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Abstract - Vapor-liquid equilibrium calculations require global minimization of deviations in pressure and 
gas phase compositions. In this work, two versions of a stochastic global optimization technique, the genetic 
algorithm, the freeware MyGA program, and the modified mMyGA program, are evaluated and compared for 
vapor-liquid equilibrium problems. Reliable experimental data from the literature on vapor liquid equilibrium 
for water + formic acid, tert-butanol + 1-butanol and water + 1,2-ethanediol systems were correlated using the 
Wilson equation for activity coefficients, considering acid association in both liquid and vapor phases. The 
results show that the modified mMyGA is generally more accurate and reliable than the original MyGA. Next, 
the mMyGA program is applied to the CO2 + ethanol and CO2 + 1-n-butyl-3-methylimidazolium 
hexafluorophosphate systems, and the results show a good fit for the data. 
Keywords: Genetic algorithm; Vapor-liquid equilibrium; Activity coefficient; Parameter estimation; Global 
optimization. 

INTRODUCTION 

Adjustable parameters are a common feature of 
most thermodynamic models for phase equilibrium 
calculations. The parameters for these models 
usually represent some physical property of the fluid, 
like molecular volume, shape and size, or 
intermolecular attractive forces. The interaction 
parameters can be temperature dependent or 
independent and their estimation is a common 
problem in many areas of science and engineering. 
The goal is to determine values of the model 
parameters that provide the best fit to measured data, 
generally based on some type of least squares or 
maximum likelihood criterion. This may require 
solution of a nonlinear and frequently nonconvex 
optimization problem, which often may be 

formulated, either in constrained or unconstrained 
form. 

Most of the existing methods for solving phase 
equilibrium and stability problems are local in nature 
and at best yield only local solutions. Use of global 
techniques in these problems is relatively unexplored 
and deserves greater investigation. Only 
deterministic global solvers, such as the homotopy 
continuation method (Sun and Seider, 1995), the 
interval Newton method (Hua et al., 1998a, 1998b), 
and the Lipschitz algorithm (Zhu and Xu, 1999), 
have been employed; all these methods use highly 
complex mathematics. On the other hand, stochastic 
optimization techniques use simple mathematics and 
have often been found to be as powerful and 
effective as deterministic methods in many 
engineering applications. There have been many
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applications of genetic algorithms (GAs), originally 
proposed by Holland (1975), in chemical 
engineering (Ortega and Espiau, 2003) and in other 
fields. Genetic algorithms require only the objective 
function values and are highly likely to locate the 
global minimum.  

In this work, the Wilson model is used to 
correlate experimental VLE data from water + 
formic acid, tert-butanol + butanol, and water + 1,2-
ethanediol systems, where two versions of a genetic 
algorithm, the MyGa and the mMyGA programs, are 
studied and compared with the results of Gau et al. 
(2000). 

PARAMETER ESTIMATION 

Recently, alternative optimization methods have 
been proposed, among which neural nets and genetic 
algorithms (GAs) should be outlined. GA was first 
introduced by Holland (1975) and is adequately 
described in the literature (Goldberg, 1989; Mitchell, 
1998). 

GA is a stochastic global optimization technique 
that simulates natural evolution on the solution space 
of the optimization problems. GA is based on 
imitation of the evolutive behavior of a population of 
potential solutions (chromosomes) in each iteration 
(generation), where each individual competes with 
others to achieve the transmission of its genetic 
material to the next generation, taking into account 
the criterion of adaptability to the environment by 
combining some individuals of the current 
population according to predefined rules or 
operations; crossover and mutation operators are 
commonly used. Individuals are selected for 
reproduction based on their objective function values 
(fitness value) and the Darwinian principle of the 
survival of the fittest. GA is proven to yield better 
solutions along the evolving process, since good 
traits in the individuals of a generation are always 
passed to the next generation (Holland, 1975). Since 
there is no universal GA that would always produce 
the best performance for all optimization problems, 
one needs to perform preliminary tests with different 
versions of GA in order to identify the most suitable 
one for the problem(s) of interest. 

An important step in a GA is the encoding of 
variables in a string structure (known as genetic 
code) to represent a point in the solution space. 
Three coding schemes – binary, gray, and real – are 
available. Since many engineering problems deal 

with continuous variables, a real number is more 
appropriate, since it allows representation to the 
machine internal precision and also requires less 
memory (Haupt and Haupt, 1998). Michalewicz 
(1996) noted that real representation is more 
“natural” for continuous variables; thus a real-valued 
GA produces better results and is more efficient than 
its binary counterpart. 

