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Abstract - The tangent plane criterion has become important for a correct solution evaluation phase and 
chemical of equilibrium problem. This method, applicable to single and multiphase systems, is mainly used for a 
single equation of state modeling all phases involved. The present work is mainly concerned with the application 
of interval analysis methods for global energy minimization in high-pressure phase stability problems. Two 
approaches are applied: (i) the Gibbs free energy global minimization under conditions of constant temperature 
and pressure and (ii) the Helmholtz free energy density global minimization under conditions of constant 
temperature and volume. Five case studies, one ternary and four binary systems, are analyzed in connection with 
the Peng-Robinson equation of state (PREOS) model. Five more case studies, for the CO2 + trans-2-hexen-1-ol 
system at high pressures, are used to compare different methods of phase equilibrium calculation with the 
approach using interval analysis. Finally, a complex system, clove oil + CO2, is analyzed. The results indicate 
that the interval analysis method is robust and reliable for all the problems studied. 
Keywords: Phase stability; Interval analysis; Mathematical modeling, Gibbs free energy; Helmholtz free energy. 

 
 
 

INTRODUCTION 
 
Nonreactive Phase Stability 
  

Stability analysis of an admissible state is 
illustratively described in terms of behavior of the 
system when submitted to perturbations. Depending 
on this behavior, the state is usually defined as 
stable, metastable, or unstable equilibrium. In what 
follows, the main interest is to verify whether or not 
an admissible state is stable. 

The stable equilibrium criterion for closed systems 
is a well-established result in thermodynamics and may 
be presented in several equivalent forms. In 
nonreactive phase stability analysis, much attention 
has been given to the criterion in terms of the Gibbs 

free energy, G (Michelsen, 1982a,b; Sun and Seider, 
1995; McKinnon, et al., 1996; Wasylkiewicz, et al., 
1996; McDonald and Floudas, 1997; Hua, et al., 
1997), and in terms of the Helmholtz free energy 
density, Ã (Nagarajan and Cullick, 1991; Xu, 2001; 
Xu et al., 2002). 
 
Phase Stability Analysis Using the Gibbs Free 
Energy 

 
The equilibrium criterion in terms of the Gibbs 

free energy can be expressed as follows: the stable 
equilibrium state of a closed system with given 
internal constraints at constant T = T0 and P = P0 is 
characterized by a global minimum of G with regard 
to all equilibrium states compatible with the fixed 
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values of T0 and P0 and the given internal constraints 
(Callen, 1985; Tester and Modell, 1997). 
 When applied to a nonreactive single-phase and 
closed simple system at constant T0 and P0, this 
criterion requires that no admissible two-phase 
configuration have a value for G value smaller than 

o o o oG G(T ,P ,n )=
G , the original value. If G < G0 for 

any two-phase configuration, then the state under 
study is not stable. 
 Suppose that an arbitrarily small perturbation 
converts the single-phase system into a two-phase 
system. At constant T0 and P0, the following 
simplified notation will be used: o oG(T ,P ,n) G(n)≡

G G . 
Thus, the variation in the Gibbs free energy for the 
above change of state can be represented by 
 

I II
o oG G (n ) G ( ) GΔ = − ε + ε −
G G G

         (1) 
 

A Taylor expansion of GI in ε
G

 becomes 
 

N
I o

o o i i
i 1

G (n ) G y

(higher order terms in )

=

− ε = − ε μ +

+ − ε

∑G G

                      (2) 

 
where o

iμ  is the chemical potential of species i in the 
original phase and yi is the molar fraction of species i 
in the new phase. In the above expansion, use was 
made of 
 

o
i

i o

G
n n n

∂
= μ

∂ =
G G  ;  

N

i
i 1=

ε = ε∑  ; i iyε = ε ,    

 
and 
 

N
II

i i
i 1

G ( ) y
=

ε = ε μ∑G                  (3) 

 
 Substituting (2) and (3) into (1) gives 
 

N
o

i i i
i 1

G y ( )

(higher order terms in )

=

Δ = ε μ − μ +

+ − ε

∑
                       (4) 

 
For sufficiently small ε and taking into account that 

ε > 0, the sign of ΔG in (4) is given by the sign of 
 

N
o

G i i i
i 1

D (y) y ( )
=

= μ − μ∑G                        (5) 

 Therefore a necessary and sufficient condition for 
a phase to be in stable equilibrium is that GD (y) 0≥

G  
for any composition 1 j 1 j 1 Ny (y ,..., y , y ,..., y )− +=

G . 
 
