
 
 
 
 
 
 
 

   
 

                                                                                 ISSN 0104-6632                         
Printed in Brazil 

www.abeq.org.br/bjche 
 
            
    Vol. 25,  No. 03,  pp. 515 - 522,  July - September,  2008 

 
*To whom correspondence should be addressed 
 
 
 
 

Brazilian Journal 
of Chemical 
Engineering 

 
 

MODELING OF AN INDUSTRIAL  
DRYING PROCESS BY ARTIFICIAL  

NEURAL NETWORKS 
 

E. Assidjo, B. Yao*, K. Kisselmina and D. Amané 
 

Institut National Polytechnique Houphouët-Boigny, Département Génie Chimique et Agroalimentaire,  
Laboratoire de Procédés Industriels de Synthèse et de l’Environnement,  Phone : +(225) 07 80 05 19,   

Fax +(225) 30 64 04 06, BP 1093 Yamoussoukro, Côte d’Ivoire.  
E-mail: beyao@yahoo.fr 

 
(Received: March 3, 2007 ; Accepted: April 23, 2008) 

 
Abstract - A suitable method is needed to solve the nonquality problem in the grated coconut industry due to 
the poor control of product humidity during the process. In this study the possibility of using an artificial 
neural network (ANN), precisely a Multilayer Perceptron, for modeling the drying step of the production of 
grated coconut process is highlighted. Drying must confer to the product a final moisture of 3%. 
Unfortunately, under industrial conditions, this moisture varies from 1.9 to 4.8 %. In order to control this 
parameter and consequently reduce the proportion of the product that does not meet the humidity 
specification, a 9-4-1 neural network architecture was established using data gathered from an industrial plant. 
This Multilayer Perceptron can satisfactorily model the process with less bias, ranging from -0.35 to 0.34%, 
and can reduce the rate of rejected products from 92% to 3% during the first cycle of drying. 
Keywords: Neural network; Grated coconut drying; Modeling. 

 
 
 

INTRODUCTION 
 

Grated coconut is a product obtained from the 
transformation of coconuts through a long and 
complex process. In summary, the coconuts are 
shelled before their skin is peeled off. Then they are 
crushed. The crushed product is pasteurized and 
dried to give fine coconut particles with a size of 
about 3 mm (Ahoulé, 2004).  

Drying must confer to particles a final moisture 
of 3 percent (Jend and Das, 2007). However, under 
industrial conditions, it is very difficult to maintain 
this final moisture, which varies from 1.9 to 4.8 % 
(Ahoulé, 2004). Indeed, a percentage of moisture 
higher than this value (3%) jeopardizes preservation 
of the product because of the probable proliferation 
of microorganisms. Therefore redrying is necessary 
to overcome this problem. On the other hand, when 
the moisture is less than 3%, the weight of the 

grated coconut is reduced causing economic waste. 
Indeed, in the case studied, the rate of product 
rejection due to the failure to achieve stipulated 
humidity (3%) after the first drying cycle is greater 
than 90%. So a second draying cycle and 
sometimes a third is necessary for the same sample, 
involving supplementary costs and a decrease in 
productivity. 

The objective of this study is to mitigate this 
insufficiency by modelling the manufacturing 
process in order to reduce the nonquality as much as 
possible during the first drying cycle. 

Generally, modelling takes into account mass and 
energy conservation to obtain equations for the 
process studied (Barreto, 1997; Jarvensivu and 
Seaworth, 1998). Nevertheless, it is sometimes 
impossible to establish these equations due to the 
complexity of the phenomenon. Therefore, “black-
box” models based on input-output patterns like 
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artificial neural networks are useful (Haykin, 1994; 
Fujiwara, 1995; Desheng et al., 2006; Tai-Yue and 
Shih-Chien, 2006).  

Artificial neural networks are mathematical tools 
whose functioning is inspired by that of the human 
brain (Grossberg, 1982; Kohonen, 1987). They are 
a promising tool for simulating variables of 
processes because of their simplicity. They have the 
ability to learn the complex relationships without a 
priori knowledge of model structure (Shene et al., 
1998, 1999; Hill et al., 1994; Savkovic-Stevenovic, 
1994). 

