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Abstract - Riemann-solver based schemes are difficult and sometimes impossible to be applied for complex flows 
due to the required average state. Other methods that do not use Riemann-solvers are best suited for such cases. 
Among them, AUSM+, AUSMDV and the recently proposed Hybrid Lax-Friedrichs-Lax-Wendroff (HLFW) have 
been extended to two-phase flows. The eigenstructure of the two-fluid model is complex due to the phase 
interactions, leading to numerous numerical difficulties. One of them is the well-posedness of the equation system 
because it may lose hyperbolicity. Therefore, the methods that are not based on the wave structure and that are not 
TVNI could lead to strong oscillations. The common strategy to handle this problem is the adoption of a pressure 
correction due to interfacial effects. In this work, this procedure was applied to HLFW and AUSM-type methods 
and their results analyzed. The AUSM+ and AUSMDV were extended to achieve second-order using the MUSCL 
strategy for which a conservative and a non-conservative formulation were tested. Additionally, several AUSMDV 
weighting functions were compared. The first and second-order AUSM-type and HLFW methods were compared 
for the solution of the water faucet and the shock tube benchmark problems. The pressure correction strategy was 
efficient to ensure hyperbolicity, but numerical diffusion increased. The MUSCL AUSMDV and HLFW methods 
with pressure correction strategy were, on average, the best of the analyzed methods for these test problems. The 
HLFW was more stable than the other methods when the pressure correction was considered. 
Keywords: Hyperbolic conservation laws; AUSM+; AUMSDV; Hybrid schemes; Two-phase flow; Two-fluid 
model. 

 
 
 

INTRODUCTION 
 

The simulation of two-phase flows is important in 
many industrial applications and it is governed by 
the conservation of mass, momentum and energy and 
the associated constitutive equations. The later are 

macroscopic relations, such as an equation of state 
(EOS) and interfacial flux equations, which represent 
the behavior of the associated microscopic 
phenomena. These relations strongly influence the 
structure and dynamics of the waves in the flow. 
Molecular dynamic models have been locally applied 
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to model the interfaces in two-phase flows. However, 
it is not feasible to apply it to the whole flow domain. 
Therefore, average Navier-Stokes models have been 
used in which the singular interface with its appropriate 
jump conditions are averaged. This approach has been 
proposed in Ishii (1975) in the classical two-fluid 
model. The two-fluid model is based on field averaging 
and accounts for both mechanical and thermal non-
equilibrium, being able to deal with a wide range of 
flow patterns. The two-fluid model includes the 
equations for mass, momentum and energy 
conservation for each phase. It is possible to sum the 
phase momentum equations to obtain a single equation 
for the whole mixture which requires additional 
relations for the phase slip velocity. This is the idea 
behind the drift-flux model. It is possible to further 
simplify the model by eliminating the acceleration 
terms (no pressure wave model Masella et al., 1998), in 
which the flow is driven by the mass transport.  

Frequently, the validation limits of the EOS’s 
used are violated at the interfaces and the variables 
evaluated from them are inaccurate or physically 
unrealistic (negative pressures, densities and volume 
fractions). Besides, in the case of multicomponent 
mixtures, the notion of partial pressure is valid only 
with the local thermodynamic equilibrium 
assumption, which is acceptable when all 
components are perfectly mixed and the number of 
molecular collisions is so large that temperature is 
rapidly homogenized. When two fluids are not 
perfectly mixed, there is an interface which is the 
locus of the collisions between their molecules. 
Therefore, at an interface the local thermodynamic 
equilibrium does not hold anymore. It is expected 
that the interface propagates with an intermediate 
velocity and has an intermediate pressure which shall 
be modeled. This implies the presence of non-
conservative terms in the two-fluid model which 
must be carefully modeled to achieve a stable 
hyperbolic model. Otherwise, the two-fluid model 
becomes ill-posed, resulting in numerical instabilities 
during its solution. 

The conservation equations for advection-
dominated two-phase flow problems can be written 
as a set of conservation equations whose solution for 
the flow variables may present large gradients or 
even discontinuities. Most of the existing 
commercial codes, such as OLGA  (Bendiksen et al., 
1991), are based on very diffusive simple upwind 
pressure-based solvers which may lead to unrealistic 
solutions due to their failure in solving the flow 
wave field. These methods have limited accuracy 
compared to density-based solvers when strong 
compressibility is present. On the other hand, there 

are several successful methods that account for the 
flow wave structure through a superposition of 
Riemann solutions. These are local solutions of the 
hyperbolic equations which are composed of 
elementary waves (Menikoff and Plhor, 1989). These 
methods are based on characteristic upwind 
differencing and have been applied from nuclear and 
oil industries to solid combustion. The emergence of 
TVNI (total variation non increasing, also popularly 
known as TVD, total variation diminishing) methods 
(Harten, 1983) made the accurate capture of 
discontinuities possible. The pioneer method was 
that of Godunov (Godunov, 1959) which is based on 
the exact solution of the Riemann problem at the 
interfaces. Its advantage is the assurance of the 
density, pressure and volume fraction positivity, but 
its drawbacks are its large computer cost and the lack 
of generality due to its requirement of an analytical 
integration of the Riemann invariants. 

Flux difference splitting (FDS) schemes are 
modifications of classical upwind schemes. Such 
schemes are accurate for all speed flows and two-
phase flows but time consuming due to the repeated 
evaluation of the Jacobian matrix of the flux with 
respect to the conservative variables and its 
eigenstructure and they do not guarantee positivity of 
density and pressure. These schemes are 
approximate Riemann solvers and the most popular 
one is due to Roe (Roe, 1981). The generalization of 
the FDS scheme is difficult because it is not always 
possible to analytically obtain the necessary 
expressions for the average state in which the 
Jacobian matrix must be evaluated. This class of 
methods was adopted by several authors 
(Sainsaulieu, 1995; Toumi, 1996, Toumi and 
Kumbaro 1996; Tiselj and Petelin, 1997; Fjelde and 
Karlsen, 2002; Cortes et al., 1998; Romate, 1998; 
Faille, 1999; Saurel and Abgrall, 1999).  

The flux vector splitting schemes (FVS) are 
simplifications of the FDS schemes and are based on 
scalar rather than matrix calculations. Therefore, 
these methods are less time consuming but are more 
diffusive. Recently, great effort has been spent on 
developing hybrid schemes in order to achieve FVS 
efficiency with FDS accuracy. These methods are 
well-known as Advection Upstream Splitting 
Methods (AUSM). The AUSM scheme (Liou and 
Steffen, 1993) uses the idea of splitting the flux into 
a convective part upwinded in the flow direction and 
a pressure part upwinded according to the acoustic 
properties of the flow. The flow direction is 
determined by the Mach number sign considering 
information for the left and right state for a given cell 
face. This approach allows the capture of stationary 
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contact discontinuity with reduced numerical diffusion 
even with first-order discretization. However, for 
oblique shocks (not aligned with the mesh), the AUSM 
method admits highly non-monotone solutions for 
pressure and density, leading to difficulties in 
convergence. Thereafter, Wada and Liou (1997) 
proposed a method called AUSMDV, which mitigates 
the occurrence of non-monotonic solutions allowing 
robust resolution of shock contact (steady and moving) 
waves but introduced the carbuncle effect. Recently, 
Liou (1996) proposed a modified scheme called 
AUSM+, which is capable of solving contact 
discontinuities exactly without non-monotonic 
problems. Besides, the method preserves the positivity 
of pressure, density and volume fraction. 