In this work, two versions of genetic algorithm, 
the MyGA program (MyGA, 2005) and the modified 
MyGA program (mMyGA), are evaluated and 
compared for vapor-liquid equilibrium problems. 
The MyGA program is the freeware version, written 
in Fortran, of a real-coded genetic algorithm 
developed by Yedder (2002), while the mMyGA is 
an adaptation (Alvarez, 2007). 

Genetic Algorithm

Holland's genetic algorithm is intended to 
simulate nature's genetic algorithm in the following 
manner. The first step is to represent a solution to the 
problem by a string of genes that can take on some 
value from a specified finite range or alphabet. This 
string of genes, which represents a solution, is 
known as a chromosome. Then an initial population 
of chromosomes is constructed at random. In each 
generation, the fitness of each chromosome in the 
population is measured. The fittest chromosomes are 
then selected to produce offspring for the next 
generation, which inherit the best characteristics of 
both parents. After many generations of selection for 
the fittest chromosomes, the result is a population 
that is substantially fitter than the original. All 
genetic algorithms consist of the following main 
components: 

a) Chromosomal Representation  

Each chromosome represents a solution to the 
problem and is composed of a string of genes; for a 
multivariable equation, each variable is a gene and 
each possible solution is a chromosome. The binary 
alphabet [0,1] is often used to represent these genes, 
but sometimes, depending on the application, 
integers or real numbers are used.  

b) Initial Population and Population  

Once a suitable representation has been decided 
upon for the chromosomes, it is necessary to create 
an initial population to serve as the starting point for 
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the genetic algorithm. This initial population is 
usually created randomly. From empirical studies, 
over a wide range of function optimization problems, 
a population size of 10 times the number of variables 
is usually recommended (Deb, 2000). The population 
size is represented for Npop.

c) Fitness Evaluation 

Fitness evaluation involves defining an objective 
or fitness function against which each chromosome 
is tested for suitability for the environment under 
consideration. As the algorithm proceeds, the 
individual fitness of the "best" chromosome as well 
as the total fitness of the population as a whole is 
expected to increase. 

d) Selection  

Selection is based on the survival-of-the-fittest 
mechanism of nature. In order to mimic the survival 
of the fittest principle, individuals having better 
fitness values must have a higher chance of being 
selected. The selection procedure picks out two 
parent chromosomes, based on their fitness values, 
which are then used by the crossover and mutation 
operators (described below) to produce two offspring 
for the new population. The higher the fitness value, 
the higher the probability of the chromosome being 
selected for reproduction. Selection mechanisms, 
such as rank-based selection, elitism, niching, scaling 
and steady-state selection, have been proposed as 
operators. In particular, elitism determines that the best 
chromosome in each generation will pass unchanged to 
the new generation.  

e) Crossover  

Genetic operators used to create new individuals 
for the next population from selected individuals in 
the current population serve as search mechanisms in 
GA. After two parents have been selected by the 
selection method, crossover takes place. Crossover is 
an operator that mates the two parent chromosomes 
to produce two offspring that replace the parents. 
The crossover is carried out according to the 
crossover probability (pc). A method for reducing the 
destructive effect of the crossover operator is called 
brood recombination (Banzhaf et al., 1998). In this 
procedure, the crossover is performed twice in order 

to generate four offspring; the children are evaluated 
and sorted for fitness and the best two children are 
selected. The children replace the parents only if 
they have a better fitness; otherwise the parents 
remain. 

f) Mutation 

Mutation is an unary operator that creates a new 
solution by a random change in one or more of the 
chromosome’s genes. The purpose of the mutation 
operator is to prevent the genetic population from 
converging to a local minimum and to introduce new 
possible solutions into the population. The mutation 
is carried out according to the mutation probability 
(pm).

g) Termination 

The termination method determines when the 
genetic process will stop evolving. There are several 
termination methods implemented in genetic 
algorithms. According to the maximum generations,
the process will end when a specified number of 
generations have evolved. By the elapsed time, the 
process will end when a specified time has elapsed. 
According to the no change in fitness, the process 
will end if there is no change in the best fitness of the 
population for a specified number of generations. 
Finally, by the reach the solution or fitness, the 
process will end when a previously defined solution 
or fitness has been reached. 

MyGA and Modified MyGA 

The original MyGA program uses a population of 
10. The niching, scaling, elitism and stochastic 
roulette are implemented in the selection operator. 
The crossover operator is the simulated binary 
crossover (SBX), with pc = 0.6. The mutation 
operator is the nonuniform, with pm = 0.005. The 
termination is achieved with 2000 generations. 

