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Abstract - It is known that the optimal control may introduce significant economical benefits into production
processes, thus being an important and challenging research area with practical relevance. The modeling and
optimization of biotechnological processes has been object of research and their related results have generated
improvements in operating conditions and strategies, however, the inherent features of dynamical
bioprocesses prevent the application of conventional optimization algorithms, hence making necessary the
development of tailored methods and strategies. The objective of this work is to develop mathematical
programming strategies for simultaneous optimization of dynamic systems and evaluate their computational
performance. Simultaneous optimization with orthogonal collocation is applied to a simplified model for
biosynthesis of penicillin from glucose, which was studied by Cuthrell and Biegler (1989). The results show
that discretization of differential equations systems (DAE) by orthogonal collocation in finite elements
efficiently transforms dynamic optimization problems into nonlinear programming (NLP) problems, enabling
to solve complex problems with several control variables and minimizing the approximation error.
Keywords: optimal control, orthogonal collocation, nonlinear programming.

INTRODUCTION

Dynamic processes represent a great variety of
operations, in particular all processes in batch or
fed-batch mode.  Their optimal control requires
special effort, due to the intrinsic dynamics and
mainly by the presence of path constraints in the
state and control variables. Moreover, adding the
possible existence of discontinuities in the variable
profiles and in the differential equations, a
complex dynamical optimization problem is
generated whose resolution strategies must be
investigated.  Cuthrell and Biegler (1987) discuss
that the differential algebraic optimization
problems (DAOP) cannot be solved by
straightforward nonlinear programming (NLP)
techniques or by optimal control methods.

Two popular approaches to solve DAOP are
based on the discretization of variables. The first

discretizes only the control variables, u(t),
(sequential method or control vector
parameterization) and the DAE systems is
integrated using standard integration algorithms;
the optimization is carried out in the space of the
decision variables. The second approach relies on
the discretization of all variables that converts the
dynamic optimization problem into an NLP
(simultaneous method); in this approach the
optimization is carried out in the full space of the
discretized variables, thus enabling the solution of
problems with constraints on state and control
variables.

The present work aims to develop and to
evaluate mathematical programming techniques
based on the orthogonal collocation method for the
simultaneous optimization of dynamical processes,
taking the fed-batch biochemical reactor as an
example.



450 C.A.M.Riascos and J.M.Pinto

Brazilian Journal of Chemical Engineering

METHODOLOGY

Discretization and Approximation by Orthogonal

Collocation on Finite Elements

Consider the optimal control problem (OCP)
stated as follows

Min  [z1(t)…, zNV(t), u(t), t] (OCP)

u(t), t

s.t. j(t) = F [z1(t)…, zNV(t), u(t), t]

h [z1(t)…, zNV(t), u(t), t] = 0

g [z1(t)…, zNV(t), u(t), t]  0

 zj(0) = 
j
0Z ,    ZjL  zj(t)  ZJu j = 1…, NV

UL  u(t)  UU

where  = objective function;

zj(t) = state variable j profile;

u(t) = control profile;

h and g = equality and inequality constraints;

j
0Z  = initial value for state variable j;

NV = number of state variables;

UL, UU, ZjL and ZjU = control and state bounds.

To convert the OCP into an NLP, the
differential algebraic equations (DAE) are
discretized by orthogonal collocation on finite
elements. Defining the normalized time  [0, 1],
yields:

tn,i = [ n+ i ( n+1 – n)] tf

   (1)
i = 1…, K     n = 1…, NE

where n = element limits and i = collocation
point i. Note that a more compact notation is used
in place of that in Cuthrell and Biegler (1987,
1989). The corresponding Lagrange polynomials
are:

Kj jz z in,K 1 n,i
i 0

   (2)
K

k
i

i k
k 0,k i

( )

( )
 i = 0…, K

K
u u in,K n,i

i 1
   (3)

K
k

i
i k

k 1,k i

( )

( )
i = 1…, K

Thus, the state profile j is approached by a
(K+1)th degree polynomial, and the control by a

degree K polynomial ( j
in,z and un,i = polynomial

coefficients).  Functions i and i (polynomial
building blocks) depend on the location of the
collocation points that are roots of the Legendre
polynomial (Cuthrell and Biegler, 1989; Rice and
Do, 1995).

The derivatives of the Lagrange polynomials at
the collocation points are given as follows

jdzn,K 1 jA znd

Tj j jjz z ( ) z ( ) z ( )n 0 n 1 n Kn , ...,     (4)

j=1…, NV  n=1…, NE 

In (4), A  is a square matrix of dimension K+1

that is calculated from i (Rice and Do, 1995), and
j
nz  is the vector of values for variable j in the nth-

element. Then, the DAE can be written in the form
of a residual for every point i and element n as
follows

Rj(tn,i) = 
)( n1nf

j
n

t
zA

1
 -

   (5)

-Fj[ NV
in,

1
in, z...,z , un,i] = 0 

Constraints must be added to guarantee the
continuity of the state profiles at the element limits.
Therefore, the polynomials are extrapolated to
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generate the initial point of the next element.  The
control variable values on the element limits are
obtained from the extrapolation of each
approximation polynomial. With the orthogonal
collocation method, the OCP turns into an algebraic
nonlinear programming problem:

Min [ in,
j

in, uz , ,  t f ]    (NLP)

n

j

in,in, zu ,,

s.t. Rj(tn,i) =
)( n1nf

j
n

t
zA

1
-Fj[ NV

in,
1

in, z...,z , un,i] = 0

j = 1…, NV    n = 1…, NE    i = 1…, K

h [ jz un, i n, i, ] = 0

j = 1…, NV    n = 1…, NE    i = 1…, K

g [ jz un, i n, i, ]  0

j = 1…, NV    n = 1…, NE    i = 1…, K

j jz Z1, 0 0

j = 1…, NV

Kj jz z ( 1)in, 0 n-1,i
i 0

j = 1…, NV    n = 2…, NE

K
u u ( 0)in, 0 n,i

i 1
     UL

n, 0u  UU

n = 2…, NE

K
u u ( 1)in, K 1 n,i

i 1

n = 1…, NE

UL

n, iu  UU

n = 1…, NE    i = 1…, K+1

ZjL jzn, i  ZjU

j = 1…, NV    n = 1…, NE    i = 1…, K

Control of the Approximation Error by Direct

Enforcement

The algebraic approximation of the state profiles
brings errors to the DAE resolution. Vasantharajan
and Biegler (1990) present two strategies for error
control: equidistribution and direct enforcement. The
former reformulates the problem to find a solution
with alternation in error sign, whereas in the latter,
constraints are added to reduce the error in
noncollocation points. The second approach is more
straightforward and allows a direct control of the
approximation error, but one must choose a
sufficient number of elements to satisfy the error
tolerance. Nevertheless, both formulations provide
criteria for partitioning the process time on elements.

Denoting the noncollocation points as nc, the
added constraints are as follows:

jC R ( )n, nc

j = 1,…NV    (6)

n = 1,…NE

where  is the permissible error, Rj(tn,nc) is the
residue that corresponds to variable j at time tn,nc,
which represents the noncollocation point nc in the
element n.  The constant C (which penalizes the error
by its proximity to the collocation points) is
estimated as follows:

K
nc

i

i 1

)
A
1C (s ds

0

   (7)
K

i

i 1

( )ncA

Differentiating the interpolation polynomials at
the noncollocation points, and calculating the
analytical derivatives with the DAE, the
approximation residue is obtained according to:

Rj(tn,nc) =

jdz ( )nc dn, K 1

dtd
        (8)

j 1 NVz ( ) z ( ) u ( )nc nc n,K ncn, K 1 n, K 1F [ ..., , ]
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j 1..., NV

n 1..., NE

THE PENICILLIN BIOSYNTHESIS PROBLEM

The penicillin biosynthesis from glucose, shown
in Cuthrell and Biegler (1989) and previously
studied by Lim et al. (1986), is developed in a fed-
batch reactor with volume (V), biomass (X), product
(P) and substrate (S).  The control variable is the
feed rate of substrate (U), and the concentration of
the feed is constant (SF). The problem is defined by:

Min  = -P(tf ) V(tf ) (9)

U(t) ,  tf

s.t.
X

X(t) µ(X, S) X U
S VF

X(0) = 1.5 g/l

deg
P

P(t) (S) X K P U
S VF

P(0) = 0.0 g/l

X / S

S
m FP / S

X
S(t) µ(X, S) Y

X Um S S(S) X 1-Y K S S V

S(0) = 0.0 g/l

FV(t) U/S

V(0) = 7.0  l

max
S

µ(X,S) µ
K X Sx

max
P in

S
(S)

K S(1 S / K )

0  X(t) 40 g/l

0  S(t)  100 g/l

0  V(t)  10 l

0  U(t)  50 g/h

72  tf  200 h

where µ(X,S) = biomass growth rate (h-1) and (S) =
penicillin production rate (g P/g X h). The parameter
values are shows in Table 1.

COMPUTATIONAL RESULTS

The methodology was applied to several cases,
which are shown in Table 1. Table 2 shows the
corresponding results and statistics that were obtained
with GAMS/CONOPT (Brooke et al., 2000).

In cases CG1 and CG2 the end time is constant, in
order to evaluate the capacity of global collocation
for reproducing discontinuities in the control profile.
Note that despite the objective value, , being next
to the analytical solution, the state and control
profiles are far from the analytical ones (Figure 1). In
case EF1, the final time and the element limits were
fixed; the results and the profiles are very close to
the analytical ones. These parameters were free in
case EF2; in the optimization it occurred the collapse
of two elements, which reduced the number of
constraints, thus damaging the approach quality.

Observing the statistics (Table 2) it can be seen
that the number of iterations and the computational
effort increase with the number of collocation points
and elements. In Figure 1 it is observed that the
profiles are closer to the analytical solution when
these parameters are increased.

