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Abstract - The dynamics of formation, dissipation and breaking of coherent structures in the riser gas-solid
flow of a circulating fluidized bed (CFB) are evaluated by numerical simulation. The simulation is performed
using the MICEFLOW code, which includes IIT's two-fluid hydrodynamic model B. The methodology for
cluster characterization is used from Sharma et al. and is based on determination of four characteristics,
average lifetime, average volumetric fraction of solid, existence time fraction and frequency of occurrence.
Clusters are identified applying a criterion for the time average value of the volumetric solid fraction. A
qualitative analysis of the influence of different drag function correlations on the hydrodynamics of the flow,
including the evolution of coherent structures, is performed. The simulation predictions are also compared to
experimental results. The results indicate that the choice of a correlation for drag function should be quite
judicious. Finally it is shown that the mean clustering criteria of Sharma et al. should be modified to take into

account other factors that influence cluster dynamics.
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INTRODUCTION

The hydrodynamics of the gas-solid flow in risers
of circulating fluidized beds result in coherent
structures generally known as clusters. These
structures are regions with higher particle
concentrations than the average concentration of
particles in the riser of the bed. These groups of
particles move as a single body with little internal
relative movement (Helland et al., 2002). According
to Horio and Clift (1992), agglomerates are groups
of particles joined together by the action of inter-
particle forces, and clusters are groups of particles
joined together as a result of hydrodynamic effects.
However, in several articles in the literature the term
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"agglomerate" is used to refer to clusters. Another
important aspect is cluster shape. Horio and Kuroki
(1994) found that clusters are structures with a
parabolic geometrical shape in the down region and a
gas wake in the upper part. Hori and Kuroki
conducted a three-dimensional visualization study of
the gas-solid flow using a laser sheet technique. On
the basis of some research in the literature, Davidson
(2000) affirms that clusters are groups of particles in
the form of vertical sheets with a small width/height
ratio, which are coherent during a considerable
traveling distance. Biissing and Reh (2001) indicate
that clusters are nonspherical aggregates with a
length/diameter ratio of up to 10, contrary to the
descriptions of Horio's group (Horio and Kuroki,
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1994; Tsukada et al., 1997; and others). Regarding
this discrepancy, Lackermeier et al. (2001) noted that
the laser sheet technique used by Horio and
coworkers enables only images external to the flow
to be obtained, thereby restricting observations to
those of very small solid volumetric fractions (mass
flow rates from about 0.01 to 0.05 kg/(m’s)).
Lackermeier et al. (2001) applied Horio’s technique,
but tooked a shot of the internal flow through the use
of an endoscopic observation technique. This
technique allowed studying gas-solid flows with solid
concentrations characteristic of CFB risers. The
clusters they observed were very similar to those
described by Davidson (2000) and Biissing and Reh
(2001).

A number of numerical simulations have been
developed for studying clusters. Tsuo and Gidaspow
(1990) used a traditional two-fluid model of constant
viscosity to study the formation of clusters. Various
characteristics of the clusters were described,
including density, size and flow pattern, and a
discussion of the effect of several parameters on
processes of cluster formation was presented. The
parameters considered were superficial inlet gas
velocity, solid mass velocity, particle size, riser
diameter, riser height and mixture of fine particles. It
was shown that a decrease in mass flow rate and
particle size and an increase in superficial inlet gas
velocity, mixture of fine particles and column
diameter produced a reduction in cluster population.
Work similar to that of Tsuo and Gidaspow was
developed by a number of researchers using
Eulerian-Lagrangean formulations (Hoomans et al.,
1998; Ouyang and Li, 1999; Helland et al., 2000;
Helland et al., 2002; and others).

The similarity between cluster formation in
liquid-liquid systems and that in gas-solid systems
was addressed by Chen et al. (1991). The authors
recognized that the drag force is the only source for
producing relative movement between particles and
considered that any two systems must have the same
tendency to form clusters if their drag forces are
hydrodynamically similar. Currently, the stationary
drag force at the interface is the only one considered
in the traditional two-fluid model. Empirical
correlations account for this force, by which
momentum transport at the interface is modeled. It is
normal to consider the interface drag force as a
combination of both the shape and the skin drag in a
single empirical parameter (see, for instance, van
Wachem et al., 2001).

