The sequence of received reinforcements deter-
mines the value of each executed trajectory. Reinforcements 
can indicate walked distance, time elapsed or any desirable 
local situation faced by the robot.

Whereas the robotic task of reaching a goal state in an 
environment populated with obstacles can be solved through 
planning, robots based on RL can learn and recover from 
big changes in the environment, like the appearance of new 
obstacles, or small ones, like the appearance of oil in the 
ground or of crushed ground2. Moreover, RL does not need 
to start learning from the scratch, some partial solution can 
be considered so that an RL algorithm fills the gaps or a sub-
optimal solution can be considered so that an RL algorithm 
improve it.

Within the last fifteen years, many works about RL have 
been published18, 10, 22, 4, 14 extending Sutton’s article22, which 
brought a mathematical formalism to RL. However, most 
methods depend strongly on the size of the state space 
in which the learning process is done, and gives rise to a 
trade-off between policy quality and learning speed.

Recent works in RL are attempts at finding methods 
that accelerate the learning rate without degenerating the 
policy quality. In such methods three objectives are pursued: 
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scalability, so that no exponential increase occurs in the 
complexity of solving tasks when increasing the size of state 
space; knowledge transfer, so that most of common knowl-
edge can be shared among different tasks; and stability, so 
that a method can be applied to different domains.

In this paper we propose a method that concerns scal-
ability and knowledge transfer properties, so that an increase 
in the learning speed for a specific task in mobile robotics 
can be reached. On the other hand, we restrict our algorithm 
to a specific domain, that of reaching a goal state within an 
environment that contains obstacles where robots cannot 
walk through. The proposed method uses a discretisation 
of the state space combined with a previously learnt partial-
policy7, both defined in accordance to the complexity of the 
environment structure. This method is implemented in the 
CFQ-Learning algorithm, which stands for Compulsory 
Flow Q-Learning.

We use both, temporal and spatial abstraction, in order to 
accelerate the learning process. Spatial abstraction is applied 
through low resolution discretisation of the state space11, 16 and 
similar states are grouped such that they share characteristics 
which will be learnt equal to all of them. Temporal abstrac-
tion is applied through macro-actions8, which are a sequence 
of actions or a sub-policy that are applied to more than one 
step, so that less chance for the robot choosing actions is left. 
However, since there are discontinuity in the state space 
because of obstacles, we may use a high resolution discre-
tisation near such discontinuity, or a macro-action to over 
come the obstacles. We have chosen the second case, using a 
compulsory flow as partial-policy, which takes control of the 
robot near obstacles to get round them.

Based on theoretical and experimental analysis, we show 
that the CFQ-Learning performs a better balance between 
policy quality and learning speed than the Q-Learning algo-
rithm does when applied to a discretised continuous state 
space.

The remaining of this paper is organised as follows. Section 
2 presents the RL formalisation together with Q-learning, the 
most usual RL algorithm, then, the task domain of interest is 
presented followed by reinforcement learning algorithm that 
can solve it. In Section 3 we define formally the partial policy, 
named compulsory flow, and describe how to learn such flow. 
We then present the CFQ-Learning algorithm in Section  4, 
which uses the compulsory flow and a discretisation of the 
state space defined for the current task environment to learn 
action policies. In Section 5 we compare the performance of 
the CFQ-Learning algorithm with the Q-Learning algorithm 
when different discretisations of the state space are consid-
ered. We describe the experiments performed and present the 
results obtained. Finally, Section 6 summarises our conclu-
sions.

2. Reinforcement Learning and Task Domain
In works concerning RL, Markovian Decision Processes 

(MDPs)17 are adopted as simplified models of real problems. 
MDP models are built under a well-established mathematical 

formalism, which compensates the simplifying conditions 
used to describe the environment, as there are optimal algo-
rithms to solve problems expressed as MDPs17.

An MDP is defined by a tuple <A, S, P(st+1|st, at), r(s, a)> 
where A is a finite set of possible actions a, S is a finite set 
of possible states s, P(st+1|st, at) represents transition prob-
abilities and r(s, a) is a bounded expected reinforcement 
function17.