The application of the density-based solvers to the 
two-fluid model is not simple due to the non-hyperbolic 
nature of the two-fluid model, the presence of non-
conservative terms, stiff source terms, complex 
interfacial relations, phase appearance and 
disappearance and phase change.  These methods also 
experience loss of accuracy for low Mach number 
flows. In such cases, AUSM+ behaves more like a 
central difference discretization scheme. This may lead 
to odd-even decoupling and it is then necessary to 
couple velocity and pressure (Liou, 1999). The larger 
the difference between the speed of sound and the 
velocity, the stronger the odd-even decoupling effect is. 
Some strategies have been proposed for dealing with 
one and two-phase low Mach number flows in the 
AUSM+ context (Liou, 1999 and Paillère et al., 2003). 
AUSM+ has been used in many works for two-phase 
drift flux (Liou, 1999, Paillère et al., 1999, Fjelde, 
2002, Evje and Fjelde, 2003) and two-fluid (Niu, 2001, 
Paillère et al., 2003, Evje and flatten, 2003, De Vuyst, 
2004) models. 

It is well-known that first-order schemes tend to 
present numerical diffusion, while the second-order 
schemes tend to present oscillations near high 
gradient regions. De Vuyst (2004) presented a novel 
hybrid method and applied it to some one-phase flow 
problems and to the water faucet two-phase flow 
problem. The idea of this method (HLFW) is to 
evaluate the flux with a weighted combination of 
second-order Lax-Wendroff and first-order Lax-
Friedrichs schemes. The weighting parameter is the 
key to the success of this type of methods. The 
author proposed a concept of numerical dissipation 
by convexity in which the entropy and its flux are 
not directly used for the dissipation evaluation. This 
allows the dissipation to be expressed as a simple 
convex function, but also allows some entropy 
violation. The proposed dissipation term is evaluated 

in the whole cell instead of the common approach 
where the dissipation is evaluated at the interface.  

Schemes like hybrid Lax-Friedrichs Lax-Wendroff 
(De Vuyst , 2004), AUSM (Liou, and Steffen, 1993), 
AUSM+  (Liou, 1996) and AUSMDV (Wada and 
Liou, 1997, Liou, 200) are not based on the 
characteristic analysis of the flow and do not require 
the model to be hyperbolic. However, as shall be 
shown in this work, their accuracy is improved if the 
model is hyperbolic. 

Another class of methods not studied here are the 
relaxation schemes (Evje and Fjelde, 2002), which 
are capable of dealing with strong non-linearities. 
However, they require a case-by-case analysis of the 
sub-characteristic stability based on entropy 
compatibility or Chapman-Enskog-like expansion 
(De Vuyst, 2004). 

Many other authors adopted different methods in 
order to solve two-phase flows. Recently, Lorentzen 
and Fjelde (2005) applied a slope limiter to the finite 
element predictor-corrector shooting technique for the 
drift-flux model. Wackers and Koren (2005) applied a 
HLL Riemann Solver to a new model with five 
equations. Cascales and Salvador (2006) applied a high 
resolution method and a slope limiter to the two-fluid 
model. Guinot (2001a, b) applied the Godunov method 
to solve a simplified two-phase flow model. Castro and 
Toro (2006) compared a Riemann Solver and a second-
order extension using MUSCL and ADER strategies to 
the Saurel and Abgrall (1999) five equation model. 
Bedjaoui and Sainsaulieu (1997) examined the effects 
of diffusion and relaxation parameters on the stability 
of the solution of a non-hyperbolic two-fluid model, 
proving its stability depending upon the initial 
conditions. 

As the ideal EOS is not capable of representing 
non-classical waves, many numerical methods were 
recently extended to real materials. In our previous 
work (Coelho at al., 2006), a comparison was made 
regarding the accuracy and CPU time consumption 
of second-order extensions of Roe’s Riemann solver, 
VFRoe, AUSM+ and Hybrid Lax-Friedrichs Lax-
Wendroff for ideal and real gases modeled with 
cubic equations of state, including non-classical 
wave phenomena.  

In this work, the AUSM-type and Hybrid Lax-
Wendroff-Lax-Friedrichs methods were compared for 
two-phase flow simulations of benchmark problems. A 
stiffened gas EOS was adopted in order to make 
possible comparison with some results presented in the 
literature. This paper is organized as follows: section 2 
is a summary of the two-fluid model equations. In 
section 3, a summary of the AUSM+, AUSMDV and 
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Hybrid Lax-Friedrichs-Lax-Wendroff (HLFW) 
methods and the MUSCL (Monotone Upstream-
Centered Scheme for Conservation Laws) strategy due 
to Van Leer (1977 and 1979) are presented. In section 
4, the discretization schemes of additional terms in the 
two-fluid model are described. In section 5, the results 
of the application of these methods to two-phase flows 
are discussed. The methods were compared in terms of 
accuracy for different mesh sizes. The usage of the 
pressure correction term that enforces hyperbolicity and 
of different expressions for the weighting function of 
the AUSMDV scheme was also analyzed. Additionally, 
MUSCL strategies based on primitive and conservative 
variables were compared. 
 
 

THE TWO-FLUID MODEL 
 

The set of hyperbolic one-dimensional conservation 
laws is generically written as: 
 

0

u f (u) g(u)
t x

u(x,0) u (x)

∂ ∂
+ =

∂ ∂

=
             (1) 

 
where f (u)  is the physical flux and g(u)  represents 
a source/sink term, like the friction loss. The 
linearized form of Eq. (1) is given by: 
 

u u f (u)A(u) g(u), A(u)
t x u

∂ ∂ ∂
+ = =

∂ ∂ ∂
       (2) 

 
where A  is the Jacobian matrix. The Riemann 
solvers require the calculation of the eigenvalues and 
eigenvectors of the Jacobian matrix, which is 
evaluated with an average state. This average state is 
difficult and sometimes impossible to be obtained. 

The system of equations of the two-fluid model 
(Ishii, 1975) applied to two-phase flow and with no 
source/sink terms could be written in the form of Eq. 
(1) as follows: 
 

g

l

t
g g g g g l l l l l

2
g g g g g g g

2 t
l l l l l l l

i D
g g g g x

i D
l l l x l

u [ , v , , v ] ,

f (u) [ v , ( v p ),

v , ( v p )]

g(u) [0,p / x F g ,0,

p / x g F ]

= α ρ α ρ α ρ α ρ

= α ρ α ρ +

α ρ α ρ +

= ∂α ∂ + + α ρ

∂α ∂ + α ρ +

      (3) 

where ρ is the density, v is the velocity, 
k
ip  is the 

interface pressure, which represents the effects of 
surface tension and low wavelength dynamics, α is 
the volume fraction, D

kF  represents the interfacial 
and wall drag forces, gx is the gravity acceleration 
component along the x-coordinate and subscripts g 
and l refer to gas and liquid phases, respectively. 