Most of the data used for drag force correlation in
many multiparticle systems were obtained in uniform
fluidization and sedimentation studies. Typically, the

drag force is determined through experimental
measurement of pressure gradient. Usually the
experimental measurements are used to calculate the
so-called drag function at the interface, P, either in a
straightforward way where 3 = f(AP) or as a function
of the drag coefficient for a single particle in the
suspension, Cps, so B = f(Cps(AP)). Making use of
this methodology various correlations for B have
been proposed in the literature. For instance, Ergun
(1952) measured pressure gradient in a fixed liquid-
solid bed and developed an expression for AP. Later
this correlation was used to calculate B in a
straightforward way, i.e., B = f(AP). Wen and Yu
(1966) developed experiments on the sedimentation
of solid particles in a liquid for a large range of solid
volumetric fraction values. They considered their
own data as well as data from other researchers and
derived a correlation for Cp,, valid for 0.01 < o, <
0.63. Later this correlation was used to indirectly
calculate B, giving rise to an expression of the type B
— f(Cou(AP)).

Helland et al. (2002) describe two opposite
effects of the processes of cluster formation on the
interface drag. In dilute regions with nonuniformly
distributed particles, a descending movement of one
particle can generate a velocity field throughout the
fluid, reducing the drag on neighbor particles due to
return flow bypass. In dense zones with uniformly
distributed particles, the reduced flow area between
particles will impose higher gas velocity gradients,
which will produce increased shear stresses and
consequently an increased resistance to the gas flow.

In this paper the methodology of identification
and characterization of clusters of Sharma et al.
(2000) is applied to results of numerical simulation.
The main objective is to study the influence of the
drag function on cluster dynamics. Four drag
function correlations, taken from Ergun (1952), Wen
and Yu (1966), Di Felice (1994) and Gidaspow
(1994), are analyzed. The procedure applied in
Gidaspow (1994), here referred to as Gidaspow's
procedure, assumes a hybrid approach through which
Ergun's correlation is applied for o = 0.2 and Wen
and Yu's correlation is applied for o < 0.2. van
Wachem et al. (2001) observed that this procedure
can cause some numerical instabilities due to the
step-change in the drag function for o = 0.2.
Otherwise, according to Sanyal and Cesmebasi
(1994) this procedure is the one that best reproduces
bubble growth processes in bubbling fluidized beds.

Sharma et al. (2000) presented three different
criteria for cluster definition and identification,
which were derived from the criteria proposed by
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Soong et al. (1993) apud Sharma et al. (2000). They
accounted for four basic cluster characteristics that
allow quantifying the influence of flow parameters
on these structures. The parameters considered were
particle size and gas superficial velocity. Their
analyses were of experimental measurements
obtained with a capacitance probe, which provided

instantaneous local volumetric solid fraction in a 15
cm diameter circulating fluidized bed. Despite the
fact that the methodology was first applied to results
of experiments (Soong et al., 1993 apud Sharma et
al., 2000; Tuzla et al., 1998; Sharma et al., 2000), it
was also recently applied by Helland et al. (2002) to
results of numerical simulation.

Table 1: Mathematical Model B (Gidaspow, 1994).

1. Continuity, phase k (k= g, s)

2. Momentum, Model B

A 1.y vy) =0

Gas phase:

%+V~(pgugvgvg):—VP
PBr(vy =) +V (0, Ty) +p, 8
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3. Viscous stress tensor, phase k (k= g, s)
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4. Solid elasticity modulus
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6. Gas law
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Gidaspow’s procedure (Gidaspow, 1994):
Ergun (1952) correlation for o = 0.2 and Wen
& Yu (1966) correlation for o < 0.2.

