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Abstract - In this paper we report the application and evaluation of the simulated annealing (SA) optimization 
method in parameter estimation for vapor-liquid equilibrium (VLE) modeling. We tested this optimization 
method using the classical least squares and error-in-variable approaches. The reliability and efficiency of the 
data-fitting procedure are also considered using different values for algorithm parameters of the SA method. 
Our results indicate that this method, when properly implemented, is a robust procedure for nonlinear 
parameter estimation in thermodynamic models. However, in difficult problems it still can converge to local 
optimums of the objective function.  
Keywords: Vapor-liquid equilibrium; Simulated annealing; Nonlinear parameter estimation; Error-in-variable 
method; Global optimization. 

 
 
 

INTRODUCTION 
 

In many important areas of chemical, biochemical 
and petroleum engineering, mathematical models 
form the basis for the design, optimization and 
control of process systems (Esposito and Floudas, 
1998; Englezos and Kalogerakis, 2001). Parameter 
estimation is a common problem in many 
engineering applications and is one of the steps 
involved in the formulation and validation of a 
mathematical model that describes a process of 
interest. Specifically, it refers to the process of 
obtaining values of the parameters by matching the 
model-based calculated values with the set of 
measurements (Englezos and Kalogerakis, 2001). If 
we use linear model equations, the problem is called 
linear estimation, while nonlinear estimation refers 

to the more general problem where the model 
equations are nonlinear functions of the parameters. 
As indicated by Esposito and Floudas (1998), the use 
of nonlinear models introduces an added level of 
complexity into the numerical estimation of model 
parameters.  

Parameter estimation is generally based on the 
classical least squares or maximum likelihood 
approaches (Esposito and Floudas, 1998; Gau et al., 
2000; Gau and Stadtherr, 2002). In the classical least 
squares approach, it is assumed that there is a set of 
independent variables not subject to measurement 
error, while errors in all measured variables are 
accounted for in the maximum likelihood approach. 
Both methods involve the minimization of an 
objective function subject to constraints representing 
the model equations. Depending on the system 
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characteristics, we can solve a constrained or 
unconstrained optimization problem, which in 
general is nonlinear and potentially nonconvex.  

Several local and global optimization methods 
have been used for parameter estimation in both 
linear and nonlinear models (Bard, 1974; Britt and 
Luecke, 1973; Fabries and Renon, 1975; Gmehling 
et al., 1977-1990; Anderson et al., 1978; Valko and 
Vajda, 1987; Tjoa and Biegler, 1992; Vamos and 
Hass, 1994; Esposito and Floudas, 1998; Gau et al., 
2000; Gau and Stadtherr, 2002). Local optimization 
methods are not reliable for finding the global 
minimum of the problem; however, these methods 
are the most widely used. In the other hand, some 
applications of global optimization methods in 
parameter estimation have been reported by Esposito 
and Floudas (1998), Kleiber and Axmann (1998), 
Park and Froment (1998), Gau et al. (2000), Costa et 
al. (2000), Gau and Stadtherr (2002) and Dominguez 
et al. (2002).  

An attractive alternative for the reliable solution 
of nonlinear parameter estimation is the use of 
stochastic optimization methods such as simulated 
annealing (SA) or genetic algorithm (GA). Even 
though these methods provide no formal guarantee 
for global optimization, they are reliable strategies 
and offer a reasonable computational effort in the 
optimization of multivariable functions 
(Michalewicz and Fogel, 1999). In fact, some papers 
have reported the application of SA and GA in 
parameter estimation using chemical engineering 
models (Kleiber and Axmann, 1998; Park and 
Froment, 1998; Costa et al., 2000).  

In the context of thermodynamics, parameter 
estimation may also encounter computational 
difficulties due to the possibility of several local 
optimums in the objective function used as 
optimization criterion. As indicated by Dominguez et 
al. (2002), failing to identify the global optimum in 
parameter estimation may cause errors and 
uncertainties in equipment design and erroneous 
conclusions about model performance. In view of 
this, it is important to test different optimization 
methods to identify a reliable and efficient technique 
for this purpose.  

In this paper, we report the application and 
evaluation of the SA method in parameter estimation 
for vapor-liquid equilibrium (VLE) modeling. We 
have tested the numerical performance of SA using 
the classical least squares and maximum likelihood 
approaches. Reliability and efficiency in the data-
fitting procedure are also considered using different 
values for the algorithm parameters of the SA method.  