2.1. Q-Learning algorithm

The basic idea behind RL is that the learning agent can 
learn how to solve an MDP task through repeated interac-
tions with the environment. Note that all that is known by 
the agent is the set of actions A and the set of states S, whereas 
the functions P(s’|s, a) and r(s, a) must be learnt through 
interaction within the environment.

The environment is described by the set of possible states 
S, and the agent can perform any action from A. Each time it 
performs an action a in some state s, the environment reaches 
a new state and the agent receives a reinforcement r that indi-
cates the immediate value of this state-action transition (see 
Figure 1).

The agent must find out a stationary policy of actions 
a*t = π* (st) that maximises the expected value function Vπ(st), 
which represents the expected reinforcement incurred for 
a policy π, and π*(st) = arg maxπ [V

π (st)].
17 It is common to 

assume the discounted-reinforcement value function, which 
makes use of a discount factor γ ∈ (0,1] that forces recent rein-
forcements to be more important than remote ones. Vπ (st) is 
thus defined by:

N t
t t 0

N t 0
V (i) lim E[ r(s ,a )|s i]π

→∞ =
∑= γ = 	 (1)

The RL problem modelled as an MDP can be solved by 
the Q-Learning algorithm24, which finds an optimal policy 
incrementally without considering the transition probabili-
ties of the environment model. Q-Learning is based on the 

Figure 1. A RL-learning agent interacting with its environment.

Environment

Reinforcement

Agent

r

a

s



67Compulsory Flow Q-Learning: An RL algorithm for robot navigation based on partial-policy and macro-states2009; 15(3)

TD(0) algorithm22, and estimates a value function Q(s,a) 
for each state-action pair. This value function is recursively 
calculated by:

+

+

= + α +
γ −

t 1 t t t t t t t t

a t t 1 t t t

Q (s ,a ) Q (s ,a ) [r(s , a )  
                     max Q (s ,a) Q (s ,a )]

	 (2)

where αt is the learning rate and γ is the discount factor.
During the learning process, at the time of choosing action 

αt it is necessary to select one between two strategies: explora-
tion, which diversifies the policy in order to reach unknown 
state-action pairs and may improve the best current known 
policy, or exploitation, which chooses the best current known 
policy. Frequently a combination of both strategies is used 
(ε-greedy), where an exploration rate ε is defined9.

2.2. Task domain

 Goal-state tasks have many applications in robotics 
– going to a desired room, holding an object, changing the 
environment, and so on. Frequently it is required that the 
robot plans the best possible path to solve the task within 
a continuous state space. Although RL algorithms can sub-
optimally solve these tasks (for instance, by considering a 
high-resolution grid world and using an unitary cost for each 
action choice), too much time can result to obtain a reason-
ably good policy, resulting in an inefficient alternative in 
many cases.

The interest here resides in applications where a set of goal-
state tasks are defined for the same kind of environment, so 
that it is worth acquiring in advance some knowledge about 
this kind of environment, and then reuse this knowledge in 
future tasks, where different goal positions or different envi-
ronments are defined.

A mobile robot navigating in an one-floor house is a kind 
of environment that is considered in this paper. Figure 2 
shows the environment used in the experiments described in 
Section 5, where a mobile robot can move in any direction.

The domain considered in this paper can be defined 
in a continuous space. In this space we can define a set of 
continuous states X that represents every possible position 

of the robot in the environment. One of the characteristics of 
such space is the notion of neighbourhood. For example, if a 
position in a plane is considered, the Euclidean distance can 
be considered to define a neighbourhood of each position, 
meaning that the robot can reach a state in this neighbour-
hood in the near future.

Although the continuous state space presents some impor-
tant characteristics when planning, the solution discussed 
in this paper – RL algorithms – are only applied to discrete 
spaces. This way, we can consider a high resolution discrete 
space S that represents the continuous space of the domain 
through a map s(x): X → S. We must also consider a set of 
discrete actions A. The chosen discretisation should respect 
the following constraints:

 1.	 The set of continuous states that is mapped into 
the same discrete state must be compact, i.e., 
if s(xi)  =  s(xj)  =  s then s(αxi + (1 – α)xj) = s for all 
α ∈ (0,1). This guarantees that the notion of neigh-
bourhood is maintained in the discrete state space 
when we consider the continuous mean position 
of every continuous state mapped into the same 
discrete state;

