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Abstract - The gas-solids flow in a CFB riser is simulated applying two-fluid modeling. Two different 
procedures are used for the calculation of the solids phase pressure and stress tensor: the traditional procedure 
and an algebraic version of the kinetic theory of granular flows. Three different numerical meshes and two 
different discretization schemes for the advective terms are used. Results are compared to available 
experimental data from the literature. The effects of the solids phase modeling procedure, advection 
discretization scheme, and mesh size are discussed. 
Keywords: Gas-solids flow; Riser; Circulating fluidized bed; Two-fluid model; Kinetic theory of granular 
flows; MFIX. 

 
 
 

INTRODUCTION 
 
 In this work results of numerical simulation are 
presented for the gas-solids two-phase flow in the 
riser of a circulating fluidized bed (CFB). Two 
different procedures are considered for the 
calculation of the solids phase pressure and stress 
tensor. These are the so-called traditional procedure, 
which is based on empirical correlations, and an 
algebraic version of the kinetic theory of granular 
flows (KTGF), which is based on theoretical 
correlations. Several studies reported in the literature 
have applied the above procedures. The traditional 
procedure was applied, for instance, by Tsuo and 

Gidaspow (1990), Sun and Gidaspow (1999), Huilin 
and Gidaspow (2003), and Cabezas-Gómez and 
Milioli (2003, 2004, 2005a,b), among others. The 
procedure based on the algebraic version of the 
KTGF was applied, for instance, by Syamlal et al. 
(1993), Boemer et al. (1995), van Wachem et al. 
(1998), and Guenther and Syamlal (2001), among 
others. 
 An algebraic version of the KTGF was applied 
by Syamlal et al. (1993), offering the possibility of 
convergence acceleration by directly computing 
the granular temperature from a simple algebraic 
equation instead of solving a complex partial 
differential equation (PDE) for the conservation of 
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granular energy. Thus, the most notable difference 
between the algebraic KTGF and other versions of 
this theory is the use of a simplified balance 
equation for the calculation of granular 
temperature. In this procedure both convection and 
diffusion processes are neglected and only local 
stationary dissipation of granular energy is taken 
into account. From the computed granular 
temperature, and applying theoretical correlations 
developed by Lun et al. (1984), solids phase 
pressure and viscosities are determined. According 
to van Wachem et al. (1998), this procedure is 
valid only for higher values of the solids 
volumetric fraction and relatively low values of 
solids velocity. In such a regime the granular 
energy is mostly dissipated locally. The approach 
is clearly more appropriate for gas-solids flows in 
bubbling fluidized beds. However, in accordance 
with the literature, the procedure is used in the 
present work to simulate the gas-solids flow in a 
CFB riser, showing coherent results. 
 In the traditional procedure solids phase dynamic 
viscosity is taken from experiment as a constant, 
while solids phase pressure is computed as a function 
of an elasticity modulus accounting for collisional 
interactions between particles, which is determined 
from empirical correlations. Recently this procedure 
was successfully applied by Cabezas-Gómez and 
Milioli (2003, 2004 and 2005a,b) to simulate the gas-
solids flow in a CFB riser. 

In this work a modification of the algebraic 
KTGF procedure has also been considered along 
with the conventional proposition. In this modified 
version the algebraic KTGF is used for modeling 
solids phase viscosities, while the solids phase 
pressure is modeled applying the empirical 
correlation of the traditional procedure. It is, 
therefore, a hybrid procedure combining elements of 
both the traditional and the algebraic KTGF 
procedures. In fact, the present simulations show that 
the hybrid modified procedure provides better 
predictions than the algebraic KTGF procedure. 
 All the numerical simulations were performed for 
the CFB installation described in Luo (1987). Besides 
the three different procedures accounting for solids 
phase pressure and stress tensor, three different 
computational meshes and two different interpolation 
schemes for the advective terms were used. 

MATHEMATICAL MODEL 
 
 The simulations in the present work were 
performed using the MFIX computer model 
(Syamlal et al., 1993). The code is widely used for 
multiphase gas-solids flow simulation (Guenter and 
Syamlal, 2001, Gelderbloom et al., 2003, Gera et al., 
2004, among others). The mathematical models used 
are presented in Tables 1 and 2. In Table 1 the 
traditional model is presented, while in Table 2 the 
algebraic KTGF and the hybrid modified models are 
presented. 