Phase Stability Analysis Using the Helmholtz Free 
Energy 
 

The equilibrium criterion in terms of the 
Helmholtz free energy can be expressed as follows: 
the stable equilibrium state of a closed system with 
given internal constraints at constant T = T0 and V = 
V0 is characterized by a global minimum of A with 
regard to all equilibrium states compatible with the 
fixed values of T0 and V0 and the given internal 
constraints (Callen, 1985; Tester and Modell, 1997). 
 This criterion, when applied to a nonreactive 
single-phase system, requires that no admissible two-
phase configuration have a value for A smaller than 

o o o oA A(T ,V ,n )=
G , the original value. If A < A0 for 

any two-phase configuration, then the state studied is 
not stable. 
 Suppose that an arbitrarily small perturbation 
converts the single-phase system into a two-phase 
system. At constant T0, the following simplified 
notation will be used: oA(T ,V,n) A(V,n)≡

G G . Thus, 
variation in the Helmholtz free energy for the above 
change of state can be represented by 
 

I II
o o oA A (V V ,n ) A (V , ) AΔ = − − ε + ε −ε ε

G G G
          (6) 

 
 A Taylor expansion of AI in ε

G
 becomes 

 
N

I o
o o o i i

i 1

o

A (V V ,n ) A ( y

P V) (higher order terms in )

=

− − ε = − ε μ −ε

− + − ε

∑G G

      (7) 

 
where o

iμ  is the chemical potential of species i in the 
original phase and V and yi are the molar volume 
and molar fraction of species i in the new phase. In 
the above expansion, use was made of 
 

o
i

i ;o o

A
n (n,V) (n V )

∂
= μ

∂ =
G G ;  

 

;o o

o o o o o oo

A
V (n,V) (n V )

P(T ,V ,n ) P(T ,V , y ) P

∂
=

∂ =

− = − = −

G G

G G  
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V V= εε  ;  
N

i
i 1=

ε = ε∑ ;  i iyε = ε ,   and 

 
N

II II
i i

i 1

A (V , ) G (V , ) PV ( y PV)
=

ε = ε − = ε μ −ε ε ε ∑G G  (8) 

 
where 
 

o oP P(T ,V , ) P(T ,V, y)= ε =ε
G G . 

 
Substituting (7) and (8) into (6) gives: 

 
N

o
i i i o

i 1

A y ( ) V(P P )

(higher order terms in )

=

⎛ ⎞
Δ = ε μ − μ − − +⎜ ⎟⎜ ⎟

⎝ ⎠

+ − ε

∑
      (9) 

 
For sufficiently small ε and taking into account 

that ε > 0, the sign of ΔA in (9) is given by the sign 
of 
 

N
o

A i i i o
i 1

D (V, y) y ( ) V(P P )
=

= μ − μ − −∑G
    (10) 

 
 Therefore, a necessary and sufficient condition 
for a phase to be in stable equilibrium is that 

AD (V, y) 0≥
G  for any molar volume V and any 

composition 1 j 1 j 1 Ny (y ,..., y , y ,..., y )− +=
G . 

 Nagarajan and Cullick (1991) developed an 
alternative criterion involving the Helmholtz free 
energy for a unit volume (Helmholtz free energy 
density, Ã), for a system with constant T and P. 
Using the following species molar densities 
 

i
1 2 N i

n( , ,..., ) ;
V

ρ = ρ ρ ρ ρ =
G         (11) 

 
it can be observed that the Helmholtz free energy 
density at a given temperature can be represented by 
a ρ
G  function: 

 
A(V,n) nA(1, ) A(1, ) A( )

V V
= = ρ ≡ ρ

G G G G�        (12) 

 
It can be readily shown that μi and P can also be 

expressed as ρ
G  functions: 

 
N

i i
i 1i i i

A A A A; P A
n V =

∂ ∂ ∂ ∂
μ = = − = = − ρ

∂ ∂ρ ∂ ∂ρ∑
� ��        (13) 

Combining (10) and (13) allows A
A

D (V, y)D ( )
V

ρ ≡G

GG  

to be expressed as a ρ
G  function: 

 
oN

o
o i iA

ii 1

o
o o

AD ( ) A A ( )

A A ( ) ( A)

=

⎛ ⎞∂
ρ = − − ρ − ρ =⎜ ⎟∂ρ⎝ ⎠

= − − ρ − ρ ∇

∑�

i

�G � �

G G� � �
        (14) 

 
 Therefore, a necessary and sufficient condition 
for a phase to be in stable equilibrium is that 

AD ( ) 0ρ ≥�
G  for any acceptable value of 

1 2 N( , ,..., )ρ = ρ ρ ρ
G . 
 The advantage of using this last approach is that 
the function Ã versus ρ

G  is smooth, while G versus yG  
is not always a smooth function. 
 
