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Abstract - Dynamic optimization problems can be numerically solved by direct, indirect and Hamilton-
Jacobi-Bellman methods. In this paper, the differential-algebraic approach is incorporated into a hybrid 
method, extending the concepts of structural and differential indexes, consistent initialization analysis, index 
reduction and dynamic degrees of freedom to the optimal control problem. The resultant differential-algebraic 
optimal control problem is solved in the following steps: transformation of the original problem into a 
standard nonlinear programming problem that provides control and state variables, switching time estimates 
and costate variables profiles with the DIRCOL code; definition of the switching function and the 
automatically generated sequence of index-1 differential-algebraic boundary value problems from 
Pontryagin’s minimum principle by using the developed Otima code; and finally, application of the COLDAE 
code with the results of the direct method as an initial guess. The proposed hybrid method is illustrated with a 
pressure-constrained batch reactor optimization problem associated with the slack variable method. 
Keywords: Optimal control; Differential - algebraic equations: Hybrid method. 

 
 
 

INTRODUCTION 
  
A dynamic optimization problem, also known as 

optimal control problem (OCP), consists in 
determination of the control variable profiles that 
maximize or minimize a measure of performance. 
The significant increase in its application in industry 
over the past decade has been mainly due to the high 
popularity of dynamic simulation tools associated 
with a competitive global market, in which 
environmental constraints and demanding market 
specifications require a continuous optimization of 
process operations. Dynamic optimization enables an 
automatic decision-making procedure and as it   

gets established as a useful and trustworthy 
technology, it will foment other applications, such as 
the addressing of hard-constrained problems, the 
synthesis of chemical reactor networks, the 
uncertainty description in multiple period problems 
and the development of tools such as automatic 
differentiation (Biegler et al., 2002). 

The methods for solution of OCP are divided in 
direct (Cervantes and Biegler, 1999), indirect 
(Pontryagin et al., 1962; Bryson and Ho, 1975; Ray, 
1981) and dynamic programming (Bellman, 1957) 
methods.  

The direct approach uses control 
parameterization (the sequential method) or state 
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and control parameterizations (the simultaneous 
method), transforming the original problem into a 
finite dimensional optimization problem. By all 
means, the implementation of direct methods is 
simpler because it does not require the generation of 
the costate or adjoint equations, which, at the very 
least, will duplicate the dimensions of the set of 
differential-algebraic equations (DAE) in the indirect 
method. On the other hand, the solution of nonlinear 
programming problems (NLP) of great dimension or 
the attainment of the gradients of the objective 
function in the sequential method is not trivial 
(Feehery, 1998). The direct method has been 
preferentially used in the last several years (Stryk 
and Bulirsch, 1992; Feehery, 1998; Cervantes and 
Biegler, 1999; Biegler et al., 2002; Huang et al., 
2002). In spite of its accuracy being lower than that 
of the indirect methods, this preference is likely due 
to the extended convergence properties of NLP 
algorithms (Bulirsch et al., 1991a, 1993). 

The indirect strategy for solution of OCP is based 
on variational principles. These conditions, from 
Pontryagin’s maximum principle (Bryson and Ho, 
1975), generate a set of Euler-Lagrange equations, 
which are boundary value problems (BVP), 
inherently formed by differential-algebraic equations 
regardless of whether or not the problem is 
constrained. Some difficulties in the OCP solution 
must be highlighted: the existence of end-point 
conditions or region constraints gives rise to 
multipliers and associated complementary conditions 
that significantly increase the difficulty of solving 
the BVP by the indirect method; the existence of 
constraints in the state variables and application of 
the slack variables method may originate 
differential-algebraic optimal control problems 
(DAOCP) with higher indexes, regardless of the 
constraint activation status, even in problems where 
the number of inequality constraints is equal to the 
number of control variables and the Lagrange 
multipliers may be very sensitive to the initial 
conditions. The BVP can be solved by shooting 
methods, collocation on finite elements or finite 
difference schemes and may present convergence 
problems due to the difficulty in supplying adequate 
initial estimates for the costate variables profiles. 
The direct methods do not have this problem, but 
they may generate low-precision and suboptimal 
solutions. Bulirsch et al. (1991a-b, 1993) and Koslik 
and Breitner (1997) used homotopic techniques and 
an initial simplified problem to overcome the 
difficulties originating from bang-bang arcs and 

activation and deactivation of inequality constraints. 
In general, the inequality constraints are neglected 
and the resulting simplified problem is solved by 
direct methods. In sequence, this solution is used as 
initial estimates for the indirect method.  