The modified MyGA (mMyGA) is implemented 
with the following modifications: initial population 
greater than current population, niching/tournament 
selection, baricentric random crossover (pc = 0.9), 
modified non-uniform mutation (pm = 01 - 04), and 
adaptive maximum generations termination. 

The fluxogram of mMyGA is shown in Figure 1, 
and the modifications are fully explained below.  
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Figure 1:  Fluxogram of mMyGA 

a) Initial Population 

The initial population is 50 times the population 
(Npop), while Npop is calculated as 10 times the 
number of variables. The initial chromosomes are 
created at random and sorted by fitness, and the best 
Npop chromosomes constitute the population for the 
starting point. The advantage of this approach is that, 
by creating a large initial population, one can 
initially cover a greater amount of the solution search 
space and then use a population containing relatively 
strong chromosomes.  

b) Selection 

The niching selection compares the fitness values 
of two solutions from 25% of the population within a 
normalized Euclidian distance (dij). If  dij < 0.1, then 
a tournament selection is performed. This selection 
consists in picking two solutions at random and 
comparing their fitness values, and the winner is 
duplicated.  

c) Crossover 

The baricentric random (Yedder, 2002) and SBX 
(Deb, 2000) methods are used at random in order to 
improve the crossover. When the crossover operator 
is selected, a random number between 0 and 1 is 
generated: if this number is less than 0.5, the SBX 
method is used, but otherwise, the baricentric 
random method is used; in this way, there is a greater 
variety among the offspring. Also, the brood 
recombination is implemented.  

d) Mutation 

The non-uniform mutation (Michalewics, 1996; 
Yedder, 2002) and an empirical modification are 
used at random. When the mutation operator is 
selected, a random number s is generated: if s  0.5, 
the original nonuniform is used, but otherwise, the 
modified nonuniform is used. The original 
nonuniform uses another random number, q, to 
choose between two functions:  
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i max i i"
i

i i min i

x (t, x x ) if q 0.5
x

x (t, x x ) if q 0.5
     (1) 

while the modification includes q inside the function: 

i max i i"
i

i i min i

x (t, q x x ) if q 0.5
x

x (t, q x x ) if q 0.5
     (2) 

The function (t,x) was originally defined in 
Yedder (2002). Also, a variable mutation 
probability pm is used (between 0.1 and 0.4, with 
increments of 0.05); according to Srinivas and 
Patnaik (1994), in this way it is possible to maintain  

diversity in the population.  

e) Termination 

The procedure terminates when the fitness value 
does not vary for 1000 generations. When it = Nmax,
the fitness value is compared with the value for it = 
Nmax - 1000. If the fitness value has improved, Nmax is 
increased by 1000 and the algorithm continues. For 
each Nmax increment, the mutation probability pm is 
increased by 0.05; if pm > 0.4, then it returns to the 
initial value of 0.1. This is known as a no change in 
fitness.

In summary, Table 1 shows the setting used for 
the mMyGA program. 

Table 1: Parameters used in the mMyGa program 

Parameter mMyGA 
Initial population 50 times population 
Population 10 times variables 
Selection niching/tournament/elitism 
Crossover baricentric random and SBX 
Mutation nonuniform, original/modified 
Termination no change in fitness 

VALIDATION AND RESULTS 

Validation 

In this section, the mMyGA was validated using 
the examples from Gau et al. (2000); these authors 
used interval analysis for the estimation of binary 
energy interaction parameters of the Wilson (1964) 
model for the activity coefficient by fitting VLE data 
for the water + formic acid, tert-butanol + 1-butanol 
and water + 1,2-ethanediol systems. All 
experimental data were taken from DECHEMA VLE 
Data Collection (Gmehling et al., 1981). The 
objective function (FO) used is given by 

2 2exp expcal calN N
1j 2 j1j 2 j

exp exp
j 1 j 11j 2 j

FO      (3) 

where ij
cal and ij

exp are the activity coefficient 
calculated from the Wilson model and experimental 
values, respectively. The original MyGA program 
was used without alteration. The results for objective 
function OF with all methods of optimization are 
shown in Tables 2, 3 and 4 for all systems studied. 
The results show that, as a rule, the three methods, 

interval analysis, MyGA and mMyGA, achieve the 
same optimal point. However, for the water + formic 
acid system (Table 3), the mMyGa program yield 
better results than the interval analysis for the three 
data sets from Chalov and Aleksandrova. (1957, 
1958) and Takagi (1939).  

