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Abstract - Pipelines provide an economic mode of fluid transportation for petroleum systems, specially when
large amounts of these products have to be pumped for large distances. The system discussed in this paper is
composed of a petroleum refinery, a multiproduct pipeline connected to several depots and the corresponding
consumer markets that receive large amounts of gasoline, diesel, LPG and aviation fuel. An MILP
optimization model that is based on a convex-hull formulation is proposed for the scheduling system. The
model must satisfy all the operational constraints, such as mass balances, distribution constraints and product
demands. Results generated include the inventory levels at all locations, the distribution of products between
the depots and the best ordering of products in the pipeline.
Keywords: pipeline, scheduling, logistics, distribution planning, optimization.

INTRODUCTION

Planning and scheduling activities related to
product distribution have been receiving growing
attention since the past decade. Every company
should focus on attending all its client requirements
at the lowest possible cost. As a matter of fact,
transportation costs had already surpassed 400
billions dollars in the early eighties (Bodin et al.,
1983).

Petroleum products can be transported by road,
railroad, vessels and pipeline. The latter has usually
been utilized for crude oil transportation from
terminals to refineries (Mas and Pinto, 2002).

Pipeline transportation is the most reliable and
economical mode for large amounts of liquid and
gaseous product. It differs from the remaining
modes, since it can operate continuously (Sasikumar
et al., 1997). For the past forty years, pipelines have
mainly been utilized by the petroleum industry for
transportation of petroleum and its derivatives.

Shobrys and White (2000) and Katzer et al. (2000)
mention the importance of MINLP models for the
programming of operations in oil refineries because of
the inherent nonlinearities of chemical processes and
the possibility of representing discontinuous functions
and operational decisions. Pinto et al. (2000) present
optimization models for planning and scheduling in
petroleum refineries. Shah (1996) presents an MILP
for crude oil scheduling in a system consisting of a
port connected to a refinery by a pipeline. Moro and
Pinto (1998) studied the efficiency of an MILP for the
allocation of crude oil to tanks.

Sasikumar et al. (1997) describe a scheduling
problem that concerns a pipeline that receives
products from a refinery and supplies several depots
connected to it. The pipeline is the only system that
can transport several petroleum derivatives, and
therefore the refinery must efficiently store the
various products and minimize product
contamination. Techo and Holbrook (1974) also
illustrate simplified models for transportation of
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crude oil and petroleum products in complexes with
multiple pipelines.

The system considered in this work is composed
of a petroleum refinery, a multiproduct pipeline and
several depots that are connected to local consumer
markets. Large amounts of oil derivatives that are
generated in the refinery must be pumped for long
distances until they reach their destinations. The
major obstacles faced in these operations are
concerned with the satisfaction of product demands
by the various consumer markets and the large
variation of the same within a small time horizon.
Moreover, product sequencing is subject to
constraints, which further complicate the generation
of optimal schedules for system operation.

A mixed-integer linear programming model is
proposed for the simultaneous optimization of
systems with multiple depots. This model must
satisfy all the operational constraints, such as mass
balances, distribution constraints, product demands
and storage requirements. It relies on a uniform
discrete time representation and a logical formulation
generated from linear disjunctions, which are
modeled by a convex-hull formulation.

The results generated by this model are the
inventory level profiles for all products at the
refinery, in all pipeline segments and at the depots
along the distribution horizon. The formulation is
tested and compared for systems containing up to
three depots. This approach is successfully tested in
an example that is based on a real-world system that
transports four products, which must feed five
distribution depots in the southeastern and central
regions, from the REPLAN refinery in Paulínia (SP,
Brazil). The model was able to find a real-optimal
solution for a three-day time horizon.

PROBLEM DEFINITION

A refinery must distribute P petroleum products
between D depots connected to a single pipeline,
which is divided into D segments. The depots have to
satisfy requirements determined by local consumer
markets. The pipeline system is shown in Figure 1.
Note that a segment can be defined as the part of the
pipeline between two consecutive storage centers
(refinery and depots).

In the refinery as well as in the distribution depots
there may be more than one tank for each product.
However, at most one tank must be connected to the
pipeline at any time.

Product transfer must satisfy volume and
maximum flow rate constraints in the pipeline. There

are also forbidden sequences of products in the
pipeline. Operation of multiproduct pipelines has a
unique feature, product contamination. Although
pipelines provide a safe mode of transportation,
product contamination is inevitable and it occurs at
the interface of two miscible products. Techo and
Holbrook (1974) mention that the costs of this are
usually very high.