Like their biological counterpart, the neurons in 
layers receive, treat (by weighted summation) and 
transfer information generally via a nonlinear 
function. They have been intensively used in 
different activity domains: banking, insurance, 
defence, industry, etc (Desheng et al., 2006; Tai-
Yue and Shih-Chien, 2006; Pramanik, 2004; Shene 
et al., 1998, 1999; Tseng-Chung and Li-Chiu, 
2005). In industry, their applications are 
innumerable and exponentially increasing 
(Baughman and Liu, 1995); those specifically 
related to the drying process are mentioned by 
Jinescu and Lavric (1994, 1995). Nevertheless, no 
work has been reported concerning application of 
artificial neural networks to the modelling of the 
industrial process of drying grated coconut. We, 

therefore, explore their flexibility to estimate the 
final moisture of this product.  

 
 

MATERIALS AND METHOD 
 
Data Set 
 

The data used in this study were provided by an 
Ivorian company of coconut processing. Its principal 
product is grated coconut in different thicknesses 
(medium, fine). This product is obtained via a process 
which can be divided into unitary operations. The 
most important of them is the drying step operated in 
a Proctor dryer (Proctor Inc., Glasgow, Scotland, UK) 
composed of three compartments (A, B and C). This 
dryer is a parallelepiped fluidised bed dryer with a 
size of 20 x 4 x 3 m. Its different compartments 
contain one or two fans each, which blow hot air onto 
a conveyor where the products are circulated to dry. 
The compartments are subdivided into seven 
subcompartments (i.e., A1, A2, A3, B1, B2, C1 and 
C2). Thus, the process depends on many variables. 
But, in this study, the variables of concern were initial 
moisture of the crushed and pasteurized grated 
coconut, the seven Proctor dryer temperatures and the 
final product temperature. The response of interest 
was the final moisture of the dried grated coconut.  

 
 

Table 1: A summary of the data set 
 

 
IM  
(%) 

TA1  
(°C) 

TA2  
(°C) 

TA3  
(°C) 

TB1  
(°C) 

TB2  
(°C) 

TC1  
(°C) 

TC2  
(°C) 

FT  
(°C) 

FM  
(%) 

Min 45.4 115.6 104.7 85.0 81.2 63.8 55.2 67.6 37.0 1.0 
Max 53.9 130.1 130.6 118.4 120.7 121.2 100.6 96.3 45.8 4.8 
Mean 50.5 124.8 122.8 107.7 103.6 89.2 83.0 82.9 42.0 2.1 
SD 1.7 2.58 3.49 5.11 5.71 10.6 8.4 6.81 2.1 0.8 
RSD (%) 3.3 2.1 2.8 4.8 5.5 11.9 10.2 8.2 5.1 38.3 
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Figure 1: Synthetic presentation of records for initial and final moistures 
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Figure 2: A Multilayer Perceptron 

 
 
Data were randomly collected from this essential 

step in the process of drying grated coconut, 
resulting in 159 records. In table 1 the minimum, 
maximum, mean, standard deviation (SD) and the 
relative standard deviation (RSD) values of the 
variables are presented. Figure 1 is a synthetic 
presentation of records for initial and final moistures 
before the modeling. 
 
Neural Network 
 

The neural network is constituted of simple 
elements, each calculating a weighted sum of all 
input variables that feed it. Different types of 
artificial neural network are available (e.g. support 
vector machine (SVM), self-organisation map 
(SOM), multilayer perceptron (MLP)) (Haykin, 
1994; Fujiwara, 1995; Karim and Rivera, 1992). The 
third (MLP) is the most widely used (Fujiwara, 
1995). Generally, the neurons are grouped into three 
different types of layers, as shown in Figure 2: 
 Input layer: whose number of nodes depends on 

input variables 
 Output layer: whose number of nodes is equal to 

the number of predicted variables  
 Hidden layer: situated between the first two 

layers. 
Finding neural network models consists of 

computing the appropriate weight and biases that 
minimize the discrepancy between observed and 
simulated data. 