Most recently, the combination of direct and 
indirect methods as an alternative to retain the best 
of each characteristic was proposed, resulting in the 
so-called hybrid methods (Bulirsch et al., 1991a-b, 
1993; Koslik and Breitner, 1997). However, to date 
results are largely case-dependent and as yet 
inconclusive regarding the global efficiency of the 
approach. 

The significant advances in mathematical 
symbolic tools and the differential-algebraic 
approach to modeling and process simulation are 
also remarkable. Application of the differential-
algebraic approach to optimal control problems 
necessarily requires the extension of well-
established concepts in the field of dynamic 
simulation, such as number of degrees of freedom, 
differential index, structural index, consistency of 
initial conditions, drift-off of constraints, index 
reduction effects and so forth. The number of 
dynamic degrees of freedom is associated with the 
number of initial conditions of the original problem 
and with the number of boundary value conditions 
of the augmented problem (Feehery, 1998). These 
extensions must also consider the numerical 
methods for integration of differential-algebraic 
boundary problems, which have not reached the 
same level of development as the methods for 
initial value problems; the solution of singular arc 
optimization problems, which will occur in affine 
control problems and relate to intrinsic higher index 
equations; the fact that index reduction might also 
be mandatory for the establishment of the correct 
number of boundary conditions associated with the 
set of DAE and the index fluctuation along the 
optimal trajectory due to the activation and 
deactivation of inequality constraints on the state 
variables.   

The main goal of this contribution is to introduce 
a general procedure to systematize the solution of 
differential-algebraic optimal control problems 
(DAOCP) using a hybrid method, which combines 
the best characteristics of the direct and indirect 
methods in a differential-algebraic framework, and is 
organized as follows. Section 2 briefly presents the 
general concepts of dynamic optimization, 
differential-algebraic approach to formulating an 
optimal control problem, numerical methods for 
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DAE solution and DAE characterization as a 
necessary background for introducing the proposed 
hybrid algorithm, applied to DAOCP of fluctuating 
index. In Section 3, a case study of its application to 
a constrained batch reactor system is presented. 
Finally, the conclusions are drawn in Section 4. 

 
PROPOSED HYBRID ALGORITHM FOR 
DIFFERENTIAL-ALGEBRAIC OPTIMAL 

CONTROL PROBLEMS 
 
Characterization of DAOCP can be made by 

extending the concepts used in the algebraic-
differential approach to simulation problems. This 
characterization can be implemented using structural 
tools, such as the ALGO and PALGO codes (Unger 
et al., 1995), which can supply information beyond 
the index, the number of degrees of freedom and the 
variable-equation relationship to facilitate 
manipulation and analysis of system consistency. 

Another important aspect of this characterization is 
that, in contrast to what occurs in dynamic problems 
where consistent initial values are known or can be 
determined, some components of the initial state are 
free or depend on the control. Therefore, consistency 
of the initialization must be guaranteed during 
numerical solution of the problem of optimal control 
(Gerdts, 2001). 

The proposed methodology splits the original 
problem into index-1 phases, through determination 
of events based on the constraint activation and 
deactivation obtained by the direct approach. The 
necessary characterization of each phase is addressed 
by using structural concepts and a near optimal 
solution for the events and costate variables given by 
the direct method are used as initial guesses for the 
two-point boundary value problem of index-1 solved 
by the indirect method. The main steps of the 
proposed algorithm are presented in Figure 1 and are 
described in sequence:  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: Hybrid algorithm for differential-algebraic optimal control problems 
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 Step 1: Structural characterization of the original 
problem through ALGO and PALGO codes (Unger 
et al., 1995), for the structural indexes and the 
number of degrees of freedom; 
 Step 2: Index reduction to one for higher index 

original problems, according to the information 
given by structural codes; 
 Step 3: Numerical solution of the original 

DAOCP using the direct approach, with the 
DIRCOL code (Stryk, 1999), which provides 
identification of the events, estimation for costate 
variable profiles and activations and deactivations 
constraints and calculation of the control moves in 
each phase; 
 Step 4: Automatic generation of Euler-Lagrange 

equations for the augmented system based on an 
extended version of the OTIMA code implemented 
in the Maple environment (Gomes, 2000; Lobato, 
2004) according to the differential-algebraic 
approach (Feehery, 1998); 
 Step 5: Structural characterization of the 

augmented system generated in Step 4;   
 Step 6: Index reduction of the higher index 

boundary value problem defined by each phase; 
 Step 7: Solution of the resulting DAOCP with the 

indirect method approach through the COLDAE 
code (Ascher and Spiteri, 1994), using the results 
from Step 3 as the initial guess to assure 
convergence, with once the consistency of initial 
conditions in each phase is guaranteed. 