The depots must control their inventory levels
and satisfy product demands imposed by the local
consumer markets. Demands must be matched
according to inventory levels in the refinery and to
pipeline capacity. As products are transported by
only one pipeline and very large distances must be
covered, it is critical that the correct decisions be
made, since delays of several days may occur.

Management of the distribution depots basically
requires one major decision in each time period, the
transfer of products to the consumer markets.
Constraints are imposed by the lower and upper bounds
on tank capacities, the transportation time and the
timing of the operations of unloading from the pipeline.

Operating costs include inventory costs in the
refinery as well as in the depots, pumping costs and
finally transition costs between different products
inside the pipeline. Inventory costs are related to the
stored amounts of products at all locations and to the
time these remain in the tanks for all systems. Pumping
costs are proportional to the amount of each product
sent by the refinery and to the distance it covers in the
pipeline. Pumping cost coefficients depend on the
distances of the depots from the refinery. The most
challenging cost term is that which accounts for
transition costs. There is one cost for each pair of
products that accounts for losses as well as interface
reprocessing at each of the distribution depots.

Due to the large number of decisions concerning
the system, only a systematic and simultaneous
approach may be suitable for this operation.

OPTIMIZATION MODEL

The present mathematical model must represent the
correct operational mode of the refinery, the pipeline
segments and finally the local depots. The most
challenging feature is that product transfer can be
temporarily interrupted during the time horizon. Due
to this aspect, the representation used for the pipeline
system is based on Figure 2.
Consider a generic segment d of the pipeline that
contains L packs. All packs in the same segment are
of equal capacity. Each pack contains one product at
any time interval. If a volume, VOTp,d,k, of product p
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enters segment d at time k, the content of the first
pack in that segment is transferred to the next
pack. The same occurs to all packs in the same
segment. Consequently, the same amount of product
must either leave the segment (VODp,d,k) or be
transferred to segment d+1 (VOTp,d+1,k). If no
product enters d at time k (VOTp,d,k = 0 ), then all
packs keep the same content.

The main assumptions are as follows: (1) All
products have constant densities; (2) The production
rate and demands are known during the time horizon;
(3) All tanks for each product have aggregated
capacities; (4) At most one tank at the refinery and at
all depots can be connected to the pipeline at any
time; and (5) The pipeline segments are always
completely filled.

Figure 1: Distribution Pipeline System

Figure 2: Generic Pipeline Segment

Mathematical Formulation

The tanks at the refinery are modeled by
constraints (1) to (3). Equations (1) represent the
volumetric balances for all products at any time
interval, whereas the minimum and maximum
capacities are imposed in constraint (2). The pipeline
feed (VORp,k) is a function of the volumetric
parameter U and binary variable XRp,k, which is 1 if
the refinery feeds the pipeline with product p at time
k, according to equation (3).

p,k p p, k p, kVR VRZERO RP VOR= + ×δ −
 (1a)

∀p, k=1

VRp,k VRp,k 1 RPp,k VORp,k= − + ×δ −
 (1b)

∀p, k=2,…,K

VRMINp,k VRp,k VRMAXp,k≤ ≤ ∀p, k    (2)

VORp,k U XRp,k= × ∀p, k    (3)

The constraints for the first pipeline segment are
represented by a convex-hull formulation (Raman
and Grossmann, 1994). The basic idea of the
approach is to assign logical variables, XVp,d,l,k, to
each (product, depot, pack,and time) to control
pipeline operation. These are related to volumetric
variables, Vp,d,l,k, as shown in eq. (4). For instance, if
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there is a transfer of p at time k (XRp,k = 1 and from
(5) XS1,k = 1), constraint (8) activates XVp,1,1,k; note
that the other transfers between packs (l=2, …, L)
are activated in a chain effect through (9). Otherwise
(XRp,k = XS1,k = 0), the product contained in every
pack l at k remains inside it, as imposed by (10). The
same logic follows for all the remaining segments.