Defining i
kpΔ  = kp   - i

kp  the following 
transformation could be applied: 
 

i
i ik k k k
k k k k

( p ) pp p
x x x x

∂ α ∂α ∂ ∂⎡ ⎤− = α Δ + α⎣ ⎦∂ ∂ ∂ ∂
     (4) 

 
leading to the following form: 
 

t
g g g g g l l l l l

2 i
g g g g g g g

2 i t
l l l l l l l

i D
g g g g g x

i D
l l l l x l

u [ , v , , v ] ,

f (u) [ v , ( v p ),

v , ( v p )]

(u) [0, p / x F g ,0,g

p / x g F ]

= α ρ α ρ α ρ α ρ

= α ρ α ρ + Δ

α ρ α ρ + Δ

= −α ∂ ∂ + + α ρ

−α ∂ ∂ + α ρ +

      (5) 

 
In the present work, the pressures and the interfacial 
pressures were assumed to be equal for both phases, 
that is, g lp p p= =  and i i i

g lp p p= = . The authors in 
the references (Toumi, 1996, Cortes et al., 1998, 
Evje and Fjelde, 2003) used a perturbation method in 
order to obtain the approximate eigenvalues of the 
system. It is important to highlight that, if p 0Δ = , 
the model becomes non-hyperbolic due to the 
existence of complex eigenvalues. 

Let 
t

g g lw ,v ,v ,p⎡ ⎤= α⎣ ⎦  be the vector of non-

conservative variables. It is necessary to obtain the 
transformation of u into w and vice-versa. The 
following equation is a relation between u and the 
phase velocities: 
 

g 2 1 l 4 3v u / u ,    v u / u= =           (6) 
 
Besides, 
 

g g 1

l l g l 3

(p) u

(p) (1 ) (p) u

α ρ =

α ρ = − α ρ =
          (7) 
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These equations lead to the following non-linear 
relation, which can be solved to give the pressure 
and, thus, the densities: 
 

1
l 3

g

u1 (p) u 0
(p)

⎡ ⎤
− ρ − =⎢ ⎥
ρ⎢ ⎥⎣ ⎦

          (8) 

 
The transformation of w into u is trivial. The 

complete description of the system is accomplished 
by specifying an EOS. For an isentropic evolution, 
the following relation was assumed: 

 
k

k k kkp A γ= ρ −Π              (9) 
 
where γ is the ratio of the specific heats and Ak 
and Πk are constants depending upon the fluid. 
This EOS reproduces the stiffened gas EOS, 

k k
k
0

k kp ( / c) ( / c)γ γ= ρ − ρ , if k
kA (1 / c)γ=  and 

k
k
0

k ( / c)γΠ = ρ . 
 
 

AUSM+, AUSMDV AND THE HYBRID LAX-
FRIEDRICHS-LAX-WENDROFF METHODS 

 
 
We are interested in solving the Finite Volume 

discretization of Eq. (1) with the following form: 
 

t t t t
j 1/2 j 1/2j j ju u [F (u) F (u)] t g(u )+Δ
+ −= − ε − + Δ   (10) 

 
where ε=Δt/Δx, j 1/2F +  and j 1/2F −  are the numerical 
flux calculated at the interface j-1/2 and j+1/2 of the 
volume j. For the Euler explicit the numerical flux is 
evaluated at the t time level and for the Euler implicit 
it is evaluated at the t+Δt time level.  
 
AUSM Type Methods 
 

Liou and Steffen (1993) proposed a scheme based 
on the separation of a convective flux and a pressure 
flux, presenting some drawbacks, especially in the 
case of strong shocks. Wada and Liou (1997) 
presented an improved scheme called AUSMDV, 
which is a blend of the FDS and FVS methods. 
However, AUSMDV does not have the property of 
capturing a stationary shock. Thereafter, Liou (1996) 
presented a novel scheme called AUSM+, which is 
capable of capturing stationary shock and contact 
discontinuity waves, preserves the positivity of 
pressure and density and improves the accuracy of 

the AUSM method. 
The AUSM+ is as accurate as the flux splitting 

methods due to Roe (1981) without the wave 
decomposition, leading to a large reduction of CPU 
time consumption and making the formulation 
simple and quite general. The AUSM+ is able to 
solve the contact discontinuities exactly, making it 
suitable for viscous flow calculations. 

The AUSM+ flux for the system given by eqs. (1) 
and (3) is given by the following expression, where 
the pressure and mass flux parts are separated: 
 

AUSM 2 t
k k k k k k kk, j 1/2

j 1/2 j 1/2j 1/2
k k k

j 1/2 j 1/2j 1/2 t
k k k

j 1/2 j 1/2 t
k k

AUSM AUSM AUSM t
j 1/2 g, j 1/2 l, j 1/2

F (u) [ v ; ( v p )]

m P

[1;v ] ;   P

[0; p ]  

F (u) [F ;F ]  

+

+ ++

+ ++

+ +

+ + +

= α ρ α ρ + =

Ψ +

Ψ = =

α

=

�

    (11) 

 
where the subscript k indicates the kth phase (gas, g, 
or liquid, l) and the following upwind formula based 
on the sign of j 1/2

km +�  is used to compute j 1/2
k
+Ψ  

(Paillère et al., 2003): 
 

j 1/2
j 1/2 L Rj 1/2 k

k kk kk k

j 1/2
k L R

k kk k

m
m (u ) (u )

2

m
(u ) (u )

2

+
++

+

⎡ ⎤Ψ = Ψ +Ψ +⎣ ⎦

⎡ ⎤Ψ −Ψ⎣ ⎦

��

�
  (12) 

 

using the j 1/2
km +�  value obtained by the following 

steps: 
 
(i)    Evaluation of left and right Mach numbers 
calculated by using a mean sound speed at the 
interface:  

 
j 1/2 L R L,R L,R j 1/2

k kk k k kc c c , M v / c+ += =     (13) 
 
(ii)    Then, the interface pressure is calculated by 
averaging the left and right pressures: 
 

j 1/2 j 1/2 L L
k kk k

R R
k k

p (M )( p)

(M )( p)

+ + +

−

α =℘ α +

℘ α
       (14) 

 

where ±℘  are consistent, differentiable and symmetric 
polynomial functions. 
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(iii) the interface Mach number is calculated as a 
polynomial function of the Mach numbers given in 
the first step: 
 

j 1/2 L R
k kkM (M ) (M )+ + −= μ +μ        (15) 

 
where the superscripts “+” and “–” are associated 
with the right and left running waves, respectively. 
 