The direct method was implemented using both 
control and state variable parameterization (Stryk, 
1999) and the indirect method was based on a 
collocation procedure (Ascher and Spiteri, 1994). 
These codes were chosen due to their flexibility and the 
desired differential-algebraic characteristics (Lobato, 
2004; Santos et al., 2005). The proposed algorithm 
may drive the solution to satisfy the constraints and 
despite the consequently higher computational 
demand, it might enforce the solution for a better value 
for the objective function. The next section illustrates 
the ability of the algorithm in solving a benchmark 
constrained batch reactor problem. 
 

 
APPLICATION: A BATCH REACTOR CASE 

STUDY 
 
This section presents the optimal solution for an 

isothermal batch reactor system operating in gas 

phase (Feehery, 1998; Huang et al., 2002). The 
dynamic optimization of this constrained problem is 
given by: 
 

3 fmin  x (t )                   (1) 
 

2
1 1 1 2 2 3 1 2

ux k x k x k x xV= − + + −                         (2) 

 
2

2 1 1 2 2 3 1 2x k x k x k x x= − −               (3) 
 

3 3 1 2x k x x=               (4) 
 

1 2 3N V(x x x )= + +                 (5) 
 
PV NRT=                    (6) 
 

maxP P≤                     (7) 
 

min maxu u u≤ ≤              (8) 
 

Tx(0) [100,0,0]=                  (9) 
 

The variables x1, x2 and x3 represent the species 
concentration of A, B and D (mol/m3) respectively; P 
is the pressure of the reactor (Pa); N is the total 
number of moles (mol); V is the volume of the 
reactor (1 m3); R is the constant of gases (8.314 
J/(mol K)); u is the pure feed flow rate of A (mol/hr); 
k1, k2 and k3 are the kinetics reaction constants (0.8 
hr-1, 0.02 m3/(mol hr), 0.003 m3/(mol hr), 
respectively) and T is the operating temperature (400 
K). The system is constrained to operate subject to 
the following limits: Pmax = 340000 Pa, umin = 0.0 
mol/hr and umax = 8.5 mol/hr. 

Feehery (1998) presented a solution to this 
problem using finite elements to approximate the 
control profile, addressing the fact that the control is 
not independent during constraint activation, and 
through the development of an algorithm that is a 
significant improvement in evaluation of the 
sensitivity equations. In Huang et al. (2002) this 
problem was dealt with through a decomposition 
strategy, based on a combination of the advantages 
of the simultaneous and sequential approaches, 
which uses the following criterion of partition: a  
new system (Sis1) contains the state variables that 
appear in the inequality constraint P and the 
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remaining variables x1, x2, x3 and N migrate to 
another system (Sis2). The general idea is to use the 
Sis2 system to attain the equations of sensitivity 
necessary for the solution of system Sis1.  

In the following, the costate equations (Equations 
10-17); the stationary condition (Equation 18); and 
the boundary conditions for the costate variable λ, 
defined at tf generated in Step 4 of the proposed 
algorithm, are shown as an output of the OTIMA 
code (Lobato, 2004): 
 

1 1 3 2 1 1 3 2 2

3 2 3 4

(k k x ) ( k k x )

k x V

λ = + λ + − + λ −

− λ − λ
         (10) 

 

2 2 2 3 1 1

2 2 3 1 2 3 1 3 4

( 2k x k x )

(2k x k x ) k x V

λ = − + λ +

+ + λ − λ − λ
     (11) 

 

3 4Vλ = − λ              (12) 
 

4 5RTλ = λ              (13) 
 

5 6Vλ = −λ              (14) 
 

6 1 0λ δ =               (15) 
 

7 2 0λ δ =               (16) 
 

8 3 0λ δ =               (17) 
 

1
7 8 0V

λ− − λ + λ =           (18) 
 

f(t ) [0;0; 1]λ = −                (19) 
 
where δ  is a vector of slack variables (Jacobson and 
Lele, 1969) associated with the constraint 
inequalities given by Equations (7) and (8). 