 2.	 The agent moves only to neighbour states in the 
discrete state space, i.e., P(st + 1 = s’ | st = s, at) > 0 if and 
only if s and s’ are neighbours. This guarantees that 
the notion of neighbourhood in the continuous state 
space can be extended to the discrete state space; and 

 3.	 There are actions that can move the agent, with 
higher probability, to any direction in the state 
space, except to places where obstacles exist, i.e., 
for all neighbouring states s, s’ ∈ S, there is an 
action a ∈ A such that P(st + 1 = s’ | st = s, at = a) = 
maxs” ∈ S P(st + 1 = s” | st = s, at = a). This implies that 
if the set of discrete states allows k neighbour states, 
then | A | ≥ k. This guarantees that the agent can 
move from any state to its neighbours.

Figure 3 shows two patterns of discrete states that respect 
such constraints. In the hexagon pattern, there are 6 possible 
actions, whereas in the quadratic pattern, there are 8 possible 
actions.

Figure 2. The task environment used in the experiments. The goal 
region is localised in the top-left corner. Figure 3. Examples of discrete patterns.
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2.3. Q-Learning and continuous space

 The Q-Learning algorithm, as described in Section 2.1, 
is restricted to discrete spaces (states and actions), and when 
applied to a continuous state (or action) space, a discretisation 
process is necessary. It is usual to use a uniform discretisation 
of the space (states and actions) as are shown in Figure 3, such 
that a discrete action is chosen and performed (for a constant 
period of time, until the agent makes a transition between 
discrete states, or until another condition occurs) in a consid-
ered discrete state, which encompasses the current real state.

In a continuous space, when applying a continuous 
control u(x(t)), its respective value function Vu(x(t))(x(t)) is 
obtained such that:

τ

τ→∞
τ

τ

∫

∫

γ

γ

+ γ τ

u(x(t)) t
0

t
0

u(x(t))

V (x(0)) = E[ r(x(t),u(x(t)))dt]lim

                      = E[ r(x(t),u(x(t)))dt

                      = V (x( ))],

	 (3)

where x(t) is the current state, r(x,u) is the current reinforce-
ment per time and γ is the discount factor.

In the discretisation process, a set of continuous states 
is associated with a discrete state s, s: X→S, where X is 
the set of continuous states and S is the set of discrete 
states. The function s(x) relates each continuous state x to 
a discrete state s = s(x) and for each discrete state in S, it 
is supposed that the value function of all its continuous 
states has similar values and similar optimal policy, which 
means that if s(x1) = s(x2) then V*(x1)V*(x2) and p*(x1)  
p*(x2).4 In general, the set of discrete actions A is chosen 
in such way that the agent can move to all its discrete 
neighbours, as it was seen in section 2.2, the reinforcement 
function r(s,a) is derived from the continuous state space, 
and the value function is recursively calculated by Munos 
and Moore11:

x(t)
t t t

tt
t t t t tt

t t t t t
a

Q (s ,a ) =

= Q (s ,a ) [ r(x(t),a ))dt

Q (s ,a) Q (s ,a )],max

+τ
+τ

τ
+τ

∫+ α γ

+γ −

	 (4)

where αt is the learning rate, γ is the discount factor, st
x(t) is the 

discrete state st mapped from the continuous state x(t), and τ 
is the time taken to execute action at.

As a result of the discretisation process, finite cardinality 
is obtained. However, the performance of the Q-Learning 
algorithm is completely dependent on such cardinality and 
in the way the discretisation is made. If cardinality is high, a 
good policy can be obtained, but the learning speed is low, 
whereas if cardinality is low, the learning speed is high, 
but the learned policy is of lower quality. Then a trade-off 
between learning speed and policy quality must be consid-
ered for the discretisation process. When a discretisation 
is used, the convergence of Q-Learning algorithm is also 
corrupted, since it is not possible to guarantee a stationary 
transition function P(s’|s,a), but it will depend on the policy 

executed, or, more specifically, the previous discrete state 
occurred.

In most domains, a uniform discretisation is not the best 
solution, since the environment structure is not considered. 
Munos and Moore11 presented an algorithm that makes 
a non-uniform discretisation based on the value function 
variance of continuous states belonged to the same discrete 
state and on the influence of the value function of a discrete 
state in other discrete states. However, the system dynamics 
is considered to be known and deterministic. Reynolds16 
proposed an adaptive algorithm based on policy to the non-
uniform discretisation process, which acquires the dynamics 
of the environment whilst executes on-line discretisation of 
the state.