For training the network, the steps were as follows: 
1. data were divided into three subsets: training (80 
data), validation (40 data) and testing (39 data) 
subsets; 
2. all inputs were normalized using the formula  
 

i min
i

max min

2(x x )xn 1
(x x )

−
= −

−
            (1) 

 
where xni is the normalized data ranging between -1 
and 1, xi is the initial data and  xmin and xmax are the 
minimum and maximum values of the data set; 
3. the weights were initialized setting random 
values; 
4. each input neuron (i) received input patterns and 
sent this signal to all nodes in the next layer (hidden 
layer); 
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5. each hidden unit (j) summed its weighted input 
signals and added the bias before computing its 
output as follows:  
 

j ij i jy tanh( w x b )= +∑            (2) 

 
The result obtained was sent to the nodes of the 
output layer; 
6. the output units, just as the former (hidden 
units), calculated a weighted sum of their input 
signals and applied an activation function; 
7. the output layer unit computed the error term and 
calculated weights and bias correction terms; 
8. the error terms were propagated in inverse 
direction to the signal and different weights were 
adjusted. 

The choice of neural architecture is related to the 
task to be performed and the model architecture is 
specified by neuron characteristics, network 
topology and training algorithm (Syu and Tsao, 
1993). The choice of a good network topology is not 
a straightforward task. There are no hard rules or 
theorems for finding an optimal topology for a given 
set of input- output data. However, an appropriate 
topology may be found by performing network 
pruning or network growing (Kadhir et al., 2000). 
Starting with a sufficiently big topology, the neural 
network is pruned by eliminating the links 
containing insignificant weights using a weight 
elimination method, for example the optimal brain 
damage (OBD) method developed by Le Cun et al. 
(1989). Alternatively, starting with a small 
architecture, the network is grown until reaching a 
size that gives a good prediction model. Another 
approach is determination of Schwarz’s Bayesian 
information criterion (BIC) (Schwarz, 1978) 
obtained as follows:   
 

V log(n)BIC log p
n n

 = + 
 

          (3) 

 
where V is the sum of squares approximation errors, 
n the number of training patterns and p the total 
number of network weights. 

Degree of freedom can also enable to identify the 
topology best adapted for the phenomenon studied 
(Khamis et al., 2006). It is, by definition, the number 
of observations minus the number of parameters that 
are free to vary. If N is the number of observations 
and k that of estimated parameters, the degree of 

freedom (df) is as follows:  
 
df N k= −                (4) 
 

In the case of a multilayer perceptron with one 
output, the estimated parameters are concerned with 
not only the connection weights and bias of the 
output layer, but also the connection weights and 
bias that interconnect the hidden layers. If k is 
assumed to be the number of these estimated 
parameters, then it is determined using the following 
equation, for the architecture of a hidden layer: 
 

j ik n (n 2) 1= + +              (5) 
 
where nj and ni are the number of nodes in the hidden 
and the input layers, respectively. 

A degree of freedom must be a positive value; 
this fact imposes an upper limit on the size of the 
network:  
 

j
i

N 1n (max)
n 2

−
=

+
             (6) 

 
This methodology using degree of freedom is 

rarely utilized because of the fact that the artificial 
neural network was formerly developed for 
nonparametric phenomena modelling (Grossberg, 
1982; Ripley, 1994).  

In this work, the neural networks were performed 
using Matlab neural network toolbox Release 14. 
The fully connected feedforward was considered. 
First, a small network topology was chosen (e.g. 9-1-
1). Second, the number of hidden nodes was grown 
and an arbitrary number, 15, was chosen. The 
training algorithm in this work was the versatile 
Leverberg-Marquardt technique used to improve the 
learning rate and the stability of the back-
propagation algorithm in searching for minimum 
error. It is also the fastest method for training a feed-
forward neural network. 

The back-propagation algorithm is a gradient 
descent method that adjusts the network weights and 
bias values to minimize the square sum of the 
difference between the given output (yo) and the one 
calculated (yc) by the net (Werbos, 1990), which can 
be obtained by  
 

2
c o

1e (y y )
2

= −∑              (7) 



 
 
 
 

Modeling of an Industrial Drying Process by Artificial Neural Networks                                                        519 
 

 
Brazilian Journal of Chemical Engineering Vol. 25,  No. 03,  pp. 515 - 522,  July - September,  2008 

 
 
 
 

The training subset is used for computing and 
updating the network weights and biases. The error 
in the validation set is monitored during the training 
process. The validation error will normally decrease 
during the initial phase of training, as does the 
training set error. However, when the network begins 
to overfit the data, the error in the validation set will 
typically begin to increase. When the validation error 
increases for a specified number of iterations, the 
training is stopped and the weights and biases of the 
minimum validation error are returned. This method 
(early stopping) enables improvement of the 
generalization (Ungar et al., 1996). The test set error 
is not used during training, but it is used to compare 
different models. 