METHODOLOGY 
 
Problem Formulation 

 
In accordance with Gau et al. (2000), consider 

that a set of observations ijy  of i 1,..., m=  dependent 
response variables from j 1,..., ndat=  experiments is 
available, where the responses will be adjusted to an 

explicit model jij iy f x ,
→ → 

= θ 
 

 with independent 

variables ( )Tj 1j pjx x ,..., x
→

=  and parameters 

( )T1 q,...,
→
θ = θ θ . Measurement errors in jx

→
 can 

either be treated or neglected, and depending on the 
choice, we can have a least squares or maximum 
likelihood formulation. Different objective functions 
can be used to obtain the parameter values that 
provide the best fit. For the case of the classical least 
squares (LS) criterion, we use the following 
objective function 
 

2

jij indat m

obj
ijj 1 i 1

y f x ,
F

y

→ →

= =

  
− θ  

  =  
  
 

∑∑         (1) 

 
This function is optimized with respect to the model 

parameters ( )T1 q,...,
→
θ = θ θ  and Gmehling et al. 

(1977-1990), Gau et al. (2000) and Dominguez et al. 
(2002) have used this formulation in data fitting for 
VLE modeling.  

If we assume that there are measurement errors in 
the state variables ijz  for the experiments in the 
system to be modeled, the error-in-variable (EIV) 
formulation has the form 
 

( )2tndat nest ij ij
obj 2

ij 1 i 1

z z
F

= =

−
=

σ∑∑                     (2) 

 
subject to 
 

t
ijg z , 0   i 1,..., nest   j 1,..., ndat

→ → 
θ = = = 

 
        (3) 

where g
→

 is a vector of np model functions, nest is
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the number of state variables, t
ijz  represents the 

unknown “true” values of state variables for each 
measurement and iσ  represents the standard 
deviation associated with the measurement of state 
variable i. The optimization variables of this problem 
are the set of t

ijz  and the model parameters 

( )T
1 q, ...,

→
θ = θ θ . In this case, there is a substantial 

increase in the dimensionality of the optimization 
problem, which depends on the number of 
experiments. Esposito and Floudas (1998) and Gau 
and Stadtherr (2002) have applied their deterministic 
optimization approaches to solving Eqs. [2] and [3] 
with different chemical engineering models 
including vapor-liquid equilibrium equations.  

The last functions can be minimized either as a 
constrained or as an unconstrained optimization 
problem. In all  our examples, we will consider only 
the unconstrained formulation. We have studied the 
numerical performance of the SA method in the 
global minimization of these functions using vapor-
liquid equilibrium models. In the next section, we 
describe the algorithm used for the SA method.  
 
 Simulated Annealing (SA) 
 

Simulated annealing is a stochastic optimization 
technique inspired by the thermodynamic process of 
cooling of molten metals to attain the lowest free 
energy state (Kirkpatrick et al., 1983). Starting with 
an initial solution and armed with adequate 
perturbation and evaluation functions, the algorithm 
performs a stochastic partial search of the state 
space. In minimization problems, uphill moves are 
occasionally accepted with a probability controlled 
by a parameter called annealing temperature, SAT . 
The probability of acceptance of uphill moves 
decreases as SAT  decreases. At high temperatures, 
the search is almost random, while at low 
temperatures the search becomes almost greedy. At 
zero temperature, the search becomes totally greedy, 
i.e., only good moves are accepted (Kirkpatrick et 
al., 1983). The core of the algorithm is the 
Metropolis procedure, which simulates the annealing 
process at a given SAT  (Metropolis et al., 1953). The 
Metropolis criterion is used to accept or reject the 

uphill moves. Several algorithms have been 
proposed for the SA method. We have used the 
algorithm proposed by Corana et al. (1987) because 
previous papers have reported its reliability and 
efficiency in thermodynamic calculations 
(Henderson et al., 2001; Rangaiah, 2001).  