One reason for having discontinuity in optimal value 
functions and policies is the existence of obstacles and 
prohibited state transitions in the environment. Both 
methods cited above discretises the space in a more useful 
way, when compared to the uniform discretisation frequently 
used. However, when applied to an environment with many 
obstacles, high resolution is used near obstacles, since they 
produce high variations in the value function and in the 
policy, what decreases the learning speed.

We propose an alternative way to deal with this problem. 
The idea is to previously define i) an obligatory partial policy, 
named compulsory flow, that should be performed by the 
learning agent when near obstacles, and ii) a low-resolution 
discretisation of the state space based on the environment 
structure together with constraints on the action policy to be 
used in regions free of obstacles. Once the compulsory flow 
and the low-resolution discretisation of the state space are 
defined, this information can be reused in the policy learning 
process for different tasks defined for the same environment. 
Based on these definitions (compulsory flow and low-reso-
lution discretisation), we contribute a new algorithm, called 
Compulsory Flow Q-Learning, aiming at a better balance 
between learning speed and policy quality.

3. Compulsory Flow
Partial policy is a mapping from a environmental region 

to a subset of possible actions13, 7, 15 and it helps incorporating 
a priori knowledge into RL learning methods. Differently 
from previous work in the literature, we consider a priori 
partial policy that reach a desired domain-dependent behav-
iour in the environment. In this paper, this action subset has 
only one possible action for each state. In order to define the 
compulsory flow, a high-resolution state space discretisation 
is used. Although it can spend lots of time to determine the 
compulsory flow, it is calculated only once for each envi-
ronment. The same environment structure can be used for 
different tasks and the compulsory flow can be reused so that 
the learning speed can be increased.

Also, we will see that the compulsory flow can be defined 
locally, meaning that it is not sensitive to the global environ-
ment, but to situations faced by the robot. The compulsory 
flow is a partial policy used when the agent is near obstacles, 
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so that the robot can get around obstacles6. In this sense, hard-
coded partial policy can be used to implement get-around 
behaviour, being the only requirement that the agent keeps 
some inertial movement.

The compulsory flow is defined by the tangential-flow 

region RTF and the tangential-flow policy 
at 1

TF t(s )−π , where 
at 1
ts − ∈ ×  , since at 1

TF t(s )−π   is a function that defines an 

action a for each st, which is reached by performing at–1 in st–1. 
The previous action at–1 is used in order to guarantee iner-
tial behaviour, trying to keep the same movement direction 
when avoiding obstacles.

Definition 1: Let NTF(s, a) be the expected number of 
actions performed by an agent to reach an obstacle when 
executing the action a in the state s and then following a 
random policy; at–1 and at be the last action executed and 
the new action to be performed, respectively; min

TFN  be the 
number that determines the size of RTF; and a



 be the vector 
which represents action a in the continuous space; then it is 
defined:

 • Tangential-flow region RTF: si ∈ RTF if and only if 

min
a TF i TF

1
N (s ,a) N

| | ∈∑ ≤
, that means, si is near 

some obstacle, and

 • Tangential-flow policy πTF(.):

 a mint 1
TF t TF t TF

a ,a 0t 1

(s ) = arg (|N (s ,a) N |),min−

〈 〉≥−

π −
 

where t 1a ,a−〈 〉
 

 represents the inner product of t 1a −



 
and a



. This means that the angle between the vector  
a

TF(s )π


and the vector a


 is less than 90°, what keeps 
the agent in a similar movement direction given by 

t 1a −



 and near the boarder of RFT, making the agent 
getting around obstacles.

Figure 4 illustrates a tangential-flow region (gray region) 
and the corresponding tangential-flow policy when the agent 
starts at point 1, performs an action i t 1a = a −



 that drives it 
into RTF and activates πTF(.)(see Definition 1), which avoids 

collision with the wall by conducting the agent through the 
compulsory flow until point 2, when it is released and a new 
action ai can be chosen to be performed. When the agent is 
released from a compulsory flow will be explained in the 
next section.