Di Felice (1994):
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FORMULATION AND THEORETICAL
PROCEDURE

Mathematical Model

In the present work the hydrodynamic model B
for a gas-solid flow developed at IIT (Illinois
Institute of Technology) and included in the
numerical code MICEFLOW (Jayaswal, 1991) is
applied. A summary of the governing system of
equation is shown in Table 1. More detailed
descriptions of the formulation are presented in
Jayaswal (1991), Gidaspow (1994), Enwald et al.
(1996) and Cabezas-Goémez and Milioli (2001). The
model, called the traditional two-fluid model, uses a
Eulerian description for each phase, making possible
the use of the kinetic theory of granular flows
(KTGF) as described in Gidaspow (1994). The
model includes mass, momentum and energy
conservation equations for all the phases and the
turbulent kinetic energy equation for all solid phases.
The computational code allows a description of
multiphase flows, including various solid phases,
each characterized by a mean particle diameter,
density and sphericity factor and two different fluid
phases. In the present work a flow containing a
single gas phase (air) and a single solid phase (glass
beads) is addressed. Both phases are assumed to be
isothermal at 300K, and no interface mass transfer is
assumed. A Newtonian rheology is assumed for both
phases. The solid phase pressure is modeled
empirically through the solid elastic modulus, G,
using the empirical correlation of Rietema and
Mutsers (1973) apud Jayaswal (1991). As stated in
the previous section, four different correlations are
considered for the interface drag function. These are
correlations of Ergun (1952), Wen and Yu (1966),
and Di Felice (1994), besides the procedure of
Gidaspow and coworkers (Gidaspow, 1994), where
Ergun's correlation is used for o > 0.2 and Wen and
Yu's correlation is used for o < 0.2.

In Table 1, the subscripts (g) and (s) respectively
stand for gas and solid phases, v, and v, are local
temporal velocities (m/s), p, and ps are densities
(kg/m’), o, and oy represent volumetric fractions,
and T, and T, are viscous stress tensors (Pa). Also, P
is the thermodynamic gas pressure (Pa), g is the
gravity acceleration (m/s’), G is the solid-phase
elasticity modulus (N/m’), and B is an interface drag
function (kg/m’s). Cp, characterizes the interface
drag coefficient for a single particle in an infinite
medium, Re; is the Reynolds number based on the
particle mean diameter d, ¢, is the particle

sphericity, | represents dynamic viscosity (kg/ms), R,
is the ideal gas constant (kJ/kgK) and t is the time (s).

Cluster Identification and Characterization

Soong et al. (1993) apud Sharma et al. (2000) rely
on the following guidelines to define clusters:
= The concentration of solids in the cluster must be
significantly higher than the local time-averaged
solid concentration at a given local position for a
particular set of operational conditions.
= A perturbation in the concentration of solids due to
clusters must be higher than the random ground
fluctuations of the solid fraction.
= This concentration perturbation should be
measured in a sample volume with a characteristic
length one or two orders of magnitude longer than
the particle diameter.

Considering the above, Soong et al. proposed the
following criterion: the value of the local
instantaneous volumetric solid fraction for a cluster
should be higher than its time-averaged value by two
times the standard deviation (2c). This way the
clusters can be identified and considered as such
when an instantaneous solid fraction exceeds that
limit. This criterion was used by Tuzla et al. (1998)
to detect clusters in a downer fluidized bed. Sharma
et al. (2000) slightly changed the above criterion on
the basis of experimental evidence. According to the
authors, the clusters detected through the 26 criterion
may become a different physical entity as soon as the
instantaneous solid fraction becomes larger than the
time-averaged solid fraction. This leads to the
following criteria for cluster life-time:
= The cluster is detected when the instantaneous solid
fraction becomes larger than the time-averaged solid
fraction plus two times the standard deviation (26).
= The starting time of a cluster is the last time at
which the instantaneous solid fraction exceeds the
time-averaged solid fraction before satisfying the 26
criterion.
= The end time of a cluster is the first time at which
the instantaneous solid fraction falls below the time-
averaged solid fraction after falling below the 2c
criterion.

The above mean-referenced criterion, as it is
referred to by Sharma et al. (2000), renders a cluster
duration longer than that provided by the 26 criterion
of Soong et al. Sharma et al. point out that the mean-
referenced criterion is rational but also somewhat
arbitrary. However, they observe that the use of a
different factor to reduce the influence of
background noise (e.g., 36) would change results in
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a quantitative way, but would not change the general of the local volumetric fraction resulting from a typical
dynamic characteristics of the clusters. The simulation. The time-averaged solid fraction O, and
arbitrariness of the criterion adopted by Sharma et al.

s discussed at the end of the Results section. the o+ 20 threshold are indicated. Figure 1b shows a

An illustrative application of the mean-referenced closer view of the transient signal from 20 to 30
criterion is presented in Figure 1 for a transient signal seconds. One cluster is observed between T, and T,
006 T T T T T T T 006 T T T T T T T T T
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Figure 1: Illustrative application of the mean-referenced criterion to a transient
signal of the local volumetric fraction resulting from typical simulation.

