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Abstract -  In this communication, the method proposed by Cremasco et al. (2003) is applied to predict single 
and low concentration pulse chromatography. In previous work, a general rate model was presented to 
describe the breakthrough curve, where a hybrid solution was proposed for the linear adsorption. The liquid 
phase concentration inside the particle was found analytically and related with the bed liquid phase through 
Duhamel´s Theorem, while the bulk-phase equation was solved by a numerical method. In this paper, this 
method is applied to describe pulse chromatography of solutes that present linear adsorption isotherms. The 
simulated results of pulse chromatography are compared with experimental ones for aromatic amino acid 
experiments from literature. 
Keywords: Pulse chromatography; General rate model; Hybrid solution.  

 
 
 

INTRODUCTION 
 

The association of chromatographic technique 
and moment analysis of the response peaks is a 
powerful approach for adsorption studies. The 
moment analysis in chromatography and, as 
extension, the pulse analysis have been applied to 
measure the transport rate, adsorption parameters 
and bed characteristics for single component 
(Yamamoto et al., 2001; Harlick and Tezel, 2000, 
2003; da Silva et al., 2005) or multicomponent 
(Chihara et al, 2005) systems. This method was 
applied to porous solids, such as the adsorption of 
sulfur dioxide on 13X molecular sieve and 
activated carbon, and to evaluate effective 
diffusion coefficients in a macroreticular resin 
catalyst (Dogan and Dogu, 2003). The pulse 
chromatographic method can be used to evaluate 
the influence of packing (Wu and Ching, 2002), 
and connecting devices, such as frits, on the 
performance of a chromatographic column (Wu 
and Ching, 2003). The behavior of a 

chromatographic column where a single solute is 
fed in the presence of a suitable modifier can be 
analyzed in the context of the pulse propagation of 
the solute, whose retention depends on the 
modifier concentration, as studied by Ströhlein et 
al. (2006), who analyzed the phenomenon as a 
full-fledged binary problem. 

In this paper, the method proposed by Cremasco 
et al. (2003) is applied to predict single and low 
concentration pulse chromatography. A general rate 
(GR) model is presented, and a hybrid method is 
used. Solid-phase concentration is found by 
analytical solution, and it is correlated with liquid-
bed concentration through Duhamel’s theorem 
(Rosen, 1952), while solution of the moving-phase 
equation is obtained by a numerical method. 

 
 

THEORY 
 

The modeling strategy chosen to represent the pulse 
chromatographic process consists of a dynamic 
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modeling of an adsorption column, which is modeled 
by a general rate model. In order to obtain this 
mathematical model, some assumptions are fixed: the 
flow rate is constant; the transversal cross section is 
constant for and through the column; radial dispersion 
is negligible; the axial dispersion coefficient is a 
function of solute and flow rate; the external mass 
transfer resistance is considered; the solids are made of 
spherical particles with uniform radius; the solution is 
dilute and thus adsorption isotherm is linear; and the 

pore diffusion model describes the intra-particle 
transport mechanism. These assumptions were applied 
to the description of the breakthrough curve (Cremasco 
et al, 2003), the model of which is summarized in Table 
1. In the condition (8), Cin is the solute concentration in 
the flow entering the column. In the present work, the 
mathematical modification from breakthrough curve to 
pulse curve lies in the choice of Cin. This concentration 
is not constant, but it is where the pulse condition 
appears. 

 
Table 1: General rate model for linear adsorption (Cremasco et al., 2003). 
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Cp , solute concentration in the liquid phase 
inside the particle pores (volume fraction εp); R, 
particle average radius; kf, external mass 
transfer coefficient from (Wilson and 
Geankopolis, 1966) 
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DAB, free diffusion coefficient; and Dp is 
effective diffusion coefficient (Mackie and 
Meares, 1955): 
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C is the solute concentration in the fluid phase 
(volume fraction ε); u, interstitial velocity; Ra is 
the rate of adsorption/desorption of solute by the 
solid, by reactor volume unit; kp, equilibrium 
partition constant; LC is effective column length; 
Eb is the axial dispersion coefficient (Athayle et 
al., 1992): 
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in 0C C=  for  00 t t≤ <                             (10) 
 

inC 0=   for  0t t<                             (11) 
 
The resolution method employed is a hybrid 

method, based on previous work which was 
developed for prediction of breakthrough curves 
for the adsorption of a single compound. The 
intra-particle liquid solute concentration is found 
analytically and correlated to the liquid bed 
concentration through Duhamel’s theorem. The 
use of this theorem results in an equation 
connecting the intraparticle liquid concentration, 
Cp, to the liquid bed concentration, C. This method 
is described in Cremasco et al. (2003). 
 