The results of the application of structural ALGO  
and PALGO codes to the extended system formed by 
Equations (1) through (18) indicate a structural 
index-2 system. It must be highlighted that for 
problems with inequality constraints, the given 
results refer to the problem with active      
constraints, which means that since the index 
fluctuates, this is the largest value in all phases of 
the problem. The results obtained from DIRCOL 
show that this problem can be divided into two 
consecutive phases, defined for the constrained 
activation in the state variable P, with index-1 and 
index-2, respectively. 

Furthermore, the control variable can be defined 
as u=umax for the first phase (0<t<ts=0.4740) and 
u=k3Vx1x2 (ts=0.4740<t<tf=2) for the second one due 
to the constraint activation and differentiation of 
Equation (7) with respect to time. 

The state variable profiles obtained in Steps 3 and 7 
of the proposed methodology are presented in Figures 
(2a), (3b) and (4a) and are comparable with previous 
results from the literature (Feehery, 1998; Huang, 
2002). However, the profiles for the costate variables 
supplied by DIRCOL, given in Figure (2b), do not 
satisfy the boundary condition defined at t=tf. This fact 
is not observed when analyzing the results obtained 
with the COLDAE code, which meets the conditions in 
a much better fashion, as shown at Table 1. 

Figure (4b) shows the profiles for the slack 
variables. In the first phase, as u assumes its 
maximum value, δ2 and δ3 acquire the maximum and 
minimum values, respectively. In the second phase, 
as δ1 vanishes due to the constraint activation, δ2 and 
δ3 assume intermediary values. 

The value of the objective function of this work 
and those reported in the literature are provided in 
Table 2, where NC and NE are the number of 
collocation points and number of elements used in 
the numerical solution of the problem by the 
respective authors. 

 
 

 
Table 1: Fulfillment of the costate variables at t=tf. 

 
Code λ1(tf) λ2(tf) λ3(tf) 
DIRCOL 6.77 10-3 2.53 10-3 1.00058 
COLDAE 8.56 10-8 1.13 10-8 1.00000 
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(a)                                                                               (b) 

Figure 2: (a) State variable profiles, (b) Costate variable profiles obtained with the DIRCOL and COLDAE codes 
 

Table 2: Objective function value for constrained batch reactor optimization model. 
 

Reference Objective Function Tolerance NC/NE 
Feehery (1998) 11.7284 10-7 -/2 
Huang et al. (2002) 11.7446 10-6 11/1 
This work 11.7255 10-7 6/5 
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Figure 3: (a) Control variable profile, (b) State variable N profile obtained with the DIRCOL and COLDAE codes. 
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Figure 4: (a) State variable P profile, (b) Slack variable profiles obtained with the DIRCOL and COLDAE codes. 
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CONCLUSIONS 
 
The proposed algorithm eliminates the index 

fluctuations of problems with state constraint 
inequalities or control affine optimization problems 
at the expense of requiring additional effort for the 
application of optimality conditions extended to 
DAE and index reduction in each identified phase. 
However, these additional tasks are greatly 
facilitated by the use of the symbolic OTIMA code 
and of information supplied by the ALGO and 
PALGO structural analysis codes. 

The results for the objective function in the 
hybrid methodology were systematically better than 
the ones obtained by the direct method approach. 
This was also true to other benchmark cases 
presented elsewhere (Lobato, 2004). Although 
improvement of the solution may be considered 
negligible by many, it can be quite significant in 
cases where precision is a relevant factor, especially 
for guaranteeing the elimination of pseudo-optimal 
solutions, frequent in the study of discrete problems 
when using the direct method approach.  
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NOMENCLATURE 
 

k1  Kinetics reaction constants  hr-1

k2 and k3 Kinetics reaction constants m3/(mol hr)
P Pressure of the reactor  (Pa)
R Constant of gases  J/(mol K)
t Time  (hr)
tf Final time  (hr)
ts Switching time  (hr)
T Temperature  (K)
u Pure feed rate of A  (mol/hr)
V Volume of the reactor  (m3)
x   Vector of state variables (-)

 
Greek Letters 

 
λ Vector of costate variables (-)
δ Vector of slack variables (-)
 

Subscripts 
 

max Maximum (-)
min Minimum (-)
0 Initial (-)
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