After a cluster is identified, its four basic volume. It is calculated as the mean number of
characteristics, as defined by Tuzla et al. (1998) and clusters per second that are observed during the
Sharma et al. (2000), can be calculated. These entire observation period (7).
characteristics are the mean duration time, the = Existence time fraction (F.): the fraction of the
frequency of occurrence, the existence time fraction observation period in which there are clusters in the
and the mean solid concentration. They are defined sample volume.
as follows:
= Mean duration time (t.): the mean time of n
duration of all clusters in a sample volume. (In ZTi
Sharma et al. the relevant volume is the volume of a F =- )
capacitance probe; when results of simulation are T
used the relevant volume is that of a computational
cell.) Assuming T; is the duration time of a single * Mean solid concentration (0Ok): the sum of the
cluster, time-averaged solid fractions for all the clusters over
the total number of clusters detected in the
n observation period, i.e.,
2
— _1 n

To= (1) Ta.

. : o, =~ 3)
where n is the total number of clusters detected in the ¥ n
observation period.
= Frequency of occurrence (N.): the frequency at The above characteristics can also be calculated
which the clusters are observed in the sample for cross-sectional average values, i.e.,
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1 2R
fiy=— | f(x)dx 4
(f) =g [f00 @
where x is the horizontal coordinate direction and 2R
is the cross-sectional length.

Simulation Conditions and Initial and Boundary
Conditions

Figure 2 shows the simulation conditions and

boundary conditions for both phases. One-
dimensional plug flow is assumed at the inlet cross
section. At the outlet the continuity condition is
assumed for all variables, except for gas pressure. At
the walls the no slip condition is assumed for the gas
phase and a partial slip condition is assumed for the
solid phase in agreement with Ding and Gidaspow
(1990). A Cartesian coordinate system is used
considering a 22x297 two-dimensional
computational mesh nonuniform in the axial
direction. The value for solid-phase viscosity was

domain, including the initial, inlet and outlet

taken from Tsuo and Gidaspow (1990).

7.62 cm

Riser

by

7.62 cm

il

_>

55m

Simulation data:

Particle diameter: d, = 520 pm

Particle density: ps = 2620kg/m3

Solid-phase mass velocity: G, =24.9 kg/(mzs)
Gas-phase viscosity: U, = 1.82x107 kg/(ms)
Solid-phase viscosity: iy = 0.509 kg/(ms)
Initial conditions:

Riser without solid

P=101325Pa

T=300K

Entrance boundary conditions:

vs = 0.386 m/s

vy =4.979 m/s

o, =0.0246

P = 121590 Pa (this is needed for gas density calculation)
T=300K

Exit boundary conditions:

Continuity condition for f = 0, u, or us (a zero gradient in the
exit normal direction)

Gas-phase pressure: P =117204.9 Pa
Boundary conditions at the walls:
Us=Uug=Vy=0

\

| aV

v,==(0,)"d | == | (Dingand Gidaspow, 1990)
dy )

Bocg _ 0P

dy dy

Computational conditions:

Ox =22x0.381 cm

dy; = 11x1.66; 8y, = 280x1.905; Oy; = 6x1.524 (cm)

St =0.00005 s

Number of cells: (22x297) = 6534
Real time of simulation: t =100 s

0

Figure 2: Simulation domain, including the initial, inlet, and outlet boundary
conditions for both phases (for the IIT installation described in Luo (1987)
and Tsuo (1989), assuming 2D Cartesian coordinates).
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Simulation Results

In this section a comparison of the radial profiles
for axial velocity for both phases and the solid
volumetric fraction in the simulation and the
experiment is presented. Transient profiles for solid
fraction in the riser column are also presented. Next,
simulation results for various drag functions are
qualitatively compared using the methodology of
cluster identification and characterization of Sharma
et al. Finally some comments on the mean-
referenced criterion are offered.

