
                                                                                   ISSN 0104-6632
Printed in Brazil

   Vol. 19,  No. 04,  pp. 365 - 370,  October - December  2002

*To whom correspondence should be addressed

Brazilian Journal
of Chemical
Engineering

SIMULATION OF AN INDUSTRIAL
WASTEWATER TREATMENT PLANT USING

ARTIFICIAL NEURAL NETWORKS AND
PRINCIPAL COMPONENTS ANALYSIS

K.P.Oliveira-Esquerre1, M.Mori2* and R.E.Bruns3

1,2Departamento de Processos Químicos, Faculdade de Engenharia Química, UNICAMP,
P.O.Box 6066, Barão Geraldo, 13081-970 Campinas - SP, Brazil
E-mail: karla@feq.unicamp.br,  E-mail:mori@feq.unicamp.br,

3Instituto de Química, UNICAMP, P.O. Box 6154, Barão Geraldo,
13083-970, Campinas - SP, Brazil,  E-mail:bruns@iqm.unicamp.br

(Received: March 5, 2002 ; Accepted: March 27, 2002)

Abstract - This work presents a way to predict the biochemical oxygen demand (BOD) of the output stream
of the biological wastewater treatment plant at RIPASA S/A Celulose e Papel, one of the major pulp and
paper plants in Brazil. The best prediction performance is achieved when the data are preprocessed using
principal components analysis (PCA) before they are fed to a backpropagated neural network. The influence
of input variables is analyzed and satisfactory prediction results are obtained for an optimized situation.
Keywords: Artificial neural networks, Principal components analysis, Wastewater treatment and Biochemical
oxygen demand.

INTRODUCTION

Milling in the pulp and paper industry is a serious
concern. Existing effluents may contain potentially
harmful chemicals, introduced during the
papermaking operation. Thus, without proper
treatment, the wastewater may pollute the
environment upon its return to the water source
(Yang, 1996).

In recent years, computer-based methods have
been applied to many areas of environmental
chemistry. In the process industry the use of modern
control strategies is required due to increasingly
stringent regulation of effluent quality (Cohen et al.,
1997; Lee and Park, 1999). Operational control of a
biological wastewater treatment plant is often
complicated because of variation in raw wastewater
compositions, strengths and flow rates owing to the

changing and complex nature of the treatment
process (Hamoda et al., 1999). Moreover, a lack of
suitable process variables limits the effective control
of effluent quality (Harremoës et al., 1993, Lee and
Park, 1999).

The modeling traditionally used in bioprocesses is
based on balance equations together with rate
equations for microbial growth, substratum
consumption and formation of products, and since
microbial reactions coupled with environmental
interactions are nonlinear, time-variable and of a
complex nature (Hamoda et al., 1999; Lee and Park,
1999), traditional deterministic and empirical
modeling has shown some limitations (Cote et al.,
1995; Hamoda et al., 1999).

Recently, some studies using artificial neural
networks (ANNs) in modeling biological wastewater
treatment processes have been published, providing



366                             K.P.Oliveira-Esquerre, M.Mori and R.E.Bruns

Brazilian Journal of Chemical Engineering

an alternative approach (Cote et al., 1995; Häck and
Kohne, 1996; Gontarski et al., 2000; Hamoda et al.,
1999; Lee and Park, 1999; Pu and Hung, 1995;
Wilcox et al., 1995; Zhao et al., 1997).

Recent studies indicate that consideration of
statistical principles in the ANN model building
process may improve modeling performance (Maier
and Dandy, 2000). For example, principal
components analysis (PCA), which is a technique
that shows an orthogonal variable transformation,
can be used for pruning ANNs and improving
nonlinear mapping (Kanjilal, 1995; Kompany-Zared,
1999). The use of ANNs in combination with PCA
has been shown to have merits (Cancilla and Fang,
1996; Holcomb and Morari, 1992; Kompany-Zared
et al., 1999). Principal component regression can be
an alternative to ANN in modeling if the system
shows linear behavior (Despagne and Massart,
1998).

The aim of this study is to develop an estimation
model that can provide accurate predictions of the
biochemical oxygen demands of the output stream of
a biological wastewater treatment plant (BODout).
There is a five-day delay in determination of BOD,
and when this is added to the hydraulic residence
time, it is often too late to make proper adjustments
in the wastewater treatment process.

In this work, the predictive models presented for
the estimation of BODout are calculated from ANN
and Principal Component Regressions (PCR). The
results show that neither principal component
regression nor artificial neural network treatment is
satisfactory when used separately in modeling and
simulation. Neural networks present superior results
for the training set but poorer ones for the test set
relative to those obtained from PCR. Since there was
a limited amount of experimental data available on
the wastewater treatment plant at RIPASA S/A, an
overfitting of the training set occurred.