(iv) finally, the mass flux is given as follows: 
 

L j 1/2 j 1/2
k k kj 1/2 j 1/2

k k
R j 1/2 j 1/2
k k k

( ) (M | M |)
m 0.5c

( ) (M | M |)

+ +
+ +

+ +

⎡ ⎤αρ + +
⎢ ⎥=
⎢ ⎥αρ −⎣ ⎦

�   (16) 

 
The common speed of sound defined in Eq. (12) 

is the key to the AUSM+ accuracy instead of the 
simple upwind ( j 1/2 j j 1/2 j 1/2 j 1

k k k k kc c , for m 0, c c+ + + += ≥ =� , 
otherwise). Liou (1996) presented a correct 
expression for the interface sound speed based on the 
isoenergetic condition. This involves an EOS 
dependent expression. In this paper this was avoid by 
using Eq. (12), as suggested by the author, which 
does not guarantee the exact capture of  stationary 
shocks. Besides, the first RHS term of Eq. (11) is a 
weighted Mach number averaged flux. The 
coefficient j 1/2

km +�  is merely a scalar, reducing CPU 
demand for the flux evaluation and keeping the 
algorithm free of jacobian evaluations. The original 
AUSM+ polynomials are: 

 

1M (M) (M | M |) / 2± = ±          (17) 
 

1
2 2

M (M),            if | M | 1
M (M)

(M 1) / 4,  otherwise

±
± ⎧ ≥⎪= ⎨

± ±⎪⎩
      (18) 

 

1

2 2

M (M),                             
if | M | 1

(M)
M (M) 1 16BM (M) ,
otherwise

±

±

±

⎧
⎪ ≥
⎪

μ = ⎨
⎪ ⎡ ⎤

⎣ ⎦⎪
⎩

∓∓
      (19) 

 

1

2 2

M (M) / M,                                    
if |M | 1

(M)
M (M) 2 M 16A MM (M) ,

otherwise

±

±

±

⎧
⎪ ≥
⎪

℘ = ⎨
⎪ ⎡ ⎤± −⎣ ⎦⎪
⎩

∓∓
  (20) 

These polynomials were developed in order to 
satisfy some properties (see Liou 1996, for details). 
They are responsible for the more general 
characteristic of the AUSM+ scheme. Liou (1996) 
adopted the criterion in which (M)±μ  has an 

inflection point at M 0=  and (M)±℘  has two 
inflection points for M 1= ± , leading to A = 3/16 
and B = 1/8. These parameter values could also be 
changed in order to improve AUSM+ results, but 
they were left fixed as suggested in Liou (1996). 

The AUSM+ suffers of odd-even decoupling for 
low Mach numbers, losing accuracy. This is 
particularly important for liquid flows where the sound 
speed is usually three orders of magnitude higher than 
the velocity. As cited in the introduction, density-based 
solvers exhibit a stiffness problem for low Mach 
number where it is necessary to couple pressure and 
density. For this purpose, a cut-off procedure was 
adopted by Paillère et al. (2003) in order to limit the 
sound speed and consequently the Mach number. This 
procedure was applied to the liquid phase in the present 
work and is explained in the following. 
 
1) Modify Eq. (16) to add a pressure diffusion term  
for the liquid phase given by:  
 

j 1/2 j 1/2
pl lm m m+ += +�� � �           (21) 

 
2) Redefine the interface numerical speed of sound, 
Eq. (13), to: 
 

L R
j 1/2 j 1/2 L Rl l

l ll L R
l l

L,R L,R j 1/2
l l l

2 2 2 2
0 0j 1/2

2
0

1 u uc f c c ,
2 c c

M v / c

(1 M ) M 4M
f (M)

1 M

+ +

+

+

⎛ ⎞⎡ ⎤
= +⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

=

− +
=

+

�

� �     (22) 

 
where M0 is a cut-off Mach number, say 10-4. 
 
3) compute  
 

j 1/2 L L R R
l 1 l l 1 lM (M ) M (M ) (M ) M (M )+ + + − += μ − −μ +� � � � � . 

 
4) evaluate pressure diffusion term as: 
 

L R
j 1/2 j 1/2 l L l R

p l l2 j 1/2 2
0 l

1 1 p pm c 1 M
2 M (c )

+ +
+

⎛ ⎞ α − α
= −⎜ ⎟⎜ ⎟

⎝ ⎠
�� �

�
  (23) 
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This last term adds the necessary dissipation 
scaled for low Mach numbers. 

Before the AUSM+ formulation, the authors in 
Wada and Liou (1997) presented an improvement to 
AUSM creating the AUSMDV scheme. This method 
presented some problems with the carbuncle effect 
which were solved in AUSM+. However, for one-
dimensional problems, we believe it remains 
desirable and the results confirmed this expectation. 
The scheme is obtained by the substitution of Eq. 
(16) with the following expression: 
 

L
k k k, j 1/2j 1/2 j 1/2

k k
R

k k k, j 1/2

( ) M
m c

( ) M )

+
+

+ +

−
+

⎡ ⎤α ρ +
⎢ ⎥=
⎢ ⎥
α ρ⎢ ⎥⎣ ⎦

�      (24) 

 
where: 
 

L,R

1/2 L R
2Yw

Y Y
± =

+
           (25) 

 
Additionally: 
 

L,R
k, j 1/2 j 1/2 k

L,R
j 1/2 1 k

M w (M )

1 w ) M (M )

± ± ±
+ +

± ±
+

= μ +

−
      (26) 

 
Wada and Liou (1997) adopted Y = p/ρ. 

Thereafter, Liou (2000) suggested Y = 1/ρ in order 
to eliminate shock instability (carbuncle 
phenomenon) and Evje and Flatten (2003) adopted 
Y=ρ/α. One should bear in mind that the shock 
instability is not important in the one-dimensional 
problems analyzed in this paper. In the analysis of 
the results, the difference between these options will 
be further discussed. 

 
Hybrid Lax-Wendroff-Lax Friedrichs Method 
 

De Vuyst (2004) proposed a novel approach for 
numerical solution of hyperbolic systems using a 
hybrid method that combines first and second order 
numerical fluxes. The author presented the basis for 
generalizing the calculation of the optimal weighting 
of such fluxes. The weight is calculated from a 
proposed concept of local dissipation by a convexity 
function which differs from the traditional entropy 
dissipation functions because it does not need an 
entropy flux expression and allows some relaxation 
of the entropy inequality (e.g., entropy violation). 
The author used the Lax-Wendroff and the Lax-
Friedrichs fluxes. The Lax-Wendroff flux with a 

relaxation parameter χ for each phase k can be 
written as: 

 

( )
( )
( )

LW L R
k, j 1/2 k kk, j k, j 1

R L
k kk, j k, j 1

k, j k, j 1

F (u ,u , ) 0.5 f f

f (u ,u ) (f f )

2 f (u ,u )

+ +

+

+

χ = + −

⎡ ⎤φ + χ − −
⎢ ⎥ε

− ⎢ ⎥χ φ⎢ ⎥
⎣ ⎦

            (27) 

 
where L

k k, jf f (u )= , R
k k, j 1f f (u )+=  and φ  is a 

consistent mean state function, that is, it has the 
property that (u,u) uφ = . In the present work, a 
constant value of χ = -10-2 and (u,v) 0.5(u v)φ = +  
were used as suggested by the author. The modified 
Lax-Friedrichs numerical flux is given by: 
 

( )

( )

MLF L R
k, j 1/2 k kk, j k, j 1

k, j 1 k, j

F (u ,u ) 0.5 f f

1 u u
4

+ +

+

= + −

−
ε

     (28) 