Comparison Between Simulation and Experimental
Data

Figure 3 shows radial profiles for time-averaged
axial velocity of both phases compared to Luo's
experimental data for the various drag function
correlations taken into account. In Figure 3a a
significant difference is seen on v, profiles and the
experimental data for all [ correlations except
Ergun's for the right-hand side wall. The deviations
are still more pronounced at the axis of the riser. It
can be observed that Wen and Yu's correlation and
Gidaspow's procedure produce similar behavior for

100 T T T T T T T
a)
9.0} J
8.0} J
7.0F 4
@ 60} :
E
o 9-0F 4
>
4.0} ® Luo (1987) 1
3.0 ——Ergun (1952)
' ——Wen & Yu (1966) o
2.0} —o0—Gidaspow (1994) g
10 ——Di Felice (1994)
. 1 1 1 1 1 1 1

-40 -30 -20 -10 00 10 20 3.0 40

Radius [cm]

ve. Di Felice's correlation also shows behavior that is
qualitatively similar to the above, but with some
quantitative differences. It should be pointed out
that, despite the fact that the results for Ergun's
correlation are similar to those of the experiment
(mainly at the right-hand side wall), they are
physically incorrect from the center to left-hand side
wall. The reason for this behavior is discussed in
Cabezas-Gomez and Milioli (2003a). It appears that
in this case viscous effects lose significance unlike

drag effects, resulting in flat distributions of o/, (as

seen in Figure 4). This produces a homogenization
effect of the solid phase on the gas phase, i.e., a flow
strainer-like effect, that causes the cross-section gas-
solid velocity profile to become flat. Also, it can be
observed in Figure 3b that Ergun's correlation gives
rise to a v, radial profile that deviates more from the
experiment that seen in the deviations for all the
other B correlations. Figure 3 also shows that all the
correlations, except Ergun's, achieve the expected
characteristic core-annulus flow pattern, including
the downflow at the walls evidenced by the negative
values of v, The physically incoherent results
obtained using Ergun's correlation show it must not
be used for the whole range of possible solid
volumetric fractions.

5.0¢

4.0}

3.0¢

2.0¢

Vg [m/s]

1.0p o Luo (1987)

——Ergun (1952)
—x—Wen & Yu (1966)

0.0}

—0—Gidaspow (1994)
—0—Di Felice (1994)

-1.0F

-2.0 1 1 1 1 1 1 1
40 -30 -20 10 00 10 20 30 40

Radius [cm]

Figure 3: Radial profiles of time-averaged axial velocity for both phases compared to Luo's
experimental data, 3.4 meters above the inlet for various drag function correlations.
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Figure 4 shows radial profiles for the time-
averaged solid volumetric fraction, O , for the various

B correlations. Except for Ergun's correlation, results
are very similar, qualitatively correct and in good
agreement with the experimental data. The largest
quantitative differences between simulation and
experiment are detected in the region close to the wall.
Again, it is clear that Ergun's correlation alone cannot
predict correct hydrodynamic behavior. The other
correlations, including Ergun's as applied in
Gidaspow's procedure, give rise to coherent solid
volumetric fractions, which are higher close to the
walls and lower around the axis.

The temporal variation in the solid volumetric
fraction in the column is shown in Figure 5 for the
different drag functions considered. Four times are
plotted (39.9, 40.0, 79.9 and 80.0 seconds). Once
more the inadequacy of Ergun's correlation when
used alone can be seen, since it prevents the model
from catching both the expected characteristic low
frequency flow oscillations and the clusters.
However, when Ergun’s correlation is used for o >
0.2 alongside Wen and Yu’s correlation for o < 0.2
(Gidaspow's procedure), the above trends are well
represented (Figure 5d). The same occurs for the
other two correlations considered. The predictions
for Wen and Yu’s correlation and Gidaspow's
procedure seem similar, differing more in the lower
half of the column. This should be because
Gidaspow's procedure applies Wen and Yu's
correlation in dispersed regions. Figure 5 also shows
that the instantaneous behavior of the flow is different
for each correlation. This emphasizes the importance
of a correct choice of drag function correlation and the
need for new studies along this line.

L. C. Gomezand F. E. Milioli

Further analyses of simulations similar to those
presented here were presented in Cabezas-Gomez
and Milioli (2001, 2003a). The same mathematical
model and numerical procedure were employed,
using a different computational mesh. The
qualitative behavior found was the same as that in
the present simulations. The same behavior was also
observed for Ergun's correlation.