In order for a learning agent to autonomously define (by 
exploration) the tangential-flow region RTF for an unknown 
environment, we propose the use of the following modifica-
tion of the Q-Learning update rule:

t 1 t
TF t t TF t t t t t

t
TF t 1

a

t
TF t t

N (s ,a ) = N (s ,a ) [r(s ,a )
1

N (s ,a)
| |

N (s ,a )],

+

+
∈
∑

+ α

+γ

−


	 (5)

where αt is the learning rate and γ is the discount factor. We 
use average instead of maximisation. The same rule can be 
adapted for different RL-algorithms. The reinforcement func-
tion must be defined to detect obstacles, as it is used in this 
work, but it can be used to detect other undesirable regions, 
such as cliff12, strong magnetic field, high temperature, moist, 
etc.

Figure 5 shows the value a t
1

N (s,a)
| | ∈∑ 

 obtained by 

using the described modification of the Q-Learning algo-
rithm (Equation 1) with r(st, at) = 0 when hitting an obstacle 
and r(st, at) = 1 otherwise, and discount factor γ = 1. The 
tone of gray represents how far the agent is from reaching a 
obstacle walking randomly (black is closer, white is further). 
The tangential-flow region RTF of this environment can be 
obtained by defining a desired min

TFN  . Figure 6 shows the 
tangential-flow region RTF obtained with min

TFN  = 17.
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Figure 4. An agent’s movement, which starts at point 1 and follows 
the compulsory flow until reaching the point 2, when it is released, 
reaching point 3.

Figure 5. The values a t
1

N (s,a)
| | ∈∑ 

 obtained through the modifi-

cation of the Q-Learning algorithm with γ = 1, r(s, a) = 0 when hitting 
an obstacle and r(st, at) = 1 otherwise, 100 × 100 discretisation, after 
106 iterations.
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Notice that, regions with similar structure (corners, 
U-like form, gates) present similar tangential-flow region. 
This characteristic is important so that an agent can learn the 
tangential-flow region even before taking any action in the 
environment where a task must be done. The learning of the 
tangential-flow region and consequently the tangential-flow 
policy can be learnt before hand if all typical situations can be 
experimented by the agent and that such policy be defined in 
the space of local situations.

It is worth noticing again that the tangential-flow policy 
is just one possible compulsory flow. As it was already 
mentioned, a hard-coded behaviour of getting around 
obstacles can be programmed in the agent, even with other 
prohibited regions. Also, the compulsory flow can be used 
not only to get around regions where the agent cannot get 
through, but it can be used as away of guaranteeing that the 
agent does not damage itself.

4. Compulsory Flow Q-Learning
The CFQ-Learning algorithm addresses applications 

where previous information about the structure of the envi-
ronment can be gathered and reused. It may happen when 
the robot has had already access to the environment in 
previous task or if the environment is of some kind previ-
ously known.

In our approach, while a high-resolution discretisation is 
used for the a priori definition of the compulsory flow for a 
task environment, a low-resolution discretisation is used in 
the CFQ-Learning algorithm to learn the task policy, what 
increases the learning speed while still keeping the agent safe 
in dangerous regions.

Similarly to the discretisation process described in 
Section 2.3, a set M of macro-states m is defined by a function 
m: S → M, where in general the region in a macro-state m ∈ M 
is much larger than the region in a discrete state s ∈ S. The set 
of actions A for macro-states is the same as that defined for 
discrete states.

The CFQ-Learning algorithm considers as input: 1) the set 
S of high-resolution discrete states with the function s : X → S, 

where X is the set of continuous states; 2) the set M of low-
resolution macro-states with the function m: S → M; 3)  the 
set A of discrete actions; and 4) the tangential-flow region RTF 
and policy πTF with the function NTF: S × A → R.

In the algorithm there are three levels of states: 1) the 
continuous level X, that is where the real interaction of the 
agent with the environment occurs; 2) the high-resolution 
discrete level S, that is where the CFQ-Learning algorithm 
controls the real agent; and 3) the low-resolution discrete 
level M, that is where the policy is learnt.