In the algorithm proposed by Corana et al. 
(1987), a trial point is randomly chosen within the 
step length VM (a vector of length n variables) of a 
starting point. The function is evaluated at this trial 
point and its value is compared to its value at the 
initial point, where the Metropolis criterion is used to 
accept or reject the trial point. If the trial point is 
accepted, the algorithm moves on from that point. If 
it is rejected, another point is chosen instead for a 
trial evaluation. Each element of VM is periodically 
adjusted so that half of all function evaluations in 
that direction are accepted. A fall in SAT , after NT 
iterations, is imposed upon the system with the RT 
variable by  
 

SA j 1 SA jT RT T+ = ×                                      (4) 
 
where j is the iteration counter and RT is the 
temperature reduction factor. For our examples, we 
have defined this parameter equal to 0.85 which is the 
value suggested by Goffe et al. (1994). Thus, as SAT  
declines, downhill moves are less likely to be 
accepted and the percentage of rejections rises. Given 
the scheme for the selection of VM, VM falls. Thus, 
as SAT  declines, VM falls and SA focuses upon the 
most promising area for optimization. A full 
description of this algorithm is found in Corana et al. 
(1987) and we have used the subroutine developed by 
Goffe et al. (1994). Figure 1 shows a flow diagram of 
this optimization method. The choice of cooling 
schedule is a crucial aspect in the implementation of 
SA because it affects the numerical performance of 
the optimization procedure. Considering this fact, we 
have tested the effect of parameters SAT  and NT on 
the numerical performance of SA to find the global 
optimum of the objective function used in the data-
fitting procedure. Several calculations are done to 
perform this evaluation and a statistical analysis is 
used to establish their relative effect on the reliability 
of the SA method.   
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Figure 1: Flow diagram of SA optimization algorithm (Corana et al., 1987)

 
 

RESULTS AND DISCUSSION 
 

We test the SA method in the data-fitting 
procedure using several experimental VLE data and 
different thermodynamic models. All systems used 
in this paper have an objective function with multiple 
optimums and they have been applied for testing 
global deterministic optimization methods (Esposito 
and Floudas, 1998; Gau et al., 2000; Gau and 
Stadtherr, 2002). The reliability and efficiency of SA 
is evaluated based on the following criteria: a) 
success rate in finding the global minimum SR and 
b) average number of objective function evaluations 

during the optimization procedure NFEV. All 
examples are solved 100 times (each time with a 
different random initial value and random number 
seed) and the results obtained are divided into four 
groups (each group with 25 calculations). For each 
group of results, SR and NFEV are calculated and a 
variance analysis is performed to establish the effect 
of parameters TSA and NT on the reliability of the 
data-fitting procedure. We consider the statistical 
effect of these parameters significant if the value of 
the p-level obtained from the statistical analysis is 
lower than 0.05. In all our examples, we have used a 
tolerance of 1.0E-09 for the convergence of the SA 

Initialize parameters  
NT, RT, TSA 

Perform a cycle of random moves, each in a  
coordinate direction. Accept or reject each  
point according to the Metropolis criterion. 
Record the optimum point reached so far. 

No. cycles ≥ 
Ns

Adjust step vector VM
Reset No. cycles to 0 

No. step  
adjustments ≥ 

Reduce temperature.  
Reset No. Adjustments to 0. 

Set current point to the optimum. 

 Stopping 
criterion

End 

No 

No 

Yes 

Yes 

No 

Yes 
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algorithm. The experimental data are taken from 
DECHEMA and Reid et al. (1987). In all examples, 
we have assumed gas ideal behavior and the vapor 
pressures of pure components are calculated using 
the Antoine equation. For problems 1 – 4, we use the 
constants reported in DECHEMA for the Antoine 
equation.  
 
Problem 1. Tert Butanol-1 Butanol  

 
Our first example is the VLE for the binary 

system tert butanol-1 butanol. This system was 
studied by Gau et al. (2000) using an interval 
analysis approach and classical least square 
formulation. We use three sets of experimental data 
under different isobaric conditions. The Wilson 
equation is used to calculate the liquid-phase activity 
coefficients, which are defined by 

 
1 1 12 2

12 21
2

1 12 2 21 1 2

ln ln(x x )

x
x x x x

γ = − + Λ +

 Λ Λ
+ − + Λ Λ + 

                           (5) 

 
2 2 21 1

12 21
1

1 12 2 21 1 2

ln ln(x x )

x
x x x x

γ = − + Λ −

 Λ Λ
− − + Λ Λ + 

           (6) 

 
The binary parameters 12Λ  and 21Λ are given by 

 
2 1

12
1

v
exp

v RT
θ Λ = − 

 
                                         (7) 

 
1 2

21
2

v
exp

v RT
θ Λ = − 

 
                                            (8) 

 
where 1v  and 2v  are the pure component liquid 
molar volumes, T is the system temperature and 1θ  
and 2θ  are the energy parameters. Assuming an 
ideal vapor phase, the experimental values for the 
activity coefficients exp

iγ  are calculated using the 
next equation 
 

exp exp
exp i
i exp 0

ii

y P
   i 1,..., c

x P
γ = =                                     (9) 

where 0
iP  is the vapor pressure of pure component i 

at the system temperature T and c is the number of 
components. The vapor pressure is calculated using  
 