Mathematical Modeling 

 
In order to verify whether GD 0≥  or AD 0≥G  for 

all admissible variable values, it is sufficient to test 
these criteria at the stationary points of GD (y)G  or 

AD ( )ρG
G . For the Helmholtz free energy density 

approach, the stationary points satisfy the following 
equation: 
 

o
AD A ( A) 0∇ = ∇ − ∇ =G � �         (15) 

 
 Determination of the stationary point 
coordinates corresponds to finding all the roots of 
the nonlinear equation given by (15). A reliable 
and robust method for this is given by the interval 
for the Newton/generalized bisection algorithm, 
based on interval analysis and interval arithmetic 
(Stadtherr, et al., 1995; Kearfott, 1996). The main 
advantage of this method is that it finds with 
certainty all the roots of the nonlinear set of 
equations, proving that each solution is enclosed 
within some bounds. The main drawback is that, 
depending on the nature of the problem a long 
computational time may be required to achieve 
this certainty. 
 In this work, the interval Newton/generalized 
bisection algorithm was used in connection with 
the Peng-Robinson equation of state (PREOS) 
model to solve the stability problems, using the 
Van der Walls mixing rules. The INTBIS and 
INTLIB softwares were used for the numerical 
calculations of the roots (Kearfott and Novoa, 
1990; Kearfott et al., 1994). 



 
 
 
 

120              A. T. Souza, L. Cardozo-Filho, F. Wolff and R. Guirardello 

 

 
Brazilian Journal of Chemical Engineering 

 
 
 
 

NUMERICAL RESULTS 
  

Five stability analysis sample problems and their 
respective computational results using the Helmholtz 
free energy density formulation are given below. The 
results for each case include the stationary point 
coordinates ρ

G  and the corresponding AD ( )ρG
G  values. 

The same problems were studied by Hua et al. (1997, 
1998) with the Gibbs free energy approach. The 
corresponding results will not be reproduced here 
and can be found in the above - cited references. 
With respect to the computational time required to 
solve the problems, it was observed that the 
approach based on the Helmholtz free energy density 
required roughly less than half of the time needed by 
the approach based on the Gibbs free energy, using 
the same machine and software. 
 
Problem 1. Hydrogen sulfide (1) + Methane (2) 
  

This is a binary mixture of H2S (1) and CH4 (2) at 
190 K and 40.35 bar. The PREOS model was used 
with parameters calculated from Tc1=373.2 K, 
Pc1=89.4 bar, w1=0.1, Tc2=190.6 K, Pc2=46.0 bar, 
w2=0.008, and the binary interaction parameter 
k12=0.08. Six original compositions were considered, 
with results shown in Table 1. 
 
Problem 2. Methane (1) + Propane (2) 
 

This is a binary mixture of CH4 (1) and C3H8 (2) 
at 277.6 K and 50 bar. The PREOS model was used 
with parameters calculated from methane data given 
above, Tc2=369.8 K, Pc2=42.5 bar, w2=0.152, and the 

binary interaction parameter k12=0.029. Four original 
compositions were considered, with results shown in 
Table 2. 
 
Problem 3. Nitrogen (1) + Ethane (2) 
  

This is a binary mixture of N2 (1) and C2H6 (2) at 
270 K and 76 bar. The PREOS model was used with 
parameters calculated from Tc1=126.2 K, Pc1=33.9 
bar, w1=0.04, Tc2=305.4 K, Pc2=48.8 bar, w2=0.098, 
and the binary interaction parameter k12=0.08. Four 
original compositions were considered, with results 
shown in Table 3. 
 