The interval analysis of Gau et al. (2000) uses the 
Newton method within an initial interval to get local 
optima and can be computationally expensive 
compared to stochastic techniques. For example, the 
convergence time using interval analysis was greater 
than that of the simulated annealing method, according 
to Souza et al. (2004), who used the Peng Robinson 
(1976) equation of state with two parameters. These 
claims are confirmed by Ortega and Espiau (2003), 
who recommend using a genetic algorithm when there 
are more than two parameters to optimize. Otherwise, 
the genetic algorithm can be used in problems with 
greater numbers of parameters.  

With the estimated parameters by all methods, the 
average percent deviations for T, y1, and y2 for all 
systems, calculated according to Valderrama and 
Alvarez (2005), eqns. (5) and (6), are reported in 
Table 5. Figure 2 shows the T-y1 equilibrium 
diagram for ter-butanol + 1-butanol (Wisniak and 
Tamir, 1976); the calculation with DECHEMA 
parameters shows the highest deviations. 
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Table 2: Minimization for water-1,2-ethanediol  

Ref. DECH Gau MyGA mMyGA 
Trimble and Potts (1935) 3.0513 1.0391 1.0391 1.0391 

Table 3: Minimization for water + formic acid  

Ref. DECH Gau MyGA mMyGA 
0.0814 0.0814 0.0814 0.0814 
0.1647 0.1114 0.1114 0.1114 
0.1316 0.0858 0.0819 0.0821 Chalov and Aleksandrova. (1958) 

0.0342 0.0342 0.0358 0.0342 
Conti et al. (1960) 0.0107 0.0107 0.0358 0.0108 

0.0399 0.0372 0.0372 0.0372 
0.0459 0.0342 0.0342 0.0342 Ito and Yoshida (1963) 
0.0147 0.0109 0.0109 0.0111 

Melnikov and Tsirlin (1956) 0.3526 0.3526 0.3526 0.3527 
Murayama (1961) 0.0257 0.0257 0.0291 0.0258 
Plewes et al. (1959) 0.0708 0.0708 0.0708 0.0709 

0.1508 0.0821 0.0822 0.0821 
0.3567 0.3484 0.4235 0.3484 

0.061 0.061 0.061 0.061 Rivenq (1960) 

0.0799 0.0799 0.0799 0.0802 
Sheinker and Peresleni (1952) 0.1424 0.1424 0.1424 0.1424 
Vernon (1939) 0.1606 0.1408 0.1408 0.1409 

0.1673 0.1153 0.1112 0.1112 
0.1302 0.079 0.2968 0.079 Chalov and Aleksandrova (1957) 
0.0343 0.0342 0.0358 0.0342 

Takagi (1939) 0.0281 0.0282 0.0269 0.0268 

Table 4: Minimization for tert-butanol + 1-butanol 

Ref. DECH Gau MyGA mMyGA 
Wisniak and Tamir (1976) 0.0333 0.0112 0.0112 0.0112 
Zong et al. (1983) 0.1299 0.1164 0.1164 0.1164 

Table 5: Mean deviations for T, y1, and y2

Method T
%

y1
%

y2
%

DECHEMA 0.9 15.5 55.2 
Gau et al. 0.8 15.1 41.1 
MyGA 0.8 15.0 43.5 
mMyGA 0.8 15.1 41.2 

80

90

100

110

0 0.2 0.4 0.6 0.8 1y1
Exp

T(
o C

)

Exp
DECHEMA
Gau et al. (2000)
MyGA
mMyGA

Figure 2: T-y1 equilibrium diagram for tert-butanol (1) + 1-butanol (2) at 100 mmHg 
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It is shown that, even for relatively simple 
models, such as the Wilson equation, multiple local 
optima can occur in parameter estimation. It is also 
shown that, for some data sets, parameter values 
published in the DECHEMA VLE Data Collection 
correspond to a local minimum.  

exp calN

exp
j 1

j

T T100% T
N T

,

(4)
exp calN

exp
j 1

j

P P100% P
N P

    

exp calN 1 1
1 exp

1j 1
j

y y100% y
N y

,

(5)
exp calN 2 2

2 exp
2j 1

j

y y100% y
N y

    

Applications 

a)  Vapor-liquid equilibria at high pressure 

The maximum likelihood principle (MLE) has 
been applied by several researchers for the 
correlation of vapor-liquid equilibrium data under 
atmospheric pressure up to high pressure, such as 
Cardozo-Filho et al. (1997). These authors applied 
MLE to the modeling of the CO2 + ethanol binary 
system (Yoon et al., 1993; Suzuki et al., 1990) with 
the Peng-Robinson equation of state, and their results 
are better tan those with the least squares error (LS) 
method. Then, the mMyGa program was applied to 
adjust the same binary system with the simple least 
squares error in the objective function, as is shown 
below: 

2 2N N
exp expcal cal

A1 j 1jj 1j
j 1 j 1

FO P P y y     (5) 

where P is the system pressure, y1 is the molar 
fraction of the CO2 in the gas phase, and the 

superscripts “exp” and “cal” are the experimental 
and calculated values respectively.  