 

RESULTS AND DISCUSSION 
 

Numerical results are obtained for two amino acids, 
phenylalanine (Phe) and tyrosine (Tyr). The solute 
properties (DAB and kP) presented in Table 2, and the 
physical parameters of the column, Table 3, are found in 
the literature (Cremasco et al., 2001). The axial 
dispersion coefficient, Eb, and the external mass transfer 
coefficient, kf, are derived from the literature (Table 1).  

 
Table 2: Solute properties (Cremasco et al., 2001) 

 
Solute kp Dp (cm2/min) 

Phe 1.947 1.02 x 10-4 
Tyr 3.229 1.01 x 10-4 

 
Table 3: Column and adsorvent properties 

(Cremasco et al., 2001) 
 

LC (cm) D (cm) ε R (μm) εp 
12.5 1.5 0.37 180 0.55 

 
The simulated curves are compared with 

experimental ones of Tyr and Phe, obtained by 
Cremasco et al. (2001), in Figures 1 and 2, respectively. 
In both cases, two different flow rates were 
investigated: 1,0 ml/min (Q1) and 2,5 ml/min (Q2).  
 

 
 

Figure 1: Comparison between theoretical and 
experimental results for tyrosine Tyr. 

 
 

Figure 2: Comparison between theoretical and 
experimental results for phenylalanine Phe 

 
As can be seen, model predictions are in close 

agreement with experimental results. This tends to 
show that the method applied is suitable for 
prediction, since the model parameters were not 
adjusted. A small discrepancy appears at low flow 
rate. In this case, the axial dispersion estimate from 
the Athayle et al. (1992) correlation, Table 1, is 
under estimated due to effects of dispersion off 
column, such as the presence of the loop.   

This method proved to be easier and less 
computer demanding than the purely analytical 
methodology. In this case, several mathematical 
models were developed, with analytical solution for 
linear isotherm (Ruthven, 1984; Carta, 1988). 
However, these analytical solutions are expressed in 
infinite integral form, which is necessary to solve by 
a numerical method, which is particularly difficult 
because of the oscillating behavior of the integrand 
(Rasmuson, 1981, 1985). Simplified models, such as 
transport–dispersive or equilibrium–dispersive, can 
be adjusted to experimental data. It has been shown 
that a general rate model (GR) should be preferred 
for prediction, since their coefficients do not need to 
be adjusted with experimental results (Guiochon, 
2002). In the present work, these coefficients were 
predicted by correlations from literature, as showed 
at Table 1.   
 
 

CONCLUSIONS 
 
A hybrid method for the numerical simulation 

of pulse chromatography is presented in this paper 
and the results are compared with experimental data 
from the literature. It is shown that the numerical 
method developed offers satisfactory predictive 
results in a short time in comparison to the physical 
separation process. Still, discrepancies between 
theoretical and experimental curves appear due to 
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axial dispersion deviation at lower flow rate. On the 
other hand, this work shows that the numerical 
scheme developed is efficient and offers fast, reliable 
results using a general rate model. The main 
limitation of this approach is the fact that Duhamel´s 
theorem is only applicable to linear PDE with linear 
initial and boundary conditions. However, the same 
limitation holds for the entirely analytical solution, 
since it is based on the same model (Rosen, 1952). 
The analytical solution has the disadvantage that it is 
quite difficult to calculate, since it is expressed as an 
integral of an oscillatory function that is very 
difficult to compute numerically. The hybrid 
approach used here avoids this difficulty. On the 
other hand, the results indicated that the method was 
efficient and easy to apply, solving the problem in a 
very short computational time. 
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