The best prediction performance is achieved
when the data are preprocessed using PCA before
they are fed to a backpropagated neural network
composed of five neurons in a hidden layer and the
delta-bar-delta (DBD) learning algorithm. A
correlation index between the predicted and actual
effluent data using the best model is 0.81 for the
training set as compared to 0.77 for the test set.

Other studies applying neural networks to actual
data from chemical processes found a correlation
index equal to 0.8 for a coke furnace (Blaesi and
Jensen, 1992) and 0.82 for an acetic anhydride
production plant (Nascimento et al., 2000). For
modeling a wastewater treatment plant using neural
networks, Hamoda et al. (1999) found a correlation

index of 0.74 for BOD prediction, Belanche et al.
(1999) found 0.504 for COD prediction and Häck
and Köhne (1996) found 0.92 and 0.82 for COD and
nitrate prediction, respectively.

Owing to incomplete information on the above
modeling processes, the optimality of the results
cannot be assessed, and it is difficult to draw
meaningful conclusions about the performance of the
different models. However, based on the results
obtained, there is no doubt that ANNs have great
potential as tools for the prediction of water
resources.

PROCESS DESCRIPTION

The process wastewater is routed for primary
treatment followed by biological treatment. Two
parallel settling tanks, provided with mixing and
flocculation chambers, constitute the primary
treatment. Biological treatment consists of two
aerated lagoons. The solids removal stream flows
from the primary and secondary settling tanks to a
drying system, where the solids are properly
eliminated. A simplified process flowsheet for the
wastewater treatment plant is shown in Figure 1.

Data Collection for Model Prediction

To construct the predictive model, five variables
for the aerated lagoons and two for the milling
process were chosen using engineering judgement
regarding which ones might have an important effect
on BODout prediction (see Table 1).

The average hydraulic residence time in the
aerated lagoons is used to establish a data
input/output relationship. The original database,
obtained from the plant control system and from the
laboratory, has much unusable information that must
be eliminated, so the two-year daily record is
reduced to 71.

ANALYSIS OF THE RESULTS

Using a random selection method, 80% of all
data records were assigned to the training set, while
the remaining 20% were relegated to the validation
set.

As described above network training is carried out
using the standard backpropagation algorithm. The
sigmoidal function is used as the transfer function
in both the hidden and output layers due to its
suitable application, specially for continuous-value
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input/output pairs. The quickprop (QP) and delta-
bar-delta (DBD) techniques are used in determining
the best ANN internal representation. The optimal
hidden layer is determined by varying the total
number of nodes from 1 to 10. The stop criteria are
based on the Mean Square Error (MSE) for the
validation set instead of that for the training set to
ensure model generalization.

The best results were obtained for the ANN
composed of five neurons in the hidden layer using
the DBD technique, which has a correlation index of
0.60 for the validation set of predicted and observed
BOD’s. In order to improve this result and to prune
the ANN structure, input variables are preprocessed,
using the PCA technique, before they are fed to the
backpropagated ANN. PCA seeks relevant directions
for the input data that maximize variance.

The principal components analysis shows that
94% of the variance in the input data could be
accounted for by the first five directions. This
suggests the elimination of the last two principal
components (PCs) in ANN modeling.

An analysis of the importance of each PC for the
PCA-ANN model is carried out based on Garson’s
(1991) work. It also recommends exclusion of the
sixth and seventh PCs owing to the low values of
their calculated importance measures. As can be seen
in Table 2, the best PCA-ANN performance is
obtained by excluding the sixth PC from the input
layer for the network composed of five hidden
nodes. These results can be compared with those of
multiple linear regression of the principal
components (PCR), which have lower correlation
indexes of 0.53 and 0.51 for the training and
validation sets, respectively. Even if multiple
quadratic regression of principal components (PCR2)
is performed, the correlation indexes are not as high

as those for the PCA-ANN model results in Table 2.
Table 3 presents p-values for the correlation index

and the F-test for analysis of variance, carried out in
order to verify the significance of the ANN, PCA-
ANN and PCR2 models (Barros et al., 1995). Both
tests assumed a 95% confidence level.

The statistical results show that the PCA-ANN
model best adjusts to the aerated lagoons system data
and is capable of predicting relatively accurate
values for validation set data. This is particularly
important when one takes into account the
complexity of the wastewater treatment system and
the large quantity of missing data in the training set.