In Tables 1 and 2, the subscripts (g) and (s) stand 
for gas and solids phases, respectively. vg and vs are 
local temporal velocities (m/s), ρg and ρs are 
densities (kg/m3), αg and αs represent volumetric 
fractions, and τg and τs account for viscous stress 
tensors (Pa). Also, P is the thermodynamic gas 
pressure (Pa), g is the gravity acceleration (m/s2), g0 
stands for the radial distribution function, G is the 
solids-phase elasticity modulus (N/m2), and β is the 
interface drag function (kg/m2-s). CDs characterizes 
the interface drag coefficient for a single particle in 
an infinite medium, Res is the Reynolds number 
based on the particle mean diameter dp, φs is the 
particle sphericity, µ and λ represent dynamic and 
volumetric viscosities (kg/m-s), θ stands for the 
granular temperature (m2/s2), e represents the 
particle-particle restitution coefficient, Rg is the ideal 
gas constant (J/kg-K), and t is the time (s). 
 
Computational Domain and Initial and Boundary 
Conditions 
 
 Figure 1 shows the basic computational domain 
employed in the simulations. The Cartesian coordinate 
system is applied. The geometric dimensions and initial 
and boundary conditions are specified in Figure 1. For 
the gas phase is assumed the full adherence to the wall 
or the no-slip boundary condition. For the solids phase 
is assumed a partial-slip condition in the direction 
tangential to the wall, in accordance with Ding and 
Gidaspow (1990), and the no-slip condition for the 
normal direction are assumed. For pressure and solids 
volumetric fractions a null gradient normal to the wall 
is assumed. Since the partial-slip condition for the 
solids phase was not available in the MFIX code, it was 
implemented. 
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Table 1: Hydrodynamic Model B using the traditional procedure for the computation  
of the solids phase constitutive relations. 
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Table 2: Hydrodynamic Model B using the algebraic KTGF procedure for the computation of the solids 

phase constitutive relations. 
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Continuation Table 2 
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Figure 1: Geometry and initial and boundary conditions used in the simulations assuming  

Cartesian coordinates. (In accordance with Luo, 1987). 
 
  

Simulation data:
Solids particle diameter: dp = 520 µm 
Solids particle density: ρs = 2620kg/m3 
Solids recirculation rate: Gs = 24.9 kg/(m2s) 
Gas phase dynamic viscosity: µg = 1.8×10-5 Pa s 
Initial conditions: 
 Empty riser 
 P = 101.325 kPa 
 T = 300 K 
Inlet boundary conditions: 
 vs = 0.386 m/s 
 vg = 4.979 m/s 
 αs = 0.0246 
 P = 120.6639 kPa 
 T = 300 K 
Outlet boundary conditions: 

 Continuity condition: f 0
n
∂

=
∂

 

 where f is either αg, ug, or us. 
 Gas phase pressure: P = 117.2049 kPa 
Wall boundary conditions: 
 Gas phase: no-slip  

 Solids phase: partial slip p s
s,w 1 3

s

d v
v

n
∂

= −
∂α

 

 Solids fraction and pressure: null normal gradient 
Computational conditions: 
                Numerical meshes: 
                Mesh 1: (10×146) 1460 nodes: δx = 0.762 cm, δy = 3.81 cm 
                Mesh 2: (15×146) 2190 nodes: δx = 0.508 cm, δy = 3.81 cm 
                Mesh 3: (20×146) 2920 knots: δx = 0.381 cm, δy = 3.81 cm 
                Simulation time: t = 100 s 

riser 

7.62 cm 

5.5 m 

x 
y 

7.62 cm
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Numerical Predictions and Discussion 
 
 Results of numerical simulation are presented for 
the different mathematical models, considering two 
different discretization schemes for the advective 
terms, and three different mesh sizes.The 
mathematical models are the traditional, the algebraic 
KTGF, and the hybrid modified KTGF. The 
discretization schemes are the first-order upwind 
scheme (Foup) and the second-order upwind Superbee 
scheme (Syamlal et al., 1993). The mesh sizes are 
defined in Figure 1. All the simulations presented in 
the paper were performed on two computers: a 

Pentium IV with an Intel processor of 1.4 Ghz and 
512 Mbytes of Ram and an AMD-ATHLON dual 
computer with processors of 2.0 Ghz and 1.5 Gbytes 
of RAM. The unavailability of more powerful 
computational resources resulted in the use coarse 
meshes, as explained in the following paragraphs. 