When an action a is chosen in S-level, a correspondent 
action a



 is performed in X-level for a discrete time tn – tn–1.
When an action a is chosen in M-level, the agent can 

operate in two modes: 1) obstacle free -- this mode is used 
in regions free of obstacles and the action a is executed in the 
S-level; and 2) compulsory flow -- this mode is used when 
the agent reaches the tangential-flow region and the action 
determined by pTF is executed. The agent enters in mode 1 
every time a macro-state transition occurs or when the action 
α takes the agent away from obstacles and there is not a great 
change in the movement direction (angle between the direc-
tions of the previous and the actual actions is less or equal 
than 90°). The agent enters in mode 2 every time the agent 
enters in the tangential-flow region.

The idea behind the CFQ-Learning algorithm is that, once 
an action a is chosen to be performed at the macro-state m, 
the action a will be executed whilst the agent is in the same 
macro-state and this action a does not drive the agent into 
the compulsory-flow region RTF (previously defined for the 
environment). Every time the agent invades the RFT region, 
the compulsory flow πFT(.) drives the agent until it can either 
perform the original action a again or a macro-state transition 
occurs. In the latter case, the learning agent chooses a new 
action. The compulsory flow πFT(.) is defined on the basis of 
the NTF(s, a) previously calculated and stored for being used 
in the current environment.

Table 1 describes the proposed CFQ-Learning algorithm. 
Variable tmacro keeps the entrance step of the macro-state, vari-
able Rmacro keeps the cumulative reinforcement within current 
macro-state and amacro keeps the first action chosen when 
entering current macro-state (amacro is the action that causes 
all the sequence of actions within current macro-state, i.e., the 
action that can fire a partial policy).

As said in the Section 2.3, each possible action ai ∈ A repre-
sents a movement in some direction in the state space X. The 
quality of a policy learnt using CFQ-Learning depends on the 
sets A and M. Let p*(s) be the number of states visited from the 
state s when applying an optimal policy and P(s) be the number 
of states visited from the state s when applying an optimal 
policy learnt under CFQ-Learning. The error (P(s)-p*(s)) can be 
minimised if the set A represents well all directions of move-
ments: the larger the number of possible actions, the smaller the 
distance between P(s) and p*(s), once it will be easier choosing 
an action similar to the optimal policy. The same happens to 
the discretisation process, because it can help minimising the 
bounding error, enlarging macro-states when possible (for 

Figure 6. Tangential-flow region using min
TFN  = 17.
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instance, narrow corridors) or making them smaller when there 
are no obvious sub-optimal actions.

5. Experimental Results
In the previous section nothing has been said about 

the CFQ-Learning algorithm convergence or optimal 
policy found under CFQ-Learning. Experiments have been 
conducted to empirically show that a high quality policy 
can be found, i.e., close in performance to optimal policy, 
and that in fact a convergence occurs to such high quality 
policy. CFQ-Learning is compared with a modified version of 
Q-Learning, here called Coarse Q-Learning, using the same 
low-resolution discretisation of the state space.

The Coarse Q-Learning algorithm used in these experi-
ments is applied to the same set of macro-states used by 
the CFQ-Learning algorithm. In coarse Q-Learning, once 
an action is chosen inside a macro-state, the same action is 
executed until a transition between macro-states occurs or 
the agent collides with an obstacle. In the first case a new 
action is chosen after the macro-state transition. In the latter 
case, a random action is selected.

In order to evaluate the algorithm here defined, we 
choose to experiment in a discrete simulated environment. 
Figure 7 shows the original high-resolution state space, 
which has 10,000 states (100 × 100), whereas Figure 8 shows 
four different discretisations for the same environment used 

Figure 7. The original high-resolution discretisation of the environ-
ment with 10,000 states (100 × 100). The goal region is localised in the 
top-left corner.

Figure 8. The 4 different discretisations of the environment used to 
compare Q-Learning, Coarse Q-Learning and CFQ-Learning algo-
rithms.
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Table 1. The CFQ-Learning algorithm.

In the beginning of each episode: 

1. Q(m, a) = 0 for all m and all a,

2. tmacro = t0, Rt
m

0
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Figure 9. Comparison of the Best Q-Learning performance with the learning rate of the algorithms: Q-Learning and Coarse Q-Learning. Each 
value in the graphic represents the average performance over 200 runs and 50 episodes.

to compare CFQ-Learning and Coarse Q-Learning. These 
discretisations were made respecting the three properties of 
the set of macro-states M in Section 2.2.