Problem 4. Carbon dioxide (1) + Methane (2) 
  

This is a binary mixture of CO2 (1) and CH4 (2) at 
220 K and 60.8 bar. The PREOS model was used 
with parameters calculated from Tc1=304.2 K, 
Pc1=73.8 bar, w1=0.225, the methane parameters 
given above, and the binary interaction parameter 
k12=0.095. Four original compositions were 
considered, with results shown in Table 4. 
 
Problem 5. Nitrogen (1) + Methane (2) and Ethane (3) 
  

This is a ternary mixture of N2 (1), CH4 (2) and 
C2H6 (3) at 270 K and 76 bar. The PREOS model 
was used with Tc1=126.2 K, Pc1=33.9 bar, w1=0.04, 
Tc2=190.6 K, Pc2=46.0 bar, w2=0.008, Tc3=305.4 K, 
Pc3=48.8 bar, w3=0.098, and binary interaction 
parameters k12=0.038, k13=0.08, and k23=0.021. Four 
original compositions were considered, with results 
shown in Table 5. 

 
Table 1: Results for Problem 1: H2S (1) -CH4 (2) at Po=40.53 bar and To=190K (PREOS). 

 

Z
G

 
Stationary Points 

ρ
G

 (mol/L) 
AD

RT
�  (mol/L)  Stable 

(0.0115, 0.9885) (0.5405 x 10-4, 0.004645) 0.0 Yes 
(0.0187, 0.9813) (0.012425, 0.011713) 

(0.001237, 0.014545) 
(0.3148 x 10-3, 0.008963) 
(0.9019 x 10-4, 0.004733) 

0.175990 x 10-2 
-0.621029 x 10-4 
0.712628 x 10-4 

0.0 

No 

(0.0700, 0.93) (0.013565, 0.010938)  
(0.001071, 0.014230) 

(0.3237 x 10-3, 0.009270) 
(0.8451 x 10-4, 0.004681) 

0.236244 x 10-2 
0.0 

0.917844 x 10-4 
0.704566 x 10-5 

Yes 

(0.5000, 0.5) (0.012101, 0.012101) 
(0.001824, 0.016023) 

0.0 
-0.138959 x 10-2  No 

(0.8880, 0.112) (0.012072, 0.011940) 
(0.001270, 0.014554) 

(0.3285 x 10-3, 0.009062) 
(0.8951 x 10-4, 0.004672) 

0.163676 x 10-2 
-0.387744 x 10-4 
0.915577 x 10-4 
0.116681 x 10-4 

No 

(0.8900, 0.11) (0.011905, 0.012029) 
(0.001214, 0.014320) 

(0.3824 x 10-3, 0.009618) 
(0.8379 x 10-4, 0.004459) 

0.172977 x 10-2 
0.879163 x 10-4 
0.174003 x 10-3 
0.520280 x 10-4 

Yes 
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Table 2: Results for Problem 2: CH4 (1) and C3H8 (2) at P=50 bar and T=277.6K (PREOS). 
 

Z
G

 
Stationary Points 

ρ
G

 (mol/L) 
AD

RT
�  (mol/L) Stable 

(0.10, 0.90) (0.001153, 0.010380) 
(0.001569, 0.003751) 

(0.8008 x 10-3, 0.3945 x 10-3) 

0.0 
0.213158 x 10-2 
0.115065 x 10-2 

Yes 

(0.40, 0.60) (0.004471, 0.006709) 
(0.004766, 0.004044) 

(0.002903, 0.5440 x 10-3) 

0.0 

0.926279 x 10-4 
-0.460877 x 10-3 

No 

(0.60, 0.40) (0.002397, 0.009779) 
(0.002772, 0.001849) 

(0.002295, 0.9799 x 10-3) 

-0.265121 x 10-2 

0.0 
-0.213274 x 10-4 

No 

(0.90, 0.10) (0.002318, 0.2570 x 10-3) 0.0 Yes 
 

Table 3: Results for Problem 3: N2 (1) and C2H6 (2) at P=76 bar and T=270K (PREOS). 
 