 0 1
10 i 1

1

b
log P a

c T
= −

+
                               (10) 

 
where T  is in °C and 0

iP , in mmHg. In accordance 
with Gmehling (1977-1990) and Gau et al. (2000), 
we use a relative least squares formulation to fit the 
data 
 

2exp calcndat c
ijij

obj exp
j 1 i 1 ij

F
= =

 γ − γ
 =
 γ 

∑∑                       (11) 

 
We optimize this function with respect to the 

Wilson model parameters inside the intervals 
1 ( 8500,  320000)θ ∈ −  and 2 ( 8500,  320000)θ ∈ − . 

The initial values for each calculation are randomly 
generated within these intervals. The performance of 
SA is tested using the next arbitrary values for its 
parameters: SAT (10, 100, 1000) and NT (10, 20). 
The results obtained by other thermodynamic 
calculations suggest that our proposed values for 

SAT  and NT  are suitable choices and favor the 
numerical performance of SA. We don’t use higher 
values of NT  because the computational time of the 
SA method is significantly increased. The results 
obtained for all combinations of SAT NT−  are 
reported in Table 1 and the statistical effect of these 
parameters on the reliability of the data-fitting 
procedure is reported in Table 2. For all pressure 
conditions, SA fails several times to find the global 
minimum of the objective function. In all data sets, 
the parameter SAT  shows a significant statistical 
effect on the reliability of the parameter estimation 
procedure (p-level ≤ 0.05). In general, an increase in 

SAT  improves the reliability of the SA method, of 
course at the expense of a major computational 
effort. Only for the experimental data at 700 mmHg, 
the parameter NT  and the interaction SAT NT−  
show a significant statistical effect on the reliability 
of the data fitting. The global optimums reported in 
Table 1 are consistent with the results of Gau et al. 
(2000). 
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Table 1: Results of parameter estimation for the tert butanol-1 butanol  

system using simulated annealing with the least squares formulation 
 

NFEV(SR,%)1 

 Global minimum2  
SAT  

P, mm 
Hg Number of data 1θ  2θ  objF  NT  10 100 1000 

100 9 -568 745.3 0.0103 10 57005±1389.7 
(67.0±6.8) 

62485±1375.4 
(87.0±10.0) 

68289±1555.0 
(90.0±4.0) 

     20 114953±2853.3 
(80.0±17.0) 

126505±2634.1 
(92.0±3.3) 

137161±2910.9 
(88.0±5.7) 

500 9 -718 1264.7 0.0069 10 57709±1522.2 
(74.0±6.9) 

63325±1377.1 
(92.0±6.5) 

68853±1458.0 
(90.0±5.2) 

     20 115529±2542.8 
(84.0±7.3) 

127065±2813.1 
(91.0±3.8) 

138305±2553.4 
(87.0±6.8) 

700 9 -734 1318.2 0.0137 10 57773±1321.5 
(70.0±6.9) 

63349±1374.7 
(97.0±3.8) 

68937±1466.4 
(94.0±7.7) 

     20 115393±2632.8 
(95.0±7.6) 

127049±2777.6 
(95.0±5.0) 

137793±3089.2 
(93.0±6.8) 

1NFEV is defined as the average number of objective function evaluations during the optimization procedure and SR is the 
success rate in finding the global minimum based on 4 groups of 25 calculations with random initial values and number seeds.  
2 Global optimums are consistent with results reported by Gau et al. (2000). 

 
 

Table 2: Results of variance analysis for the data-fitting procedure  
using simulated annealing in vapor-liquid modeling 

 
    Variance analysis, p-level1 

System Formulation ELV Model T, °C or P, 
mm Hg SAT  NT  

Interaction 
SAT - NT  

Tert butanol-1 
Butanol LS Wilson-Ideal gas P=100 0.0032 0.1668 0.2793 

   P=500 0.0021 0.4410 0.1072 
   P=700 0.0013 0.0124 0.0007 

Water-1,2 Ethanediol LS Wilson-Ideal gas P=430 0.0000 0.0547 0.0314 
  NRTL-Ideal gas     
  UNIQUAC-Ideal gas  0.0000 0.0010 0.0095 