The results obtained with the algebraic KTGF 
(KTGF_def) for the three different meshes are 
presented in Figure 2. The graphs show time-
averaged radial profiles of the axial velocity of both 
phases and the solids volumetric fraction, 3.4 meters 
above the riser entrance. The results are compared to 
Luo's experimental data (Luo, 1987). 
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Figure 2: Radial profiles for time-averaged parameters compared to Luo's experimental data,  

3.4 meters above the inlet for three different meshes, Superbee advection  
discretization scheme and the algebraic KTGF model. 
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The results for the different computational meshes 
show the same qualitative behavior. The quantitative 
predictions usually become more precise as the mesh is 
refined. However, there is no guarantee that the results 
are free from the effect of mesh size, since very coarse 
meshes were used. In fact, the mesh refinements used 
in this work, bound by computational limitations, may 
be far from that required for accurate mesh-
independent predictions. Of course, mesh should be 
further refined if its effect on the predictions is to be 
assessed. To what extent to refine, however, is not 
known, and a great deal of computational 
experimentation on this matter is still required. 
Regarding the comparison to Luo’s experimental data, 
considerable deviations are observed for all parameters  

even though qualitative agreement is found. In fact, the 
order of magnitude of the observed quantitative 
deviations is quite common in CFB gas-solids flow 
predictions (Cabezas-Gómez, 2003). The discrepancies 
should be credited to both empirical difficulties of 
measurement and a crude stage of development of the 
two-fluid models applied to gas-solids flows. 

Figure 3 shows comparisons of predictions using 
the first-order upwind (Foup) and the higher order 
(Superbee) discretization schemes. The algebraic 
KTGF and the finer 20 × 146 mesh were used. In 
comparison to Luo’s experimental data, whatever the 
discretization scheme, the discrepancies become greater 
towards the center of the column for all the parameters 
concerned. 
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Figure 3: Radial profiles for time-averaged parameters compared to Luo's experimental data, 3.4 meters above 

the inlet, for Foup and Superbee advection discretization schemes, mesh 3, and the algebraic KTGF model. 
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The higher order discretization scheme seems 
to provide better results than the first-order 
scheme. Nevertheless, the predictions using 
Superbee still deviate considerably from Luo's 
experimental data. While preferable for providing 
higher order interpolations, the Superbee scheme 
only slightly improves the predictions over the 
first-order scheme. It is clear that in the present 
simulations the interpolation scheme was not 
responsible for the observed deviations between 
predictions and experiment. However, it is 
acknowledged that the choice of a discretization 
procedure may be quite important for accuracy, 
mainly taking into account the current state of the 
art in computational resources, which imposes 
relatively coarse meshes. 

The very slight improvement on the predictions 
as Superbee is used suggests that the numerical 
diffusion, which is supposed to be imposed by the 
first-order upwind scheme, may be not significant 
concerning gas-solids flows in risers. This statement 
is in agreement with previous conclusions of 
Cabezas-Gómez and Milioli (2005b). In that work an 
anterior version of the MFIX code was used to 
simulate gas-solids flows in risers, applying the first-
order upwind discretization scheme. When an 
inviscid solids flow was assumed, the averaged 
radial profiles of the axial velocity for the solids 
phase were very flat, indicating the absence of any 
diffusion-like effect, whether physical or numerical. 

Figures 4 show comparisons of predictions from the 
algebraic KTGF (KTGF_def) and the hybrid modified 
(KTGF_mod) models with the predictions from the 
traditional model. As in the previous cases, the graphs 
show time-averaged radial profiles of the axial velocity 
of both phases and the solids volumetric fraction, 3.4 

meters above the riser entrance. The higher order 
Superbee discretization scheme and the finer 20×146 
mesh were used. Again, the results are compared to 
Luo's experimental data. 
 In all the graphs it can be seen that the 
KTGF_mod predictions are quite different from 
those of the KTGF_def and are very close to the 
traditional model predictions (referred to as 