Although the PCA-ANN model provides the most
accurate results in all cases, this is not true of ANN
using data that is not preprocessed by the principal
component transformation. For the validation set,
quadratic PCR gives slightly better results. This is
probably due to overfitting of the training set by the
ANN, since the validation set results are quite
inferior to those of the training set. The overfitting
effect appears to be less serious for the PCR results,
as expected, but also for the PCA-ANN results. This
is important for our application since our data set has
quite a few missing values.

Figure 2 presents a graphical representation of the
measured and predicted data of BODout, using the
best modeling structure, i.e., PCA-ANN without the
sixth PC. The most important features are well
reproduced except for the large peak at data number
46 and some smaller ones, specially the one at 61 in
the validation set.

The Statistica and Minitab computer programs
were used for statistical analysis, PCA data
pretreatment and PCR modeling. NeuroSolutions
Profesional, a commercially available neural network,
was used for ANN modeling.

Figure 1: Process flowsheet for wastewater treatment plant at RIPASA S/A.
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Table 1: Basic statistics descriptors for selected variables.

Parameter Description Average Minimum Maximum Standard
Deviation

BODin Inlet wastewater BOD [mg/L] 547.9 106.0 814.0 117.0
CODin Inlet wastewater COD [mg/L] 1352.0 225.0 1690.0 236.3
Flowin Inlet flow rate [m3/day] 1729.4 1473.0 2146.0 125.1
BODout Outlet wastewater BOD [mg/L] 43.2 17.0 102.0 16.3
CODout Outlet wastewater COD [mg/L] 432.3 284.0 646.0 72.5
Flowout Outlet flow rate [m3/day] 1621.5 1327.0 1965.0 150.5
Pulp Pulp production [ton/day] 731.0 250.2 829.0 104.4
Paper Paper production [ton/day] 752.6 422.0 954.0 104.3

in: input of aerated lagoons system
out: output of aerated lagoons systems

Table 2: Results of BODout prediction by PCA-ANN structure model.

Training Data Set Validation Data Set

 Network PCA-ANN
inputs MSE Correlation Index MSE Correlation Index

All PCs 0.0072 0.76 0.0071 0.72
Excluding 6th PC 0.0061 0.80 0.0065 0.77
Excluding 7th PC 0.0071 0.76 0.0086 0.67

Excluding 6th and 7th PC 0.0068 0.77 0.0078 0.70

Table 3: Statistical results of  the ANN, PCA-ANN and PCR2 models.

Training Data Set Validation Data Set

Model MSE Correlation
Index p-value F-test* MSE Correlatio

n Index p-value F-test*

ANN 0.0077 0.74 0.00 69.32 0.0097 0.60 0.02 7.47
PCA-ANN 0.0062 0.80 0.00 96.77 0.0065 0.77 0.00 17.09

PCR2 0.0105 0.61 0.00 32.65 0.0088 0.64 0.01 8.57
* F-test for 1 degree of freedom in the numerator, and 12 and 55 degree
   of freedom in the denominator for the training and validation data set, respectively.

Figure 2: Measured and predicted BODout, using the PCA-ANN structure model (without sixth PC).
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CONCLUSIONS

Recent studies showed that neural network
models are capable of modeling a wastewater
treatment system (Maier and Dandy, 2000).
However, a simple feedforward back-propagation
network with only a hidden layer gave an
unsatisfactory performance for the simulation and
prediction of the BODout for the data set treated here.

In order to improve network performance, the
PCA technique was applied for data preprocessing.
The combined use of PCA and ANN has been shown
to provide prediction results that have statistical
parameters significantly superior to those obtained
using these techniques separately.

This work also shows the advantage of neural
networks in their ability to represent highly nonlinear
relationships, even for a system that presents
operational data limitations (imprecision associated
with measured variables, a limited range of
variables, a large number of missing values, etc.), as
long as the input data have been orthogonalized. The
PCA technique helps the nonlinear ANN mapping by
its orthogonal transformation of variables and
reduction of system dimensionality.

Compared to the statistical methods, ANNs do
provide a more general framework for determining
relationships between data and do not require the
specification of any functional form.

NOMECLATURE

BODin Biochemical oxygen demand in the inlet
wastewater [mg/L]

BODout Biochemical oxygen demand in the
outlet wastewater [mg/L]

CODin Chemical oxygen demand in the inlet
wastewater [mg/L]

CODin Chemical oxygen demand in the outlet
wastewater [mg/L]

Flowin Inlet flow rate [m3/day]
Flowout Outlet flow rate [m3/day]
Pulp Pulp production [ton/day]
Paper Paper production [ton/day]
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