The transfer function of hidden layer nodes was 
the Tanh function and the linear function for the 
output layer. 
 
 

RESULTS AND DISCUSSION 
 

As neural network weights are initialized before 
their modification during the training process in 
order to obtain the smallest possible predicting error, 
simulations were performed 1000 times. The best 
result was then recorded. The objective of this work 

was to determine the black box model for the 
process of drying grated coconut. During training, 
the frequency of progress display (in epochs) was 
set at 50 with a maximum of 500 to train the 
networks. 

Firstly, the number of the hidden layer was set at 
1. The number of neurons in this hidden layer was 
varied to find the architecture that provides the least 
error. During this step, the model obtained was 
simulated to find the calculated responses. These 
values were compared to the observed ones. The 
regression line obtained from this comparison was 
characterized by its slope (m), its intercept (b) and its 
correlation coefficient (r). The different results of the 
comparison are presented in Table 2. Analyzing this 
table, it appears that when the number of nodes in 
the hidden layer increases, slope, intercept and 
correlation coefficient values vary for the training 
subset as well as the test one. But are these variations 
significant enough to establish discrepancies 
between these values? 

In order to answer to this question, an ANOVA 
test was performed. The Fisher coefficient obtained 
(0.72) is lower than its limiting value (2.46) at the 
0.05 level, consequently showing that the number of 
neurons in the hidden layer significantly affected the 
behaviour of the neural network.  

 
 

Table 2: Characteristics of the regression plot of observed to  
calculated outputs for training and test sets 

 
 Training Test 

Nodes in hidden layer m b r m b r 
1 0.489 -0.217 0.774 0.738 -0.026 0.699 
2 0.656 -0.138 0.814 0.866 -0.017 0.750 
3 0.736 -0.101 0.857 0.764 -0.035 0.695 
4 0.745 -0.082 0.865 0.783 0.032 0.783 
5 0.815 -0.065 0.909 0.575 -0.184 0.635 
6 0.836 -0.070 0.919 0.690 -0.131 0.649 
7 0.938 0.002 0.980 0.847 -0.102 0.598 
8 0.883 -0.035 0.954 0.643 -0.195 0.530 
9 0.993 0.004 1.000 1.154 0.119 0.725 
10 0.982 -0.008 0.996 0.291 -0.456 0.228 
11 0.971 -0.015 0.990 0.737 -0.086 0.490 
12 0.993 -0.005 1.000 0.319 -0.150 0.294 
13 1.000 0.000 1.000 0.649 -0.280 0.405 
14 1.000 0.000 1.000 0.840 0.031 0.461 
15 1.000 0.000 1.000 0.585 -0.094 0.300 
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The correlation coefficient r varied from 0.774 to 
1.000 for the training subset and from 0.229 to 0.783 
for the test one. The higher its absolute value (i.e. 
1.000), the better is the adequacy between predicted 
values and observed ones. Thus, it can be observed 
that when the number of nodes in the hidden layer 
increased, the correlation coefficient increased too 
up to 1.000 for the training subset. The models are 
therefore improved. Moreover, when considering the 
test subset, it appears that the correlation coefficients 
did not evolve any more in the same direction than 
the increase in number of neurons in the hidden 
layer. Its value is higher for an architecture with four 
nodes (r = 0.783) or nine nodes (r = 0.723) in the 
hidden layer. But, as the best network is a 
compromise between the results obtained during 
training and those with the generalization (test), the 
networks that characterize the data of the process of 
drying grated coconut with the least error are the 9-
4-1 and 9-9-1 networks. While the former gives a 
positive degree of freedom (df = 35), the latter has a 

negative calculated degree of freedom (df = -20). 
Due to the fact that the degree of freedom must be 
positive, the maximum acceptable number of 
neurons was calculated using equation 6. The 
number obtained, 7, enables the elimination of the 9-
9-1 network. In addition, it can be observed (Table 
3) that a network with four hidden layer neurons has 
the smallest generalization error and Schwarz’s 
Bayesian information criterion (BIC). 