Since there was a large increase on the processing
time (tf) with small effect in the objective function,
productivity was maximized in cases EF3, CE1 to
CE4. Note in Figures 1b and 1c that in case EF3
biomass continued to grow exponentially after 28h
(when the growth stage finishes in the analytical
solution) and the product concentration profile
surpasses the analytical one.

To verify the need to control the approximation
errors, these were estimated for case EF3.  In Table 2
it is observed that the error values are significant.
Another evidence is that the biomass profile
surpasses the analytical solution (in the interval [0-
28h]), which is unrealistic since the analytical
solution attains maximum growth.  Case CE1
presents error control with 0.1 absolute tolerance for
all variables, while in case CE2 the tolerances were
reduced to 1%. In CE2, despite the collapse of one
element, the resulting control profile has similar
features of those from the analytical solution (high
feed rate, followed by reduction to zero and finally
almost constant at an intermediate value).

Figure 2b shows that error control prevents the
biomass concentration from surpassing the analytical
profile (in the interval [0-28h]).  Finally, in cases CE3
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and CE4 the conditions of case CE2 were repeated, for
different initial estimates, to verify the robustness of the
approach.  In Figure 2 and Table 2 it is observed that in
case CE4 the profiles and the final results are identical
to the ones of CE2. Nevertheless, case CE3 presents a
different solution, thus implying that convergence to
local solutions is an issue in such nonlinear and
nonconvex optimal control problems.

Table 3 presents the results and statistics for the
sequential approach and Figure 3 presents the
optimal control and state profiles, which were

obtained with MATLAB (Grace, 1995). Figure 3b-d
show that the state profiles are very similar to the
analytical ones, whereas the control profiles (Figure
3a) are not; furthermore, the objective function
values for these cases (Table 3) are very near to the
analytical one. From the statistics of Table 3 it can
be seen that the number of iterations and the
computational effort increase enormously with the
number of intervals; in this Table the CPU times
were normalized because the absolute values depend
on the software employed.

Table 1: Parameters of the penicillin biosynthesis model.

µmax

(h-1)

max

(g P/g X h)

KX

(g S/g X)

KP

(g S/l)

Kin

(g S/l)

Kdeg

(h-1)

0.11 0.0055 0.006 0.0001 0.1 0.01

Km

(g S/l)

mS

(g S/g X h)

YX/S

(g X/g S)

YP/S

(g P/g S)

SF

(g S/l)

0.0001 0.029 0.47 1.2 500

Figure 1: Optimal profiles for collocation on finite elements.
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Table 2: Case features.

Initial set
CASE

No.

Elements

Points per

Element U (g/h) i (h) tf

Observations

CG1 1 3 0 -- 125 tf  constant

CG2 1 20 0 -- 125 tf  constant

EF1 3 4 0 30  75 150 tf and i constants

EF2 3 4 0 30  75 150 tf and i free

EF3 3 4 0 30  75 150 * maximization

CE1 3 4 0 30  75 150 error tolerance < 0.1

CE2 3 4 0 30  75 150 error < 1%

CE3 2 4 10 36 72 error < 1%

CE4 2 4 20 100 200 error < 1%

Figure 2: Optimal profiles for collocation on finite elements with error enforcement.

Table 3: Results, statistics and approximation errors.

Results Statistics Error
CASE

i (h)  (g P) * (g P/h) tf (h) Iterations CPU time (s) Average Maximum

Analytical 11.2    28.8 86.9 -- 124.9 -- -- -- --

CG1 -- 92.5 -- 125 29 0.5 -- --

CG2 -- 87.9 -- 125 617 6.6 -- --

EF1 11.2    28.8 87.5 -- 124.9 282 1.7 -- --

EF2   0.0      0.0 88.9 0.57 154.8 70 0.7 -- --

EF3 16.1    20.4 72.5 0.88 82.3 330 4.6 3.1% 23.2%

CE1   2.6    24.8 75.5 0.87 86.6 382 6.9 0.5% 1.1%

CE2 31.8    31.8 76.2 0.92 83.0 381 10.5 0.1% 0.4%

CE3 38.7 75.0 0.88 85.7 269 3.9 0.2% 0.6%

CE4 31.8 76.2 0.92 83.0 357 6.8 0.1% 0.4%
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Figure 3: Optimal profiles for the sequential approach.

Table 4: Results and statistics for sequential approach.

Results Statistics
CASE

No.

Intervals  (g P) tf (h) Iterations CPU time

Analytical 86.9 124.9 -- --

SA1 3 87.02 124 29 1

SA2 10 86.99 124 177 10

SA3 20 87.45 124 736 60

CONCLUSION

The simultaneous approach for solving optimal
control problems was investigated in this paper for a
simplified model of a biorreator. The impossibility to
estimate discontinuities in the control profile with
global collocation motivates the incorporation of
finite elements. Moreover, sequential strategies are
unsuitable to solve complex problems due to the
large increment in computational effort.

The approximation errors are significantly
reduced when error enforcement is used and the
increment of computational effort is small. The
distribution of noncollocation points must cover the
complete batch time to guarantee that the new
constraints improve the complete approximation
profile.
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