Z
G

 
Stationary Points 

ρ
G

 (mol/L) 
AD

RT
�  (mol/L) Stable 

(0.10, 0.90) (0.001406, 0.012660) 
(0.001905, 0.004485) 
(0.001813, 0.003017) 

0.0 
0.556489 x 10-3 
0.546979 x 10-3 

Yes 

(0.18, 0.82) (0.002290, 0.010440) 
(0.002658, 0.006677) 
(0.002513, 0.002663) 

0.0 

0.532488 x 10-4 
-0.495879 x 10-4 

No 

(0.30, 0.70) (0.002243, 0.010716) 
(0.002670, 0.006233) 
(0.002525, 0.002784) 

-0.884250 x 10-4 

0.0 
-0.713284 x 10-4 

No 

(0.44, 0.56) (0.002023, 0.011471) 
(0.002545, 0.005194) 
(0.002427, 0.003087) 

-0.207527 x 10-3 
0.202731 x 10-4  

0.0  
No 

(0.60, 0.40) (0.002633, 0.001755) 0.0 Yes 
 

Table 4: Results for Problem 4: CO2 (1) and CH4 (2) at P=60.8 bar and T=220K (PREOS). 
 

Studied State 
Z
G

 
Stationary Points 

ρ
G

 (mol/L) 
AD

RT
�  (mol/L) Stable 

(0.10, 0.90) (0.000593, 0.005342) 0.0 Yes 

(0.20, 0.80) 
(0.010854, 0.010387) 
(0.003096, 0.008572) 
(0.001488, 0.005955) 

-0.156346 x 10-3 

0.253332 x 10-4 
0.0 

No 

(0.30, 0.70) 
(0.006096, 0.010874) 
(0.004299, 0.010032) 
(0.001434, 0.006092) 

-0.317790 x 10-5 

0.0 
-0.510149 x 10-4 

No 

(0.43, 0.57) 
(0.008248, 0.010934) 
(0.003763, 0.009436) 
(0.001403, 0.005893) 

0.0 
0.407501 x 10-4  
-0.950155 x 10-5 

No 

(0.60, 0.40) 
(0.013733, 0.009155) 
(0.003915, 0.008904)  
(0.001178, 0.004904) 

0.0 
0.339640 x 10-3 
0.211342 x 10-3 

Yes 

 
Table 5: Results for Problem 5: N2 (1), CH4 (2) and C2H6 (3) at P=76 bar and T=270K (PREOS). 

 
Studied State 

Z
G

 
Stationary Points 

ρ
G

 (mol/L) 
AD

RT
�  (mol/L) Stable 

(0.30, 0.10, 0.60) 
(0.001697, 0.8812 x 10-3, 0.010648) 
(0.002046, 0.6821 x 10-3, 0.004092) 
(0.002034, 0.6635 x 10-3, 0.003832) 

-0.193896 x 10-3 

0.0 
-0.384496 x 10-7 

No 

(0.15, 0.30, 0.55) (0.001069, 0.2725 x 10-3, 0.007391) 
(0.001134, 0.2296 x 10-3, 0.004294) 

-0.130813 x 10-4 

0.0 No 

(0.08, 0.38, 0.54) (0.6675 x 10-3, 0.003170, 0.004503) 0.0 Yes 
(0.05, 0.05, 0.90)              (0.165 x 10-6, 0.165 x 10-6, 0.165 x 10-6) 0.003381 Yes 
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COMPARING DIFFERENT APPROACHES 
  

In order to show the advantages of using the 
interval analysis method, a number of different 
methods in the literature were compared, using as 
example the CO2 + trans-2-Hexen-1-ol system at high 
pressures, whose phase behave is known to be 
difficult to model (Stradi et al., 2001a,b). Table 6 
shows the results for the molar fractions (xCO2 and 
xCO2) for different methods used to calculate the flash 
equilibrium. The case studies are the same as those 
presented in Stradi et al. (2001a,b), where P1, P2, and 
P3 are the methods used by those authors, and M1 is 
the approach used in this paper with interval analysis. 
 In case study 1, the same results were found with 
conventional methods P1, P2 and P3, but all were 
incorrect. In case study 2, using P1, P2, and P3 it 
was incorrectly found that there would be no phase 
splitting. In these two cases, the pressure was close 
to the point of the three-phase line, therefore 
presenting numerical difficulties that caused these 
methods to fail. These difficulties were avoided with 
the approach used in this paper, M1, which resulted 
in consistently reliable results. 
 For case studies 3, 4, and 5, it can be observed 
that methods P1, P2, and P3 failed once for the flash 
calculations. P3 failed in case study 4 by not 
predicting the phase splitting. P2 failed in case study 
5 by not predicting the phase splitting. In case study 
3, P1 correctly predicted the phase split, but it 

resulted in numerical errors and was not able to find 
the solution. All these difficulties are very common 
in conventional methods used to model phase 
equilibrium. Again, the approach used here was able 
to find the correct solutions in all cases. 
 