Table 4 clearly shows that the addition of a 
second hidden layer does not improve the 
performance of the network.  

The model of the 9-4-1 network was diagnosed 
using error analysis. The scattered error plot (Figure 
3) shows that errors are uniformly and randomly 
distributed around the mean value (0) in the range 
of -0.35 to 0.34 %. As the errors have homogeneous 
variance and there is no observed systematic trend 
in residual values, the model obtained from the 9-4-
1 architecture is adequate for modelling the 
patterns.  

 
Table 3: Calculated Bayesian information criterion 

 
Nodes in hidden layer Mean error BIC 

1 0.164 -2.473 
2 0.139 -2.331 
3 0.136 -2.128 
4 0.085 -2.752 
5 0.101 -1.830 
6 0.097 -1.631 
7 0.162 -1.194 
8 0.157 -1.918 
9 0.153 -0.790 

10 0.274 -1.023 
11 0.221 -0.203 
12 0.211 -0.010 
13 0.295 0.349 
14 0.334 0.619 
15 0.454 0.965 

 
Table 4: Characteristics of the regression plot when a second hidden layer was added 

 
 Training Test 

Nodes in second 
hidden layer m b r m b r 

1 0.663 -0.124 0.866 0.878 0.077 0.743 
2 0.757 -0.092 0.877 0.651 -0.138 0.742 
3 0.750 -0.103 0.881 0.365 -0.308 0.428 
4 0.863 -0.052 0.934 0.631 -0.072 0.495 
5 0.816 -0.075 0.904 0.173 -0.541 0.057 
6 0.948 -0.028 0.982 0.192 -0.561 0.091 
7 0.913 -0.063 0.955 0.762 -0.205 0.676 
8 0.903 -0.047 0.965 0.588 -0.136 0.623 
9 0.950 -0.024 0.982 0.506 -0.145 0.339 
10 0.996 -0.002 0.999 0.435 -0.194 0.391 
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Figure 3: Scatter plot of residuals between observed and calculated outputs 

 
 

CONCLUSION 
 

In the present study, neural networks were 
designed and demonstrated to predict the moisture of 
dried grated coconut. A simple propagation network 
using the Levenberg-Marquardt for training the 
network was found to be very effective to generalize 
and predict the moisture of the final dried product. 
By using the analysis of variance test (ANOVA), it 
was found that the number of hidden layer nodes 
significantly affected (at the 0.05 level) the 
performance of the neural network. The 
configuration of the back propagation neural network 
that gave the best prediction was the one with one 
hidden layer consisting of four neurons. ANN 
predicted results were very close to the experimental 
values. The average MSE was observed to have 
reached the error goal of 0.01 and the maximum 
percentage relative errors were found to be between -
0.35 and 0.34 %. Therefore, the predictive capability 
of neural networks can be utilized as a promising 
technique for modelling, estimating and predicting 
the process of drying grated coconut, whose 
dynamics are poorly known. 
 
 

NOMENCLATURE 
 

TAi Temperatures of section Ai  °C
TBi Temperatures of section Bi  °C
B Intercept of regression line  %
TCi Temperatures of section Ci  °C
FM Final moisture  %
FT Final temperature  °C
IM Initial moisture  %
M Slope of regression line  dimensionless
R Correlation coefficient  dimensionless
SD  Standard deviation (-)
RSD  Relative standard deviation (-)
xni  Normalized data ranging (-)

between -1 and 1 
xi  Initial data (-)
xmin  Minimum value of the data 

set 
(-)

xmax Maximum value of the data 
set 

(-)

yj jth hidden neuron output (-)
wij Weights of hidden layer (-)
bj jth hidden unit bias (-)
BIC  Schwarz’s Bayesian 

information criterion  
(-)

V Sum of squares 
approximation errors 

(-)

n  Number of training patterns (-)
p  Total number of network 

weights 
(-)

N  Number of observations  (-)
k  Number of estimated 

parameters  
(-)

df  Degree of freedom (-)
e Sum of squares error (-)
yc Calculated output (-)
yo Given output (-)
m  Slope of regression line (-)
b  Intercept of regression line 

at the origin  
(-)

r  Correlation coefficient of 
the regression 

(-)

MSE Mean square error (-)
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