Characteristic Analysis of Clusters Using Results
of Simulation for Various § Correlations

Radial profiles for the mean solid concentration
of clusters, o, are shown in Figure 6. Behavior

similar to that seen in Figure 4 for ol is observed

for all the B correlations except for Di Felice’s,
which shows a quite different pattern. Again, Wen
and Yu’s correlation and Gidaspow's procedure
produce very similar results. The mean solid
concentration of clusters is higher at the walls.
Ergun’s correlation gives rise to a flat radial profile
(radial homogeneous distribution of o) that matches
the radial profile of o both qualitatively and

quantitatively. This is unexpected since the mean
concentration of solids in clusters is by definition
supposed to be higher than the time-averaged
concentration of solids at the same place during the
same time interval. This behavior is also observed for
other correlations, as seen in Figure 6. Clearly, for the
above situations the mean-referenced criterion is not
appropriate. This fact, which is discussed further
below, reinforces the need for improving or
formulating new criteria to better characterize and
quantify coherent structures in gas-solid flows.

—x—Wen & Yu (1966) i

0.045 . . .
I ® Luo (1987)
0.040}
= | —&—Ergun (1952)
=
S 0035
k7] - —o—Gidaspow (1994)
S 0.030} o
‘: I —-Di Felice (1994)
£ o025
[
E -
2 0.020}
o
> -
2 0.015F
o L
(/2]
0.010
0.005}
0.000 L L L
40 30 -20 -1.0

00 10 20 3.0 40

Radius [cm]
Figure 4: Radial profiles of time-averaged solid volumetric fractions compared to Luo's
experimental data, 3.4 meters above the inlet for various drag function correlations.
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t

’

|
|

(a) (b)
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Figure 5: Temporal variation in the solid volumetric fraction in the column for the different drag functions:
(a) Ergun (1952), (b) Wen & Yu (1966), (c) Di Felice (1994), and (d) Gidaspow (1994).

Figure 7 shows axial profiles for the mean cross-
sectional values of the time-averaged solid fraction,
<0, >, and the mean concentration of solids in
clusters, <o,>. Both parameters show similar
behavior for both Wen and Yu’s correlation and
Gidaspow's procedure, except for the height of 5.5
m, where <o,> increases while <0,> decreases.
This is clearly a consequence of accumulation of
solids and intensified cluster formation at the outlet.
For Di Felice’s correlation the axial profile for <o.>
shows some variations that are sharper than that of
<0,> and a noticeably sharp increase at the height
of about 3.5 m. Above this height <ol >
considerably decreases and finally slightly increases
at the outlet. It should be noted that above 1.5 m
<0, becomes higher than the values for the other

correlations. This is due to the fact that denser
clusters are formed for Di Felice’s correlation, as

seen in Figure 6.
For Ergun’s correlation both <o,> and <ol >

were uniform throughout the column, and equal to
each other. This shows that Ergun’s correlation
applied to all possible values of solid fractions does
not allow the model to catch cluster formation and
that the mean-referenced criterion of Sharma et al.
needs to be revised. The fraction of solids was higher
in the lower region of the column for all correlations
except Ergun’s. In all cases the mean-referenced
criteria applied to this region point to the occurrence
of clusters, even though they cannot really exist
since the lower bed region behaves as a bubbling
fluidized bed (Johnsson et al., 2000). In these cases,
of course, the assumption of the occurrence of
clusters is incorrect. The application of any criteria
for cluster identification in this region is an open
question and must be studied more systematically.
There are considerable differences between the axial
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profiles for <o,> for the various drag function
correlations considered, making evident the need for
experimental validation.

Figure 8 shows radial profiles for cluster mean
duration time, T., and axial profiles for its cross-
sectional average, <t>>. Significant relative
variations are observed among the radial profiles for
the various drag functions. A considerable increase
in T, is observed moving towards the right-hand side
wall. This happens to a lesser extent moving towards
the left-hand side wall. Such asymmetric behavior
seems to be due to the outlet boundary condition that
requires the flow to move towards the right-hand

L. C. Gomezand F. E. Milioli

side wall, causing a higher concentration of solids in
clusters in this region. It is interesting to note that for
Ergun’s correlation the cluster mean duration time
results in the range from about 1.0 to about 1.75
seconds. In this case the existence of a cluster
duration time is inconsistent, since no cluster is
observed when wusing Ergun’s correlation, as
previously discussed. Again, this makes clear that
the methodology of  identification and
characterization of clusters of Sharma et al. (2000)
needs revision. Finally, Figure 8 shows that 1. is
higher for Di Felice’s correlation at most heights in
the column.