 
Then, the weighted flux at tn is given by: 
 

n n n
k, j 1/2 k, j k, j 1

MLF n nn
k, j 1/2 k, j 1/2 k, j k, j 1

LW n nn
k, j 1/2 k, j 1/2 k, j k, j 1

F (u ,u )

F (u ,u )

(1 )F (u ,u , )

+ +

+ + +

+ + +

=

θ +

− θ χ

          (29) 

 
where the weighting factor, n n n

k, j 1/2 k, j k, j 1max( , )+ +θ = θ θ , 

depends upon the local dissipation function, η, 
which is defined as:  
 

n 1 nn 1 n
k, j k, j k, j k, j

n n n n n
k, j k, j 1/2k, j 1/2 k, j 1 k, j

n n n n n
k, j 1/2 k, jk, j 1/2 k, j k, j 1

n n n n n2
k, j k, j k, j 1/2 k, j k, j 1

n n
u k, j k, j 1

( ) S(u ) S(u )

G (u ,u ) f F

G (u ,u ) F f

S(u ) || u || /2, G (u ,u )

S (u u ) /

++

−− −

++ +

+ +

+

η θ = − +

⎧ ⎫⎡ ⎤− +⎣ ⎦⎪ ⎪
+ε⎨ ⎬

⎪ ⎪⎡ ⎤−⎣ ⎦⎩ ⎭

= =

∇ +( ) n n
k, j 1 k, j2 (u u ) / 2+= +

   (30) 

 
which, in its turn, depends on the numerical flux 
given by Eq. (28) and on the final updated field, 

n 1
k, ju + . The method was implemented by the 
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algorithm suggested in De Vuyst (2004) to achieve η 
≤ 0, which calculates n

k, jθ  as the smallest values that 

make n 1
k, j
+η  negative. Let  n

k, j 0Δθ >  be a small 

increment and build the sequences { }n,q
k, jθ  as follows:  

 

let q = 0 and n,.0
k, j 0θ =  and 

 

while ( )n 1 n,q
k, j k, j
+η θ > ξ  and  n,q

k, j 1θ ≤   do   

 
n,q 1 n,q n

k, jk, j k, j

n n,q
k, j k, j

n n n
k, j 1/2 k, j k, j 1

n 1 n,q
k, j k, j

q q 1

set  and calculate 

max( , )

evaluate the numerical flux, Eq. (29)

calculate the updated field, Eq. (10)
 
evaluate ( )

+

+ +

+

θ = θ + Δθ

= +

θ = θ

θ = θ θ

η θ

  

 
end while. 
where ξ is a small positive number. A Newton-
Raphson like algorithm could reduce CPU demand. 
In Eq. (29), S is the convexity function and G its 
derivative.  

 
Extension of AUSM-Type Methods to Second-Order 
 

The extension of the present methods to second-
order follows Van Leer (1977, 1979) and the 
MUSCL method modified later by Van Leer (1985) 
(MUSCL-Hancock, see Toro, 1999, for details). The 
first step is called data reconstruction and consists of 
changing the u value as follows:  
 

L L
jj j

R R
jj j

U u / 2

U u / 2

= − Δ

= + Δ
           (31) 

 
The second step is the evolution step given by: 
 

L L L R
j j j j

R R L R
j j j j

U U F(U ) F(U )
2

U U F(U ) F(U )
2

ε ⎡ ⎤= + −⎣ ⎦

ε ⎡ ⎤= + −⎣ ⎦

      (32)  

For an approximate Riemann solver, the last step 
is the solution of the Riemann problem at the "j+1/2" 

face with the values R
jU  e L

j 1U +  as left and right 
values, respectively. For the AUSM type methods 

the values of R
jU  e L

j 1U +  substitute the values of Uj 

and Uj+1 in the flux evaluation. The jΔ values are 
obtained as follows: 
 

j 1/2 j 1/2

j 1/2 j 1/2 j 1/2

j
j 1/2 j 1/2

j 1/2 j 1/2 j 1/2

j 1/2 j 1/2j j 1 j 1 j

max[0,min( , ),

min( , )] 0

min[0,max( , ),

max( , )] 0

u u ,    u u

− +

− + +

− +

− + +

− +− +

ΓΔ Δ⎧
⎪
⎪ Δ ΓΔ → Δ >
⎪⎪Δ = ⎨ ΓΔ Δ
⎪
⎪ Δ ΓΔ → Δ <⎪
⎪⎩

Δ = − Δ = −

   (33) 

 
where Γ = 1 and 2 leads to the MINMOD (MINBEE) 
and SUPERBEE schemes, respectively.  

The MUSCL data reconstruction can be applied 
to primitive variables instead of conservative 
variables, but not when using the previously shown 
algorithm, because Eq. (32) requires that the 
dimension of the reconstructed data vector be equal 
to the flux vector dimension which, in turn, is equal 
to the number of conservative variables. However, in 
some tests, the MUSCL-Hancock applied to AUSM+ 
presented too much pressure oscillation. Therefore, a 
primitive variable based data reconstruction 
algorithm was also tested. A primitive-variable 
version of the MUSCL-Hancock algorithm can be 
found in Toro (1999), but it requires the Jacobian 
matrix evaluation. Therefore, a slope limiter scheme 
was adopted. It consists of Eq. (31) with W (the 
vector of primitive variables) in substitution to U.  
Finally, the following expression for jΔ  instead of 
Eq. (33): 
  

j j

j j 1/2 j 1/2

j 1/2 j 1/2

(r)

(0.5 0.5 ) (0.5 0.5 )

r /

− +

− +

Δ = Θ Δ

Δ = + ϖ Δ + − ϖ Δ

= Δ Δ

   (34) 

 
where j 1/2−Δ  and j 1/2+Δ  have the same definition as 

in Eq. (33), (r)Θ  is a slope limiter and ϖ ∈[-1,1]. 
The MINMOD (MINBEE) reconstruction is 
obtained if the slope limiter is taken as: 
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0                                      , r 0

r                                   , 0 r 1(r)
2min 1,     , r 1

1 r r

<⎧
⎪⎪ ≤ ≤Θ = ⎨

⎧ ⎫⎪ >⎨ ⎬⎪ −ϖ + + ϖ⎩ ⎭⎩

       (35) 

 
 

DISCRETIZATION OF THE REMAINING 
TERMS 

 
Interfacial Transfer Terms 
 

The two-fluid model is non-hyperbolic for 
i
k kp p= . In order to regularize this term, some 

interfacial pressure models were created. A summary 
of these models can be found in (Cortes et al., 1998). 
The following form for the interfacial pressure was 
adopted in (Bestion, 1990, Cortes et al., 1998, Evje 
and Flatten, 2003, Paillère et al., 2003) (with 

i i i
l gp p p= = and l gp p p= = ): 

 

g g l l 2
i g l

g l l g
p p (v v )

( )
α ρ α ρ

− = σ −
α ρ + α ρ

      (36) 

 
where σ is a positive constant. For σ ≥ 1 the two-fluid 
model becomes hyperbolic, while for σ < 1, the 
eigenvalues of the flux jacobian matrix flux become 
complexes. One should note that the value of σ = 1 
(used in CATHARE code) is a limit based on an 
approximate eigenvalues analysis and values of σ ≥ 1.2 
are recommended to achieve hyperbolicity. The effect 
of this parameter on the contact wave is important and 
will be presented in the results. The authors in Paillère 
et al. (2003) presented results for σ=2 and σ=5, but the 
adoption of these values is questionable. As equation 
(36) is more a mathematical artifact to keep the model 
hyperbolicity than a physical model, simulation results 
with \sigma=0 are also included to show how much its 
usage, which implies in additional numerical diffusion, 
affects the results. Besides, it is not clear if the methods 
treated here could keep useful results for reasonable 
refined meshes even if the hyperbolicity is lost since 
they do not make directly use of the hyperbolicity. 