Benzene-
Hexafluorobenzene LS Wilson-Ideal gas T=30 0.0620 0.0231 0.1568 

   T=50 0.0020 0.0077 0.0020 
   P=300 0.0705 0.0064 0.4290 
   P=760    

Benzene-
Hexafluorobenzene EIV Wilson-Ideal gas T=50 0.0380 0.0781 0.1016 

   T=70 0.0288 0.0954 0.3007 
   P=300 0.0290 0.2727 0.4398 
   P=760 0.0414 0.0000 0.1709 

Methanol-1,2 
Dichloroethane EIV van Laar-Ideal gas T=50    

1Statistical effect of SA parameters on the reliability of the data-fitting procedure. The variable SR is used as dependent 
variable in the variance analysis.   
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Problem 2. Water-1,2 Ethanediol 
 

We use one data set for the system water-1,2 
ethanediol at 430 mmHg. This system was also 
analyzed by Gau et al. (2000) using the least squares 
formulation and they reported several local optimums 
for the objective function. Also, they indicated that 
global optimal parameters provide a better fit to the 
experimental data. We optimize Eq. 11 with respect to 
the energy parameters of the Wilson, NRTL and 
UNIQUAC models. The energy parameters for the 
NRTL and UNIQUAC equations are defined as in 
DECHEMA. We use the same initial intervals 
employed in the last example for the Wilson model, 
while the feasible domain for the NRTL and 
UNIQUAC parameters are 1 2,θ θ ∈ (-2000, 5000) and 

12α ∈ (0.01, 10) and 1 2,θ θ ∈ (-5000, 20000), 
respectively. These domains include the parameters 
reported in DECHEMA. Our results are presented in 
Table 3 and the statistical analysis is reported in Table 
2. For the Wilson and UNIQUAC models, the 
parameter TSA and the interaction TSA – NT show a 
significant statistical effect on the reliability of the data-
fitting procedure. Also, SA shows some failures in the 
global minimization of the objective function. The 
global minimum reported for the Wilson model is in 
agreement with that published by Gau et al. (2000). 
The energy parameters reported in DECHEMA 
correspond to local optimums for the three models. 
Similar findings with other systems have been reported 
by Dominguez et al. (2002) using the Wilson and 
UNIQUAC equations.  

 
Table 3: Results of parameter estimation for the water-1,2 ethanediol system at 430 mmHg using 

simulated annealing with the least squares formulation   
 

NFEV(SR,%)1 

 Global minimum2  
SAT  

Model Number 
of data 1θ  2θ  12α  objF  NT  10 100 1000 

Wilson-
Ideal gas 

18  
 5072.4 -1921.6  1.0391 10 57697±1620.2 

(64.0±13.5) 
63237±1758.9 

(99.0±2.0) 
69053±1335.3 

(100.0±0.0) 

      20 115737±3068.1 
(80.0±7.3) 

127569±2437.2 
(99.0±2.0) 

138537±3132.7 
(100.0±0.0) 

NRTL-Ideal 
gas 

 
 -679.0 3046.1 0.6214 1.2535 10 88177±1866 

(100±0.0) 
96883±1757 

(100±0.0) 
105529±1562 

(100±0.0) 

      20 176509±3467 
(100±0.0) 

194377±2839 
(100±0.0) 

210301±3485 
(100±0.0) 

UNIQUAC-
Ideal gas  -1131.8 3617.7  1.4085 10 57685±1622 

(58.0±10.0) 
 63537±1513 

(94.0±5.0) 
69357±1285 
(99.0±2.0) 

      20 115113±2778 
(78.0±8.0) 

126969±2604 
(100.0±0.0) 

138049±2737 
(100.0±0.0) 

1NFEV is defined as the average number of objective function evaluations during the optimization procedure and SR is the 
success rate in finding the global minimum based on 4 groups of 25 calculations with random initial values and number seeds.  
2 Global optimum is consistent with the results reported by Gau et al. (2000). 