0060 T T T T T T T
I —X—Ergun (1952)
0.050} ——Wen & Yu (1966)
| —o—Gidaspow (1994)
——Di Felice (1994)
0.040}
@ 0.030}
3
0.020}
0.010}
0.000 Il Il Il Il Il Il Il
40 -3.0 -20 -1.0

0.0

1.0

Radius [cm]
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The present results for 1. are quite different from
those obtained by Sharma et al. They found the
highest 1. to be about 0.15 seconds at 4.5 meters high
in the column. In the present work the highest t. was
of about 4.0 seconds at a height of 3.4 meters. The
turbulent nature of the flow may be a major cause for
the disagreement, since in the present work it is only
accounted for to the extent allowed by the size of the
numerical mesh. Scales of turbulence smaller than
the mesh size are not observed. This limitation will
mainly affect the gas phase, as discussed in Cabezas-
Goémez and Milioli (2003b), since mesh size is
considerably fine for the solid phase. Otherwise,
caution is required when comparing these results to
those of Sharma et al., since those authors assumed
radial symmetry and their operating conditions and
bed geometry were not the same as those in the
present work. Experimental uncertainties of Sharma
et al. and numerical errors in the present simulations
should also be considered.

Radial profiles for cluster existence time fraction
are shown in Figure 9 at a column height of 3.4
meters. Cross-sectional averages in the column are
also shown. Existence time fraction of the clusters
was quite scattered throughout the cross section,
ranging between about 0.07 and 0.27, with most of
the points lying between 0.12 and 0.22. No
correlation pattern seems to exist between existence
time fraction of the clusters and radial position inside
the column. The cross-sectional averages of the
existence time fraction of the clusters varied between
about 0.07 and 0.23. It’s average on the column

height resulted in about 0.17 for all correlations
except for those of Di Felice. The same result was
obtained by Sharma et al.. The authors observed that
<F2> is constant and independent of both inlet gas
superficial velocity and mean particle diameter and
pointed out that for this there is no explanation at the
moment.

Figure 10 shows radial profiles for frequency of
cluster occurrence at a column height of 3.4 meters.
Cross-sectional averages in the column are also
shown. The frequency of occurrence varied within a
broader range than the existence time fraction of the
clusters. This effect was stronger for the cross-
sectional averages. It can be seen that lower in the
column the frequency of clusters was higher. It
oscillated between 0.05 and 0.20 over the entire
column height. Di Felice’s correlation provided the
lowest frequencies of cluster occurrence for all
correlations for drag function. The highest frequency
of clusters was observed on the column axis with the
exception of Di Felice’s correlation. This correlation
represents the lower values of N, around the axis as
well as throughout the entire cross section. In the
upper half of the column the highest of frequency
cluster occurrence takes place at 5.5 meters. It was
about 0.15 clusters per second for all the drag
functions. This value is very low compared to the
maximum of 12 clusters per second found by Sharma
et al. This difference in N, is consistent with that
observed for 1. It is reasonable to suppose that a
higher clusters existence time means a lower
frequency of occurrence.
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Figure 10: Radial profiles for frequency of cluster occurrence 3.4 meters from the inlet and
cross-sectional :averages in the column for various drag function correlations.

Helland et al. (2002) applied an Euler-Lagrange
model to simulate the upper side of the experimental
rig of Sharma et al. (2000). They found frequencies
of cluster occurrence from 6 to 9 clusters per second,
which is relatively close to that of Sharma et al. of 12

clusters per second, and much higher than the 0.15
clusters per second in the present simulation. They
also found cluster mean duration times from 0.12 to
0.15 seconds, which agree with the maximum of
0.15 seconds observed by Sharma et al. and are
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much lower than the maximum of 4.0 seconds in the
present simulation.