Vp,d, l,k XVp,d,l,k U= × ∀ p,d, l, k    (4)

P
XRp,k XSd,k

p 1
=

=
∑ ∀ k,d=1    (5)

XSd,k 1≤ ∀ d, k    (6)

P
XVp,d,l,k 1

p 1
=

=
∑ ∀ d, l, k    (7)

XVp,d,l,k XRp,k≥ ∀ p, k, d=1, l=1    (8)

XVp,d,l,k XVZEROp,d,l 1 [1 XSd,k]≥ − − −
 (9a)

∀ p, d, l=2,…,L, k=1

XVp,d,l,k XVp,d,l 1,k 1 [1 XSd,k]≥ − − − −
      (9b)

∀ p, d, l=2,…,L, k=2,…,K

XVp,d,l,k XVZEROp,d,l XSd,k≥ −
               (10a)

∀ p, d, l, k=1

XVp,d,l,k XVp,d,l,k 1 XSd,k≥ − −
    (10b)

∀ p, d, l, k=2,…,K

P
[XDp,d,k XTp,d 1,k] XSd,k

p 1
+ + =

=
∑

 (11)
∀ k, d<D

XDp,d,k XTp,d 1,k

XVZEROp,d,l [1 XSd,k]

+ + ≥

≥ − −
    (12a)

∀ p, d<D, l= L, k=1

XDp,d,k XTp,d 1,k

XVp,d,l,k 1 [1 XSd,k]

+ + ≥

≥ − − −
    (12b)

∀ p, d<D, l= L, k=2,…,K

VOTp,d,k XTp,d,k U= × ∀ p,d>1, k  (13)

VOTp,d,k 0= ∀ p, d=1, k  (14)

Constraints for segment d (d ≠ D) are the same as
the ones for the first segment with the exception of
constraints (5) and (8), which are replaced
respectively by constraints (15) and (16). Variable
VOTp,d,k replaces VORp,k because this segment d is
fed by its predecessor d-1.

P
XTp,d,k XSd,k

p 1
=

=
∑ ∀ k, d>1  (15)

XVp,d,l,k XTp,d,k≥ ∀ p,d>1, l=1, k  (16)

Constraints for the last segment (d = D) are the
same as the ones for a generic middle segment with
the exception of constraints (11) and (12), which are
replaced respectively by constraints (17) and (18).

P
p,d, k d, k

p 1
XD XS

=
=∑ ∀ k, d=D  (17)

p,d, k p,d, l d, kXD XVZERO [1 XS ]≥ − −
    (18a)

∀ p, d=D, l= L, k=1

p,d, k p,d, l, k 1 d, kXD XV [1 XS ]−≥ − −
    (18b)

∀ p, d=D, l= L, k=2,…,K

Pinto and Grossmann (1998) and Pinto et al.
(2000) describe many approaches for modeling
transitions in scheduling systems. Constraints (20)
and (21) model transitions for the present case. Note
that it is only necessary to verify transitions between
two consecutive packs of each segment d (the first
and second were selected).

TYp,p ',d,k XVp,d,1,k XVp',d,2,k 1≥ + −
 (19)

{∀p, p’, d|∈TSp,p’}, ∀ k

p,p ',d, kTY 0= {∀p ,p’, d|∈FSp,p’}, ∀ k  (20)

The constraints at depots follow the same logic as
the ones described for the refinery. Moreover, demands
must be exactly met, as shown in equation (25).
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VDp,d,k VDZEROp,d

XDp,d,k U VOMp,d,k

= +

+ × −
 (21)

∀ p , d, k=1

VDp,d,k VDp,d,k 1

XDp,d,k U VOMp,d,k

= − +

+ × −
 (22)

∀ p, d, k=2,…,K

p,d, k p,d,k

p,d, k

VDMIN VD

VDMAX

≤ ≤

≤
 (23)

∀ p, d, k

VOMp,d,k UMp,d,k≤ ∀ p ,d ,k       (24)

K
p,d, k p,d

k 1
VOM DEM

=
=∑ ∀ p, d                       (25)

Objective Function

The overall operational cost is given by equation
(26). The terms in brackets represent inventory costs
at the refinery and depots, respectively. The third and
fourth terms refer to pumping costs and product
transitions.

P K P D K
C CERp VRp,k CEDp,d VDp,d,k

p 1k 1 p 1d 1k 1

 
 = × + × δ + 
= = = = =  
∑ ∑ ∑ ∑ ∑

(26)
P D K P P D K

CPp,d,k VODp,d,k CONTACTp,p ' TYp,p ',d,k
p 1d 1k 1 p 1p ' 1d 1k 1

+ × + ×
= = = = = = =
∑ ∑ ∑ ∑ ∑ ∑ ∑

EXAMPLE

An example composed of fifteen time intervals is
presented in this section. Data for this example,
including number of products and depots and the set
of forbidden product sequences, are given in Table 1.
GAMS modeling language (Brooke et al., 2000) was
used to implement the MILP model that was solved
with CPLEX (Ilog , 1999).