 
 
Problem 3. Benzene-Hexafluorobenzene  
(LS Formulation) 

 
The parameter estimation of this problem is 

performed assuming VLE data under isothermal and 
isobaric conditions. This system has also been 
analyzed by Gau et al. (2000) using interval analysis. 
Four data sets are used to test the numerical 
performance of the SA method. We use a least 
squares formulation in the parameter estimation and 
the same initial intervals as those for the energy 
parameters of the Wilson model are applied. The 
results of parameter estimation are reported in Table 
4, while the statistical analysis appears in Table 2. In 
this example, SA has a better numerical 
performance; however, it still shows some failures in 
the global minimum of the objective function. Only 

for the data at 760 mmHg, SA finds the global 
minimum with a reliability of 100% and its 
numerical performance is independent of the values 
for parameters SAT  and NT. We find a significant 
statistical effect of parameter NT in the reliability of 
the parameter estimation procedure for the data at 30 
°C, 50 °C and 300 mmHg. For the case of TSA, it 
affects the reliability of SA for data at 50 °C. As 
indicated by Gau et al. (2000), a failure in the global 
minimization in parameter estimation affects the 
capability of the thermodynamic model in prediction 
of homogeneous azeotropes in this system. That 
failure in the model’s performance in the calculation 
of azeotropes could result in design problems in 
separation processes. The global optimums found 
with SA are in agreement with those reported by Gau 
et al. (2000).  
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Table 4: Results of parameter estimation for the benzene-hexafluorobenzene  
system using simulated annealing with the least squares formulation 

 
NFEV(SR,%)1 

 Global minimum2  
SAT  

T, °C or 
P, mm Hg 

Number 
of data 1θ  2θ  objF  NT  10 100 1000 

T = 30 10 -467.8 1313.9 0.0118 10 57841±1345.4 
(91.0±8.9) 

63569±1523.1 
(96.0±3.3) 

69081±1308.2 
(100.0±0.0) 

     20 116105±2559.4 
(99.0±2.0) 

126833±2581.5 
(100.0±0.0) 

138449±3124.0 
(100.0±0.0) 

50 11 -424.1 983.1 0.0089 10 57745±1216.1 
(97.0±2.0) 

63413±1284.5 
(100.0±0.0) 

68957±1588.7 
(100.0±0.0) 

     20 115929±2647.4 
(100.0±0.0) 

127337±2446.8 
(100.0±0.0) 

138649±2329.5 
(100.0±0.0) 

P = 300 17 -432.5 992.9 0.0149 10 58097±1315.2 
(89.0±6.0) 

63501±1264.1 
(95.0±5.0) 

69177±1277.4 
(96.0±3.3) 

     20 115505±2873.8 
(97.0±3.8) 

126937±2881.2 
(99.0±2.0) 

138481±2868.7 
(99.0±2.0) 

760 29 -334.7 704.7 0.0146 10 57901±1262.8 
(100.0±0.0) 

63641±1270.6 
(100.0±0.0) 

69217±1378.5 
(100.0±0.0) 

     20 115673±2580.7 
(100.0±0.0) 

126977±2950.0 
(100.0±0.0) 

138209±2961.0 
(100.0±0.0) 

1NFEV is defined as the average number of objective function evaluations during the optimization procedure and SR is the 
success rate in finding the global minimum based on 4 groups of 25 calculations with random initial values and number seeds.  
2Global optimums are consistent with results reported by Gau et al. (2000).  

 
 
Problem 4. Benzene-Hexafluorobenzene (EIV 
Formulation) 

 
In this problem, we consider the modeling of 

vapor-liquid equilibrium of the binary system 
benzene-hexafluorobenzene using the error-in-
variable approach. This system was studied by Gau 
and Stadtherr (2002) using interval analysis. Four 
data sets are used and parameter estimation is 
considered using the Wilson equation for liquid-
phase activity coefficients. The state variables are 
( 1 1x , y , P, T ) where P is the system pressure in 
mmHg, T is the system temperature in °C and 1x  
and 1y  are the liquid and vapor mole fractions of 
benzene. In accordance with Gau and Stadtherr 
(2002), a standard deviations of 0.001, 0.01, 0.75 and 
0.1 are assumed for these variables. The vapor-liquid 
equilibrium can be described by the following 
equations 
 

0 0
1 1 1 2 1 2P x P (1 x )P= γ + γ −                                     (12) 

 
0

1 1 1
1 0 0

1 1 1 2 1 2

x P
y

x P (1 x )P
γ

=
γ + γ −

                                 (13) 

 
We formulate the data-fitting problem as 

unconstrained optimization using Eqs. [12] and [13] 

to eliminate P  and 1y  from the objective function. 
For the unconstrained problem, the independent state 

variables are the set of 1z x , T
→ → → 
=  
 

 for all 

measurements, while the optimization variables are 

( )T1 2,
→
θ = θ θ  and the set of t t t

1z x , T
→ → → 
=   
 

. The 

objective function is defined as 
 

( ) ( )