Helland et al. used a highly spatial resolved
simulation by considering the movement of all the
particles in the domain and their interactions with the
gas phase. In the present Euler-Euler simulations, the
high frequency hydrodynamic oscillations of the gas
phase are filtered by the numerical procedure. This
may be a cause for the relatively low values
observed for the frequency of cluster occurrence as
well as for the high values found for mean duration
time of the clusters. However, the present results are
qualitatively supported by Davidson’s observation
that clusters are characterized by long residence
times and slow movements (Davidson, 2000).

The above are evidence of the need for new and
more  comprehensive  studies on  cluster
characterization, both experimental and numerical.
On the experimental level the reason to require new
independent measurement of solid fractions is clear.
On the simulation level more comprehensive and
accurate three-dimensional results are required.

Analysis of the Sharma et al. Mean-referenced
Criteria

Figure 11 shows the transient behavior of the
solid fractions close to the left-hand side wall at a
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column height of 3.4 meters, using Ergun’s
correlation for the drag coefficient. As can be seen,
the 20 criteria obtains nine clusters during the time
interval considered. The difference between the

time-averaged solid’s fraction o and o + 20,

which actually defines what is and what is not a
cluster, is on the order of 107", This very insignificant
difference is lower than errors commonly found in
experimental measurements and many numerical
predictions in fluid mechanics. In fact, the statistical
analysis on the mean-referenced criteria of Sharma et
al. (2000) are based will identify clusters
independently of the behavior of o4 This is so
because any signal analyzed will have some clusters
beyond the 26 limit. It seems clear that new criteria
need to be formulated, whereby flow hydrodynamic
effects are taken into account, rather than only
statistical data on o, This feature was recently
addressed by Harris et al. (2002). According to these
authors, the lower limit of oy influences cluster
definition and properties. This suggests that the
mean-referenced criteria should be modified by
considering lower limits of o both in time and
space. Effects of operating conditions and bed
geometry on flow behavior should also be
considered. This task seems to be very difficult to
accomplish at the moment.
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Figure 11: Transient behavior of the solid fraction close to the left-hand side wall (r = -3.62 cm)
3.4 meters from the inlet, using Ergun’s correlation for the drag coefficient.

Brazilian Journal of Chemical Engineering Vol. 21, No. 04, pp. 569 - 583, October - December 2004



582 L. C. Gomezand F. E. Milioli

FINAL REMARKS

Simulation results were significantly affected by
the particular drag function correlation which was
used. The choice of an appropriate correlation was
shown to be a critical feature, especially when
quantitative good results are desired. Clearly, further
work is required on this matter. Physically
incoherent results were obtained with Ergun's
correlation, showing that it must not be applied alone
for the whole range of possible solid fractions.

The analyses clearly pointed out that the criteria
of Sharma et al. (2000) for identification and
characterization of clusters needs to be reformulated.
In its present form the criteria indicate the existence
of clusters for any flow pattern, whatever the value
of the solid fraction.

The present predictions, evaluated under the
criteria of Sharma et al.,, obtained much lower
amounts and much longer lifetimes of clusters than
the experiment and other simulations in the
literature. These discrepancies may be caused by
experimental uncertainties, numerical errors or
differences in both operational conditions and bed
geometry. Also, in the present simulations the high
frequencies of hydrodynamic oscillations in the gas
phase are filtered by the numerical procedure. This
may also be a cause of the above-mentioned
discrepancies. In this case the model can by
corrected by including either artificial turbulence
models, such as the k-¢ model, or a large eddy
simulation with a well-refined computational mesh,
sub-mesh models and the KTGF for solid-phase
viscosity computation.
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NOMECLATURE
List of Symbols
Cps drag coefficient for a single
particle in an infinite
medium (-)
d, particle diameter, (m)
g gravity acceleration, (m/s?)

G solid elasticity modulus (N/m?)
P gas pressure (Pa)
Re; Reynolds number based on

particle diameter (-)
R, ideal gas constant, (kJ/kgK)
t time, (s)
vgand vy  control volume average

velocities, (m/s)
B interface drag function, (kg/m’s)
u dynamic viscosity, (kg/ms)
oy and oy  volumetric fractions (-)
pgand p;  densities, (kg/m’)
o standard deviation ()
T,and T,  Viscous stress tensors, (Pa)
s particle sphericity (-)
Subscripts
(g)and (s)  gas and solid phases
(k) gas or solid phase
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