The interfacial drag force depends upon the flow 
pattern, which is, in turn, dependent upon the 
superficial velocities of the phases. One possible 
form for this term is: 
 

D Di Dw
g g g

DwD
g l g l g l g

F F F

C a(v v ) | v v | F
8

= + =

− α ρ − − +�
     (37) 

where CD is a positive drag coefficient that depends 
upon the phase and interfacial properties and the 
flow pattern, a�  is the specific area and Dw

gF  is the 
wall drag force. As for all interphase change fluxes, 
we have:  
 

Di Di
l gF F= −              (38) 

 
Phase Appearance and Disappearance 
 

As the formation of vacuum is a challenge to 
single phase flow simulation, the phase appearance 
and disappearance are important numerical 
difficulties in multiphase flow simulation. First, the 
numerical dissipation of the scheme must be 
evaluated for conditions where the volume fraction 
tends to zero or one. The AUSM+ flux, Eq. (11), is 
still non-singular since the Mach number is bounded. 
The corresponding velocity bounds imply that the 
velocity of the disappearing phase must tend to the 
remaining phase velocity as it disappears. For 
example, if the gas volume fraction tends to 0, the 
following expression is used: 
 

g g 2 1 g 4 3v ( )u / u [1- ( )]u / u= α + α� �      (39) 
 
where ( )α� is a positive function equal to 1 if 
α>αmin, with αmin very close to zero and tending 
smoothly to zero if α<αmin. 
 
Source Terms Treatment 
 

Following Paillère et al. (2003), the source terms 
were discretized with a simple central formula as 
follows: 
 

k, j 1 k, j 1k
i j i, j(p ) p

x 2 x
+ −α − αα∂ =

∂ Δ
       (40) 

 
The remaining gravity and drag terms were 

evaluated at cell j. One could observe that all 
discretizations were based on the two-fluid model 
form given in Eq. (3). Some authors adopted the 
form given in Eq. (5) where the flux presents pΔ  
instead of p and the non-conservative term includes 
the pressure gradient instead of the volume fraction 
gradient. Evje and Flatten (2003) used this form but 
treated the non-conservative term as part of the 
AUSM flux instead of considering it a source term. 
Cascales and Salvador (2006) adopted both central 
and backward discretization for this term.  
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For the Hybrid Lax-Wendroff-Lax Friedrichs 
method, the treatment of the non-conservative terms 
is included in the flux. The modified Lax-Wendroff 
flux given by Eq. (27) is substituted by: 
 

( )
( )
( )

( )
( )

LW L R
k, j 1/2 k kk, j k, j 1

R L
k kk, j k, j 1

k, j k, j 1

n
j 1/2k, j k, j 1 k, j 1 k, j

k, j k, j 1

F (u ,u , ) 0.5 f f

f (u ,u ) (f f )
2 f (u ,u )

f (u ,u ) B (u ,u )
2 f (u ,u )

+ +

+

+

++ +

+

χ = + −

⎡ ⎤φ + χ − −ε ⎢ ⎥−
χ φ⎢ ⎥⎣ ⎦

⎡ ⎤φ + χ − −ε ⎢ ⎥−
χ φ⎢ ⎥⎣ ⎦

  (41) 

 
and the variables update is also changed to: 
 

n 1 n n n
j 1/2 j 1/2j j

n n n n n n
j 1/2 j 1/2j j 1 j 1 j

U U (F F )

B (U U ) B (U U )
2

+
+ −

− +− +

= − ε − −

ε ⎡ ⎤− + −⎣ ⎦

   (42) 

 
where B is the non-conservative term 
([0,

g
i

gp / x∂α ∂ ,0, 
l
i

lp / x∂α ∂ ) and Bj+1/2=B[(Uj+Uj+1)/2]. 

 
 

NUMERICAL RESULTS 
 

In our comparison study, the accuracy of the 
methods was compared for different mesh sizes. The 
shock tube and the water faucet test problems were 
employed. Particularly, the effects of the pressure 
correction term and of the choice of the AUSMDV 
weighting term were examined. Some complex cases 
such as phase separation were not included in this 
analysis because a special treatment for the model 
singularity at each limit of the phase fraction value 
would have to be included and analyzed. 
 
Shock Tube Problem   
 

We consider a shock tube problem with large 
relative velocity proposed in Cortes et al. (1998), which 
is a Riemann problem with the left and right initial 
states given by wL=[0.71, 65, 1, 265000] and wR=[0.7, 
50, 1, 265000], respectively. The tube length is 100. 
Since there is no analytical solution available, the 
results from the HLFW method using a 10000-cell 
mesh were adopted as reference values. The MUSCL 
AUSM+ was adopted in  Fjelde (2002) for the drift flux 
model, but their MUSCL reconstruction used non-
conservative instead of conservative variables, as 

frequently adopted. Therefore, the MUSCL-Hancock 
strategy was substituted by a primitive (non-
conservative) variable algorithm described previously. 
However, as shown in Figure 1 (a) and (b), the results 
are slightly worse than the ones obtained using the 
conservative variable approach. Similar results were 
observed for the water faucet problem. Therefore, only 
results for the conservative variable MUSCL scheme 
are presented in the following. Figure 2 (a) and (b) 
show the results for different choices of the weighting 
function and σ for AUSMDV scheme. It can be seen 
that the use of σ=1.2 led to better results since it 
produces less oscillation. Figure 2 (c) and (d) show the 
results for different choices of the weighting function 
and σ=1.2 for the AUSMDV and MUSCL-AUSMDV 
for 1000 and 10000 cell meshes.  Liou (2000) 
suggested Y = 1/ρ and one can see that this option 
gives similar results when compared to Y = p/ρ. For 
refined meshes, only the Evje and Flatten (2003) 
suggestion, Y=ρ/α, could represent the two separate 
waves pattern. However, the Y = ρ/α option applied to 
AUSMDV produced some oscillations. This effect is 
even worse for MUSCL-AUSMDV. The options Y = 
p/ρ and Y = 1/ρ produce too much diffusion for 
AUSMDV. Since this is a shock tube problem, the less 
diffusive option is usually considered to be more 
suitable. Therefore, for this example, the option Y=ρ/α 
seems to be more adequate for AUSMDV, despite 
some oscillatory behavior. For the MUSCL-AUSMDV 
scheme, Y=ρ/α produces unacceptably large 
oscillations. Therefore, although Y=1/ρ produces too 
much numerical diffusion, it was adopted as the option 
for MUSCL-AUSMDV, which was capable of 
capturing the two separate waves only for the 10000 
cell mesh.  