( ) ( )
1 1

2 2t t
1i 1i 1i 1i

2 2
ndat x y

obj
2 2t ti 1

i i i i

2 2
T P

x x y y

F
T T P P=

 − − + + σ σ 
=  

 − − + + σ σ  

∑             (14) 

 
This function is optimized with respect to 

2 2ndat+  variables where ndat  is the number of 
experimental data used in parameter estimation. The 
initial intervals of the independent state variables are 
set using plus and minus three standard deviations, 
while the intervals for the Wilson model parameters 
are defined as 1 ( 8500,  320000)θ ∈ −  and 

2 ( 8500,  320000)θ ∈ − . The results of parameter 
estimation are reported in Table 5 and the statistical 
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analysis appears in Table 2. Due to the increase in 
problem dimensionality, SA fails several times in 
finding the global minimum for all data sets. For only 
two cases, it shows 100% reliability in the global 
minimization of the objective function. Also, there is a 
significant increase in the computational effort of the 
data-fitting procedure, also caused by problem 
dimensionality. Of course, we can reduce the numerical 
effort of the SA method by decreasing the tolerance 

value and using a local search method to refine the 
solution obtained by SA. On the other hand, the 
variance analysis indicates that parameter TSA affects 
the reliability of parameter estimation for all data sets. 
For data at 760 mmHg, NT has a significant effect on 
the success rate for finding the global optimum. An 
increase in both TSA and NT improves the reliability of 
SA. The global optimums reported for all data are 
consistent with the results of Gau and Stadtherr (2002). 

 
Table 5: Results of parameter estimation for the benzene-hexafluorobenzene  

system using simulated annealing with the error-in-variable formulation 
 

NFEV(SR,%)1 

 Global minimum2  
SAT  

T, °C or P, 
mm Hg 

Number  
of data 1θ  2θ  objF  NT  10 100 1000 

T = 50 11 -460.6 1115.8 19.525 10 756481±8521.0 
(45.0±3.8) 

826609±8081 
(52.0±12.7) 

896209±7906 
(49.0±11.9) 

     20 1510177±15659.0 
(46.0±5.2) 

1652353±13867 
(53.0±11.9) 

1787041±13602.0 
(69.0±8.3) 

70 9 -424.2 1006.8 8.503 10 867401±326470 
(58.0±10.1) 

965961±347410 
(55.0±7.6) 

994281±401374 
(62.0±10.6) 

     20 1534081±361615 
(60.0±8.6) 

1756321±616201 
(58.0±10.6) 

1645041±349990 
(78.0±10.6) 

P = 300 17 -478.3 1118.7 37.399 10 1157689±18171 
(54.0±5.2) 

1259281±19591 
(56.0±5.7) 

1360297±19289 
(59.0±6.0) 

     20 2296225±19676 
(55.0±5.0) 

2502865±17570 
(56.0±5.7) 

2709073±20534 
(66.0±6.9) 

760 29 -420.7 1060.3 16.925 10 4998841±3331470 
(43.0±8.3) 

4512481±2949822 
(52.0±19.9) 

4312441±3148616 
(65.0±7.6) 

     20 4105201±1095049 
(96.0±3.3) 

4236001±32451 
(100.0±0.0) 

4567861±32340 
(100.0±0.0) 

1NFEV is defined as the average number of objective function evaluations during the optimization procedure and SR is the 
success rate in finding the global minimum based on 4 groups of 25 calculations with random initial values and number seeds.  
2Global optimums are consistent with results reported by Gau and Stadtherr (2002). 

 
 
Problem 5. Methanol-1,2 Dichloroethane 
 

This system was studied by Esposito and Floudas 
(1998) using a deterministic global optimization 
method. We consider the EIV parameter estimation 
using the van Laar model for liquid phase. The 
experimental data consists of five points for the state 
variables: pressure in mmHg, temperature in Kelvin 
and liquid and vapor mole fractions of methanol. The 
vapor pressure of pure components is calculated 
using 
 

0 1
i 1

1

b
P exp a

T c
 

= − − 
                                         (15) 

 
where 0

iP  is given in mmHg, T is given in Kelvin 
and the constants of the Antoine equation are taken 

from Esposito and Floudas (1998). The activity 
coefficients are defined by 

 
2

1
1

2

xA Aexp 1
RT B x

−   γ = + 
   

                               (16) 