s s0.5µ = α ). This would suggest that either in the 
traditional and KTGF_mod models the effect of the 
solids phase pressure is overestimated in comparison 
to the viscous effects, or else, that in the KTGF_def 
model it is underestimated. It seems that the second 
alternative is more acceptable, since the predictions 
of both the KTGF_mod model and the traditional 
procedure are closer to Luo's experimental data than 
those of the KTGF_def model. In fact, it is not 
surprising that the traditional model gives better 
predictions than the algebraic KTGF model. The 
empirical correlation for the pressure of the solids 
phase and the empirical value of the viscosity of this 
phase were determined for riser flows (Luo, 1987). 
Otherwise, the algebraic KTGF and its correlations 
are based on assumptions, which are more 
appropriate for bubbling fluidized beds. It seems that 
new versions of the KTGF model are required to 
account for both diffusive and convective transports, 
which are quite significant in CFB risers. The 
solution of a full PDE equation for granular energy 
seems to be necessary, despite the tremendous 
additional computational effort that is required. 

Recently Cabezas-Gómez and Milioli (2005a) 
showed the large effect that the solids pressure 
gradient exerts on the gas-solids flow transitory 
behavior in risers. The present work confirms those 
observations. 
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Figure 4: Radial profiles for time-averaged parameters compared to Luo's experimental data, 3.4 meters above 

the inlet, for the algebraic KTGF, the hybrid modified KTGF and the traditional models, mesh 3, and the 
Superbee advection discretization scheme. 

 
 

FINAL REMARKS 
 
 The finer numerical mesh used in the simulations 
had twice as many cells as the coarser mesh. Even 
though this represents a considerable refinement, most 
of the predictions were very close for the two meshes. 
This could be taken as an indication that mesh size does 
not affect the predictions. However, such a conclusion 
is not acceptable, since even the finer mesh is still very 
coarse. The meshes used in this work were bound by 
computational limitations and are possibly very far 
from that required for accurate mesh-independent 
predictions. Further computational experimentation on 
this matter is clearly required. 
 The higher order Superbee scheme for the 
discretization of advection terms provided better results 
than the first-order Foup scheme, since predictions for 
the former were closer to the experimental data. 
Notwithstanding, the predictions by both the 
procedures deviated considerably from experiment. In 
this work the discretization scheme was clearly not 
responsible for the observed deviations. However, the 
state of the art in computational resources generally 
imposes coarse meshes, and the discretization scheme 
for advection terms may assume utmost importance. 
The choice should always tend towards higher order 
discretization schemes if accuracy is pursued. 
 While the higher order Superbee provided better 
results than the fist-order upwind Foup scheme, the 
predictions in fact were similar, with the exception 
of those associated with the solid volumetric fraction 
(see Figure 3), where the Superbee scheme provided 

better prediction results. This suggests that numerical 
diffusion typical of first-order upwind schemes is 
playing some role as far as the present simulations 
are concerned. 
 A modification of the conventional algebraic 
KTGF model was used by computing solids phase 
pressure by the empirical correlation of the 
traditional model. This modification brought the 
predictions closer to both the traditional model 
predictions and the experimental data. This result 
leads to the conclusion that the effect of the solids 
pressure is underestimated in the algebraic KTGF 
model. The algebraic KTGF is based on assumptions 
that are more appropriate for bubbling fluidized beds 
than for riser simulation. It seems that a full granular 
energy equation should be solved if the KTGF is to 
be applied to circulating fluidized bed risers. 
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NOMECLATURE 
 
List of Symbols 
 
CDs drag coefficient for a single 

particle in an infinite  
medium 

(-)

dp  particle diameter (m)
e  particle-particle restitution 

coefficient 
(-)

g   gravity acceleration (m/s2)
g0  radial distribution function 
G  solids elasticity modulus (N/m2)
K1, K2, K3, 
and K4   

coefficients for the calculation 
of the granular temperature 

(-)

P gas pressure (Pa)
Res   Reynolds number based on 

particle diameter 
(-)

Rg   ideal gas constant (J/kg-K)
t   time (s)
vg and vs   axial velocities (m/s)
αg and αs  volumetric fractions (-)
β  interface drag function (kg/m2-s)
φs particle sphericity 
λ   volumetric viscosity (kg/m-s)
µ   dynamic viscosity (kg/m-s)
θ   granular temperature (m2/s2)
ρg and ρs   densities (kg/m3)
τg and τs   viscous stress tensors (Pa)
 
Subscripts 
 
(g) and (s)  gas and solids phases (-)
(k)  gas or solids phase (-)
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