 
EQUILIBRIUM ANALYSIS FOR A COMPLEX 

SYSTEM 
  

The approach used in this paper was applied to 
describe the phase equilibrium behavior of the clove 
oil + CO2 system, using experimental data from 
Souza et al. (2004). The main characteristic of this 
system, formed of an essential oil and carbon 
dioxide, is the large variety of different types of 
chemical groups found in the essential oil, which is 
in fact a complex system. 
 The calculations were done at two temperatures, 
303.15 K and 308.15 K, and the model predicted a 
three-phase line at pressures of 71.25 and 80.15 bar, 
respectively. Above these pressures there is a liquid-
liquid phase region, and below these pressures there 
is a liquid-vapor phase region. This can be observed 
in Figures 1a and 1b. It can be seen that the model 
was able to fit the experimental data for the clove oil 
+ CO2 system reasonably well. The values for the 
fitted parameters (k12, l12) as well as the critical 
properties and the accentric factors were determined 
by Souza et al. (2004). 

 
 

Table 6: Examples comparing different approaches1 

 
 Binary Mixtures *P1 *P2 *P3 M1 

Case Feed 
zCO2 

T 
(K) 

P 
(bar) xCO2 yCO2 xCO2 yCO2 xCO2 yCO2 xCO2 yCO2 

1 0.800 303.15 71.00725 0.7315 0.9986 0.7310 0.9987 0.7309 0.9987 0.6850 0.9689 
2 0.700 303.15 70.09 NPS NPS NPS 0.6833 0.9701 
3 0.970 323.15 97.75 NC 0.6267 0.9948 0.6267 0.9949 0.6283 0.9945 
4 0.742 323.15 130 0.7234 0.9554 0.7232 0.9560 NPS 07243 0.9560 

52 0.742 323.15 135 0.7345 0.9490 NPS 0.7347 0.9515 0.7356 0.9488 

1The molar fractions xCO2  and yCO2  in each phase are determined. The results in bold indicate an incorrect solution. 
The notation NPS indicates that no phase splitting was predicted. NC indicates that a phase splitting was predicted, 
but the method was unable to find the solution due to a numerical problem (the software indicates NaN). 
2RGIBBS displays an output with an error message. 
*Results presented in Stradi et al. (2001a,b). 
P1 - LNGFLASH 
P2 - FLASH3 
P3 - RGIBBS 
M1 - Method 1, used in this work. 
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(b) 

Figure 1: P-x-y plot for CO2-clove oil at 303.2 K (a) and 308.2 K (b). 
 
 

 
CONCLUSIONS 

 
 The foregoing results show that interval analysis 
provides a reliable method for solving phase stability 
problems with the Gibbs or Helmholtz free energy 
approach. However, higher convergence speeds are 
obtained with the Helmholtz free energy density 
formulation than with the Gibbs free energy 
formulation. This is probably due to the smooth 
behavior of the Helmholtz energy density function, 
as pointed out by Nagarajan and Cullick (1991). The 
method is general purpose and can be applied in 
connection with other EOS models, such as the 
SAFT EOS model (Xu et al., 2002). 
 
 

ACKNOWLEDGMENTS 
 

We gratefully acknowledge the financial support 
received for this research from FAPESP process 
number 00/02566-1. 
 
 

NOMENCLATURE 
 
A Helmholtz free energy 
AI Helmholtz free energy in phase I 
AII Helmholtz free energy in phase II 
Ã(ρ) Helmholtz energy density surface 
D tangent plane distance 
G Gibbs free energy 
GI Gibbs free energy in phase I 
GII Gibbs free energy in phase II 

kij 
binary interaction parameter of 
component i in phase j 

n number of moles 
N number of species 
P pressure  
Pc critical pressure 
R gas constant 
T temperature 
Tc critical temperature 
V volume 
Vε infinitesimal volume of phase formed 
V  molar volume 
yi mole fraction of species I 
Z molar fraction of the feed 

ε 
infinitesimal mole number of phase 
formed 

μi chemical potential of species I 
ρi molar density of species I 
ω acentric factor  
∇ gradient vector 

0 used to indicate evaluation of feed 
composition 
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