Figures 3 to 6 show results for localized regions that 
have been magnified to highlight the differences among 
the schemes. Comparing these results, the following 
remarks can be made:  

(i) The AUSMDV scheme was more diffusive 
than the corresponding AUSM+ scheme and the 
MUSCL AUSMDV is more diffusive than MUSCL 
AUSM+ with or without pressure correction. For σ = 
0, all methods presented unstable solutions and no 
solution for a 10000 cell mesh was possible. 

(ii) In the results presented by Evje and Flatten  
(2003) with a Roe Riemann solver, two separate void 
fraction waves can be seen. In our results, this 
scenario is observed for meshes up to 1000 cells for 
all σ. However, the two separate waves are 
accompanied by overshoots for all AUSM type 
methods with some advantage for AUSMDV. For 
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the HLFW methods the overshoot was observed for 
σ = 0, but not for σ up to 1.2.  Therefore, the convex 
function proposed in De Vuyst (2004) was efficient 
for this case. 

(iii) Although the usage of σ = 1.2 reduced the 
numerical oscillations for both pressure and void 
fraction, the amplitude of the two separate waves 
remains slightly higher than the Riemann solver 
solution used as reference by Evje and Flatten  (2003). 

(iv) The MUSCL-Hancock strategy presented the 
expected behavior, favoring numerical oscillations for 
meshes up to 200 cells. Therefore, the extension to 
second-order of such methods by MUSCL was suitable 
only for small meshes for the adopted Y expression. 

(v) From the results, the most suitable methods 
were the MUSCL AUSMDV and HLFW schemes 
with the pressure correction ( 1.2σ = ). The accuracy 
of HLFW was superior to that of MUSCL AUSMDV 
for all mesh sizes. The MUSCL AUSMDV presented 
small oscillations only for the 10000-cell mesh. This 
result is particularly interesting because this behavior 
is different from the results for one-phase flows 
obtained in our previous work (Coelho et al., 2006), 

in which MUSCL AUSMDV was slightly better than 
HLFW. The MUSCL AUSM+ presented results with 
strong oscillatory behavior for all mesh sizes and it is 
not recommended.  

(vi) The authors in Paillère et al. (2003) observed 
that the value of σ strongly affects a contact 
discontinuity. In Figure 2 (a), it is possible to 
observe the effect of σ=2. For all methods and 
weighting parameter functions, the contact 
discontinuity wave showed the expected positive 
pressure gradient at x=0.5 for σ=0 while the results 
for σ=2 showed a negative pressure slope at this 
point. Therefore, values of σ higher than 1.2 should 
be considered with care. 

It should be pointed out that the AUSMDV less 
diffusive weighting function (Y = 1/ρ) was adopted to 
generate these results, aiming to represent the two 
separate void fraction waves. However, it actually 
added considerable numerical oscillation. The other 
weighting functions were not tried because they are 
expected to produce more numerical diffusion and the 
weighting function used already gave results with larger 
numerical diffusion than those obtained with HLFW. 
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Figure 1: Comparison for the shock tube problem results of the AUSM+ with MUSCL strategy for primitive
and conservative variables for (a) volume fraction and (b) pressure (at t = 0.1 s). Reference values from HLFW
10000 cell mesh. 
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Figure 2: Comparison for the shock tube problem results for the AUSMDV with different weighting functions and σ
values for a 100 cell mesh: (a) pressure and (b) volume fraction, and for AUSMDV and MUSCL-AUSMDV for σ = 1.2 
on different meshes sizes (at t = 0.1 s): (c) 1000 cells and (b) 10000 cells. Reference values from HLFW 10000 cell mesh.

44 45 46 47 48 49 50 51 52 53 54
0.288

0.290

0.292

0.294

0.296

0.298

0.300

0.302

  

 

 

CFL = 0.1
σ = 0

x

α g

100 cell mesh
 AUSM+
 AUSMDV
 HLFW

MUSCL
 AUSM+
 AUSMDV
 reference

 
(a) 

44 45 46 47 48 49 50 51 52 53 54

0.288

0.290

0.292

0.294

0.296

0.298

0.300

0.302

0.304

  

 

CFL = 0.1
σ = 0

x

α g

200 cell mesh
 AUSM+
 AUSMDV
 HLFW

MUSCL
 AUSM+
 AUSMDV
 reference

 
(b) 

46 47 48 49 50 51 52 53
0.286

0.288

0.290

0.292

0.294

0.296

0.298

0.300

0.302

0.304

0.306

  

CFL = 0.1
σ = 0

1000 cell mesh
 AUSM+
 AUSMDV
 HLFW

MUSCL
 AUSM+
 AUSMDV
 reference

α g

x  
(c)

Figure 3: Comparisons of void fraction for the shock tube problem. Results of the AUSM+, AUSMDV,
AUSM+ and AUSMDV MUSCL schemes and HLFW for 100 (a), 200 (b), 1000 (c) cell meshes without
interfacial pressure correction (at t = 0.1 s). Reference values from HLFW 10000 cell mesh. 
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Figure 4: Comparisons of void fraction for the shock tube problem. Results of the AUSM+, AUSMDV,
AUSM+ and AUSMDV MUSCL schemes and HLFW for 100 (a), 200 (b), 1000 (c) and 10000 (d) cell meshes
with interfacial pressure correction (σ = 1.2, t = 0.1 s). Reference values from HLFW 10000 cell mesh. 
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Figure 5: Comparisons of pressure profiles for the shock tube problem. Results of the AUSM+, AUSMDV,
AUSM+ and AUSMDV MUSCL schemes and HLFW for 100 (a), 200 (b), 1000 (c) cell meshes without
interfacial pressure correction (at t = 0.1 s). Reference values from HLFW 10000 cell mesh. 
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Figure 6: Comparisons of pressure profiles for the shock tube problem. Results of the AUSM+, AUSMDV,
AUSM+ and AUSMDV MUSCL schemes and HLFW for 100 (a), 200 (b), 1000 (c) and 10000 (d) cell meshes
with interfacial pressure correction (σ = 1.2, t = 0.1 s). Reference values from HLFW 10000 cell mesh. 
 
 
Water Faucet  
 

The water faucet problem (Ransom, 1987) 
became a benchmark and has been extensively used 
by many authors in order to test numerical schemes 
in tracking volume fraction fronts (Toumi, 1996, 
Coquel et al., 1997, Paillère et al., 2003, Evje and 
Flatten, 2003, De Vuyst, 2004). This problem is a 
study of the gravity effects on a vertical downward 
water jet flow. Consider a vertical pipe of length 12 
m initially at a uniform state with p = 105 Pa, αl = 
0.80, vg = 0 and vl = 10 m/s. The pressure at the 
outlet is kept constant at the initial value and, at the 
inlet, the values of the remaining variables are kept 
constant and equal to their initial values. A scheme 
of the problem is shown in Figure 7. This problem 
has the following analytical solution: 
 

2l0 l0
l02g l0

g0

v1 ,   if x gt / 2 v t
v 2gx

,                   otherwise

α⎧ − < +⎪α = ⎨ +
⎪α⎩

 (43)  
 