Figure 3 illustrates the production profile at the
refinery for the entire time horizon, whereas Figure 4

shows the inventory levels for the refinery and all
depots for each of the products. A scenario of
intensive production by the refinery is represented.
Note that the inventory levels at all depots are
minimized as the demands are met during operation.
Depots 3, 4 and 5 utilize the products that were
inside the pipeline in order to satisfy the local
consumer markets, while depots 1 and 2 require
products from the refinery. Note that a three-day
horizon time is scheduled. A 4.7% relative
optimality gap was achieved.

Figure 3:  Production Profile in the Refinery
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Table 1: Data for Example

Product
CERp

[$/m3.h]
CED p,d

[$/m3.h]
RPp,k

[m3/h]
CPp,d

[$/m3]
FSp,q

Gasoline (1) 0.070 0.100 5 3.5/ 4.5/ 5.5/ 6.0/ 6.9 4.3
Diesel oil (2) 0.080 0.155 5 3.6/ 4.6/ 5.6/ 6.2/ 7.3 3.4

LPG (3) 0.095 0.200 5 3.8/ 4.8/ 5.8/ 6.8/ 7.9 3.2
Jet fuel (4) 0.090 0.170 5 3.7/ 4.7/ 5.7/ 6.1/ 7.0 2.3

VRZEROp [m3] VDZEROp,1 [m3] VDZEROp,2 [m3] Initial Content (d) [m3]

500, 520, 210, 515 190/ 180/ 50/ 120 230/ 210/ 65/ 140 d=1/ 75(p=1), 25(p=2)

VDZEROp,3 [m3] VDZEROp,4 [m3] VDZEROp,5 [m3] d=2/ 100(p=2)

200/ 180/ 60/ 190 240/ 180/ 60/ 190 190/ 180/ 60/ 170 d=3/ 50(p=1), 50(p=2)

DEMp,1 [m3] DEMp,2 [m3] DEMp,3 [m3] d=4/ 75(p=1), 25(p=2)

100/ 70/ 60/ 60 110/ 90/ 40/ 50 120/ 100/ 40/ 50 d=5/ 75(p=1)

DEMp,4 [m3]

120/ 80/ 0/ 50

DEMp,5 [m3]

150/ 100/ 20/ 50

VRMAXp/ VRMINp [m3]

1000/270; 1000/270; 300/100; 1000/270

Segment Capacity d [m3] (U) /UM [m3] Interval Duration (δ) [h]

100/ 100/ 100/ 100/ 75 25/ 20 5
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Figure 4: Inventory Levels at all Locations of the System

CONCLUSIONS

A distribution model for a multiproduct pipeline
has been addressed in this paper. The resulting MILP
model showed good results for problems of the same
scale as a real-world system.

NOMENCLATURE

Indices and Sets

d=1,…,D depots or segments
k=1,…,K time interval
l=1,…,L packs
 p=1,…,P products
ASp,p’ set of allowed sequences between p

and p’
FSp,p’ set of forbidden sequences between

p and p’
TSp,p’ set of all possible sequences between

p and p’

Binary Variables

XDp,d,k 1 if depot d receives product p from
the pipeline at time k

XRp,k 1 if the refinery discharges p into the
pipeline at time k

XTp,d,k 1 if p is sent to segment d at time k

Continuous Variables

C total cost to be minimized
TYp,p’,d,k denotes whether p succeeds p’ in

segment d at k
Vp,d,l,k volume of pack l of segment d that

contains p at time k
VDp,d,k volumetric inventory level of p at

depot d at k
VODp,d,k volume of p received by depot d at k
VOMp,d,k volume of p sent by depot d to the

local consumer market at time k
VORp,k volume of p sent by the refinery to

the pipeline at k
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VOTp,d,k volume of p sent from segment d to
d+1 at k

VRp,k volumetric inventory level of p at the
refinery at k

XSd,k denotes whether segment d is under
operation at k

XVp,d,l,k denotes whether pack l from
segment d contains product p at time
k

Parameters

CEDp,d inventory unit cost of p at depot d
CERp inventory unit cost of p at the

refinery
CONTACTp,p’ transition cost from p to p’
CPp,d,k unit cost for pumping p to depot d at

k
DEMp,d demand of p at consumer market

supplied at depot d
RPp,k production rate of p at the refinery
U volume of packs
UMp,d,k upper bound on the volume of p sent

by d at k
VDMAXp,d,k/ maximum/ minimum volumetric
/VDMINp,d,k capacity of p at depot d at time k

VDZEROp,d initial inventory level of p at depot d

VRMAXp,k/ maximum / minimum volumetric
/VRMINp,k capacity of p at the refinery at time k

VRZEROp initial inventory level of p at the
refinery.
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