Parameters used in the experiments are: discount factor 
γ  =  0.99, learning rate α = 0.3 decreasing in each episode 
with rate 0.9999 and exploration rate ε = 0.2 decreasing in 
each episode with rate 0.99975. The Best Q-Learning results 
(bold line in Figures 9, 10 and 11) were found following the 
procedure: 1) execute Q-Learning for 90,000 episodes in the 
high-resolution discretisation (100 × 100) and finds the “best 
policy”; 2) apply the “best policy” to 10,000 episodes and calcu-
lates the average performance among those 10,000 episodes; 
and 3) repeat this procedure for 200 runs and calculate the 
average performance among those 200 runs. This result is 
shown in graphics as the “Best Q-Learning”, which is used as 
a reference to a very good performance.

Figure 9 shows the results using Coarse Q-Learning for 
different discretisations compared with high-resolution 
Q-Learning (100 × 100). It is possible to see the great depend-
ence of the policy quality on the number of states. The 
number of steps to reach the goal region taken by the Coarse 
Q-Learning using 36 macro-states is more than 2  times 
greater than the number of steps taken by the high-resolution 
Q-Learning, after 10,000 episodes. If the number of macro-
states used is 16, the result is 5 times worse.

Experiments were conducted with CFQ-Learning and its 
on-line version (when there is no knowledge about the envi-
ronment and the tangential-flow policy must be obtained 

during the learning process). In the first steps of on-line 
CFQ-Learning, for all s ∈ S and a ∈ A, NTF (s, a) = min

TFN  + 
e, where ε > 0, what means that, any state s is not in the 
tangential-flow region RTF and the tangential-flow policy πTF 
does not take control of the agent. As the agent collides with 
obstacles, the Equation 1 is applied and the function NTF(.) is 
learnt, defining the real tangential-flow region and policy. In 
this version of CFQ-Learning the macro-state policy and the 
tangential-flow policy are learnt concurrently.

Differently from Coarse Q-Learning, CFQ-Learning 
obtains a policy with results closer to high-resolution 
Q-Learning. Figure 10 and Figure 11 show the results for 
CFQ-Learning and on-line CFQ-Learning, respectively. 
Both of them show that CFQ-Learning does not have a great 
dependence on the number of states: even when 16 states 
are considered, the number of steps is only 20 percent worse 
than the number of steps obtained by Q-Learning. When 
CFQ-Learning and on-line CFQ-Learning are compared, 
the greatest differences are in the first 1,000 episodes, when 
on-line Q-Learning is learning the tangential-flow policy and 
tangential-flow region, whereas the final performance of the 
policies is similar.

It is worth mentioning that the policy to be considered as 
the best Q-Learning is not really optimal, since it was learnt 
and there is no guarantee of its convergence. Also, the value 
shown in Figures 9, 10 and 11 is a sample of learnt policies. 
Then, it is allowed statistic variance, occurring that some 
policy reach better result than the best Q-Learning policy.
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6. Conclusion
In this paper we presented a new learning algorithm, 

which makes use of high-resolution state-space discretisation 
in the control process, while using low-resolution discretisa-
tion in the policy-learning process. Using this algorithm the 
learning agent is capable of reaching the goal and finding out 
a good policy faster than by using algorithms based on high-
resolution discretisation of the state space.

The proposed CFQ-Learning algorithm worked very well 
in the experiments conducted, having a performance close to 
the optimal policy, even when using low resolution discre-
tisation of the state space. Although it is necessary to have 
a previous knowledge about the environment, such knowl-
edge can be extract during the execution of the first tasks in 
the environment and reused later on in order to accelerate the 
learning process for future tasks.

In cases where it is not possible defining the tangential-
flow region and policy a priori different solutions can be 
adopted. It is possible to use sensors (sonars, laser) to sense 
the distance and the direction of the robot to the undesirable 
regions and then, based on this sensing, to create the compul-
sory flow. It must be defined a priori the tangential-flow 
region based on distance and the tangential-flow policy to 
get around undesirable regions. Another option is to learn  
NTF(s, a) in the sensor space, which can be generalised for 
different parts of the environment or even different environ-
ments. This sensor space depends only on the regions nearby 
the agent and their relative positions, not considering the 
global position of the agent in the environment.
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