The critical properties and acentric factor were 
taken from Diadem Public 1.2, and the results show 
what mMyGa can adjust the model better than MLE, 
as can be seen in Table 6 and Figure 3.  

b)  Vapor-Liquid Equilibria at High Pressure 
With Restrictions: Ionic Liquid Containing 
Systems

The ionic liquid containing CO2 + 1-n-butyl-3-
methylimidazolium hexafluorophosphate ([bmim][PF6]) 
system, with VLE data determined by Pérez-Salado 
Kamps et al. (2003) at 293 K up to 393 K, were 
correlated by using the Peng-Robinson (1976) 
equation of state with the Wong-Sandler (1992) 
mixing rule. The NRTL model (Renon and 
Prausnitz, 1968) was used to calculate the excess 
Gibbs free energy in the Wong-Sandler mixing rule. 
The binary interaction energy and the 
nonrandomness parameters for the NRTL model ( ij,
uij, uji) as well as the binary interaction parameter of 
the Wong-Sandler mixing rule (kij) were estimated as 
temperature-independent parameters through the 
mMyGA method, with a least-squares objective 
function: 

N N2 2exp cal cal
A2 1 jj

j 1 j 1

FO P P 1 y   (6) 

where P is the system pressure, y1 is the molar 
fraction of the CO2 in the gas phase, and the 
superscripts “exp” and “cal” are the experimental 
and calculated values respectively.  

For a good fit of the data set, the concentration of 
ionic liquid (1-y1

cal) and the deviations in pressure 
must be low. The accepted values of (1-y1

cal) < 10-3

and % P < 10 are used as constraints for every data 
point in the minimization method. These restrictions 
are easily put into the mMyGA program, as 
restrictions for accepting the new offspring in the 
crossover and mutation operators. The critical 
properties, acentric factor, and results are shown in 
Table 7, where the maximum value of the ionic 
liquid fraction molar in the gas phase is 8.10-4 with 
% P = 3.3. The experimental and calculated P-x1-y1
diagram for the binary systems at 333.15 K is shown 
in Figure 4. 
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Table 6: Mean deviations for P, y1, and y2 for the CO2 + ethanol binary system 

Method Interaction parameter | P| 
%

| y1| 
%

| y2| 
%

MLE kij = 0.09048, lij = -0.01414 4.5 0.4 10.8 
mMyGA kij = 0.08844, lij = -0.01831 4.6 0.3 10.3 

50
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110

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x1

P 
(a

tm
)

313.4 Suzuki et al., 1990
333.4 Suzuki et al., 1990
MLE-Cardozo et al., 1997
LS-mMyGA

Figure 3: Comparison of the different methods: MLE and least squares with mMyGa 

Table 7: Critical properties and mean deviations for P and maximum value of ionic liquid in gas phase in 
the CO2 + [bmim][PF6] binary system 

Component Tc (K) Pc (atm) 
CO2

a 304.21 72.865 0.2236 
[bmim][PF6] b 708.90 17.074 0.7553 
kij

aDiadem Public v1.2, b Valderrama and Robles (2007) 
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Figure 4: P-x1-y1 equilibrium diagram for CO2 (1) + [bmim][PF6] (2) at 333.15 K 
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CONCLUSIONS 

Binary vapor-liquid equilibrium data for three 
systems up to 760 mmHg including polar 
components were correlated by the Wilson model as 
a validation of the mMyGA program. The results 
were compared with the DECHEMA VLE Data 
Collection and interval analysis. The results indicate 
that mMyGA is equivalent to interval analysis. It can 
be concluded that, even for relatively simple models 
such as the Wilson equation, multiple local optima 
can occur in parameter estimation. It is also 
concluded that, for some data sets, parameter values 
published in the DECHEMA VLE Data Collection 
correspond to a local minimum.  

Two applications of mMyGA have been carried 
out, one of them to the CO2 + ethanol system and the 
other one to the CO2 + ([bmim][PF6] system. In both 
of cases, the results obtained when the different 
parameters were estimated with mMyGA were 
satisfactory. 
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