 
2

2
2

1

xB Bexp 1
RT A x

−   γ = + 
   

                              (17) 

 
We use an unconstrained optimization formulation in 
the data-fitting procedure. In accordance with 
Esposito and Floudas (1998) and Gau and Stadtherr 
(2002), the temperature is scaled by a reference 
temperature rT  = 323.15 K and the van Laar model 
parameters are defined considering the reference 
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temperature as 
r r

A B,
RT RT

→  
θ =  

 
. The state variables 

of the system are 1 1
r

Tx , y , P,
T

 
 
 

 and their standard 

deviations are defined as 0.005, 0.015, 0.75 and 
0.000309. The objective function is given by 
 

( ) ( )

( ) ( )
1 1

2 2t t
1i 1i 1i 1i

2 2
ndat x y

obj
2 2t ti 1

i i i i

2 2
P TS

x x y y

F
P P TS TS=

 − − + + σ σ 
=  

 − − + + σ σ  

∑             (18) 

 
where rTS T / T= . Equations [12] and [13] are used 
to eliminate P  and 1y  in the objective function and 
we have twelve optimization variables where the 
initial intervals for the independent state variables 

t t t
1z x , T

→ → → 
=   
 

 are set using plus and minus three 

standard deviations. For the case of the van Laar 

model parameters, we use 
r

A (1,  2)
RT

∈  and 

r

B (1,  2)
RT

∈ . The results of parameter estimation are 

reported in Table 6. For all calculations performed, 
SA finds the global minimum of the objective 
function with 100% reliability. In this case, the 
parameters TSA and NT affect only the efficiency of 
the data-fitting procedure. The global minimum 
reported is consistent with the results of Gau and 
Stadtherr (2002). 

We have studied the numerical performance of 
SA with other examples reported by Gau et al. 
(2000) and Gau and Stadtherr (2002). The results 
obtained in those calculations, not reported here, 
indicate that SA is generally a reliable method for 
parameter estimation in VLE modeling.   

Based on our experience with other SA 
algorithms, such as very fast simulated annealing 
(Sharma and Kaikkonen, 1999) and direct search 
simulated annealing (Ali et al., 2002), we can expect 
that the algorithm of Corana et al. (1987) has a better 
numerical performance and we consider it a suitable 
choice for data fitting in thermodynamic models.  

 
Table 6: Results of parameter estimation for the methanol-1,2 dichloroethane  

system using simulated annealing with the error-in-variable formulation   
 

NFEV(SR,%)1 

 Global minimum2  
SAT  

T, °C Number 
of data r

A
RT

 
r

B
RT

 
objF  NT  10 100 1000 

50 5 1.912 1.608 3.326 10 370561±4435 
(100.0±0.0) 

404593±4766 
(100.0±0.0) 

438529±4370 
(100.0±0.0) 

     20 742273±9166 
(100.0±0.0) 

810433±8783 
(100.0±0.0) 

878689±7863 
(100.0±0.0) 

1NFEV is defined as the average number of objective function evaluations during the optimization procedure and SR is the 
success rate in finding the global minimum based on 4 groups of 25 calculations with random initial values and number seeds.  
2Global optimum is consistent with results reported by Gau and Stadtherr (2002). 

 
 

CONCLUSIONS 
 

The numerical performance of the simulated 
annealing method has been tested in parameter 
estimation for VLE modeling. The reliability and 
efficiency of the data-fitting procedure was evaluated 
with respect to the SA parameters TSA and NT, using 
classical least squares and error-in-variable 
formulations. Our results indicate that parameter TSA 
significantly affects the reliability of the data-fitting 
procedure. On the other hand, both parameters affect 
the efficiency of the SA method. The SA method has 
a better numerical performance using the classical 

least squares instead of the error-in-variables 
formulation. In general, SA is a robust optimization 
procedure, when properly implemented for 
parameter estimation using both formulations. 
However, it can fail in the global minimization of 
difficult systems.  
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NOMENCLATURE 
 

A, B parameters of the van Laar model 
1 1 1a , b , c  parameters of the Antoine equation 

NT iteration number before temperature 
reduction 

P Pressure 
0
iP  vapor pressure of pure component  

T temperature 
SAT  annealing temperature  

rT  reference temperature  

1x , 1y  liquid and vapor mole fraction 

ijy  dependent response variable 
t
ijz  unknown “true” value of state variable 

iσ  standard deviation of state variable 

1θ , 2θ  energy parameters 
γ  activity coefficient 
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