Figure 7: Scheme of the water faucet problem. 
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The problem was also solved for different choices 
of the weighing function, Y, in the AUSMDV 
scheme. The results are presented in Figure 8. The 
adoption of Y=α/ρ instead of Y=p/ρ or Y=1/ρ 
produced no improvement in AUSMDV or in 
MUSCL-AUSMDV when replacing Y= 1/ρ. Liou 
(2000) has observed that Y= 1/ρ eliminates the 
carbuncle phenomenon, but this is not important for 
one-dimensional problems. In our tests, no 
appreciable differences were observed between Y= 
1/ρ and Y=p/ρ for AUSMDV for the water faucet 
problem. However, Y=p/ρ was unstable for 
MUSCL-AUSMDV and the usage of Y=1/ρ 
produced much better results then the other options. 
Particularly, for refined meshes, the usage of Y=1/ρ 
showed results without the strong oscillations and 
with an accuracy equivalent of the HLFW method. 
This is due to the more diffusive characteristic of the 
scheme imparted by Y=1/ρ, which was prohibitive 
for the shock tube problem. Therefore, Y= p/ρ and 
Y= 1/ρ were considered to be the better choices for 
the water faucet problem for the AUSMDV and 
MUSCL-AUSMDV methods, respectively. 
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Figure 8: Comparison for the water faucet problem 
results for AUSMDV with different weighting 
functions (at t = 0.5 s). 

Figures 9 (a) to (c) shows the comparison 
between the solutions obtained for the water faucet 
problem for 320, 640 and 1280-cell meshes, using 
AUSM+, AUSMDV (Y=p/ρ), these two methods 
with MUSCL-Hancock data reconstruction (Y=1/ρ) 
and the HLFW method without interfacial pressure 
correction, that is, p 0Δ = . Figure 10 (a) to (c) shows 
the same solution but with σ = 1.2 in Eq. (36) for 

pΔ  calculation. The following behavior can be 
observed from Figure 9: 

(i) The AUSMDV scheme was more diffusive 
than the corresponding AUSM+ scheme and the 
MUSCL AUSMDV is more diffusive than MUSCL 
AUSM+ with or without pressure correction.  

(ii) Since the methods are not TVD, for σ =0 the 
oscillations tended to grow when the mesh was 
refined or when the order is extended and this was 
confirmed for both MUSCL and HLFW schemes. 
AUSM+ presented some oscillations for the 320 cell-
mesh, which increased when the mesh was refined 
and AUSMDV presented strong numerical diffusion. 
The MUSCL second-order extended schemes 
presented strong oscillations for the 320-cell mesh, 
while the HLFW scheme presented some oscillation 
for this mesh and both could not converge for the 
1280-cell mesh. However, HLFW presented an 
oscillatory solution for the 640-cell mesh, while the 
MUSCL-AUSM+ schemes could not be solved for 
both 640 and 1280-cell meshes. MUSCL-AUSMDV 
also presented strong oscillations for the 640-cell 
mesh. 

From Figure 10, it can be seen that: 
(iii) The pressure correction term increased the 

accuracy of all schemes. It made the solution with 
MUSCL schemes possible for all mesh sizes. 

(iv) As observed in the shock-tube problem, the 
accuracy of HLFW was the best among the methods 
analyzed. 
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Figure 9: Comparisons of void fraction profiles for the water faucet problem. Results of the AUSM+,
AUSMDV, AUSM+ and AUSMDV MUSCL schemes and HLFW for 320 (a), 640 (b) and 1280 (c) cell meshes
without pressure correction (at t = 0.5 s). 
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Figure 10: Comparisons of void fraction profiles for the water faucet problem. Results of the AUSM+,
AUSMDV, AUSM+ and AUSMDV MUSCL schemes and HLFW for 320 (a), 640 (b) and 1280 (c) cell meshes
with pressure correction (σ=1.2 and at t = 0.5 s). 
 
 

CONCLUSIONS 
 

The AUSM+, AUSMDV, Hybrid Lax-Friedrichs-
Lax-Wendroff, and MUSCL-Hancock second-order 
extensions of AUSM+ and AUSMDV methods were 
compared in terms of accuracy using two benchmark 
problems. Three AUSMDV weighting functions 
were compared and the most suitable one was found 

to be not only problem dependent, but also order 
dependent, requiring different expressions for the 
AUSMDV and the extended second-order MUSCL-
AUSMDV schemes. Primitive and conservative 
MUSCL-Hancock extensions were compared and the 
conservative variable option was slightly better. All 
schemes were compared with and without the 
interfacial pressure correction term.  
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For the water faucet test problem, the pressure 
correction term improved considerably the solution. 
The results without the pressure correction term 
showed that the HLFW method was stable only for 
coarse meshes. The same observation is valid for the 
MUSCL second-order extensions of the AUSM-type 
methods. AUSMDV was stable for large meshes, but 
showed more numerical diffusion than the results 
using the HLFW method for a mesh four times 
coarser. The AUSM+ method presented high 
overshoots for all mesh sizes. The results with the 
pressure correction term showed much less 
oscillation. This term stabilized the solution for 
refined meshes for all methods including the MUSCL 
second-order extensions. However, only the MUSCL-
AUSMDV and HLFW methods gave oscillation-free 
results. The MUSCL second-order extensions were 
unstable without the pressure correction term. In this 
case, an oscillation-free solution was obtained only for 
the AUSMDV method. 

 In the large relative velocity shock tube test 
problem, the two separated void fraction waves could 
be simulated with AUSM type methods only for 
refined meshes. However, the Hybrid Lax-Friedrichs-
Lax-Wendroff method was capable of handling this 
two separate void fraction scenario with coarser 
meshes. As in the case of the water faucet, it was not 
possible to obtain stable solutions for refined meshes 
for all methods without the pressure correction term. 
The results with the pressure correction term also 
showed more numerical diffusion, but with acceptable 
results for coarse meshes. However, in such meshes 
the two separate waves were not captured. The results 
for refined meshes showed that only the MUSCL-
AUSMDV and HLFW methods were capable of 
eliminating the numerical oscillations with high 
accuracy results. Different from the water faucet 
problem, the better choices for the AUSMDV 
weighting function were different for the first-order 
and second-order schemes. In the water faucet 
problem, the requirements on numerical diffusion 
could be relaxed, allowing MUSCL-AUSMDV to 
give better results with the more diffusive choice for 
the weighting function.  

The results show that it is not possible to 
generalize which AUSMDV weighting function is 
the best. This choice is case and order dependent. 
For all cases, AUSMDV produced additional 
diffusion and more stable results than the AUSM+ 
method. For both test problems, the best results were 
obtained from the MUSCL-Hancock second-order 
extension of AUSMDV and the Hybrid Lax-
Friedrichs-Lax-Wendroff methods, with some 
advantage for the latter. One should bear in mind that 

this method has an iterative optimization of a 
weighting parameter, which increases accuracy but 
also increases the CPU time consumption. However, 
unlike the one-phase flow analysis, where the 
accuracy of the Hybrid Lax-Friedrichs-Lax-
Wendroff method was comparable to AUSM type 
methods but with larger CPU time consumption 
(Coelho et al., 2006), this method is an alternative 
for Riemann solvers and AUSM type solvers with 
reasonable accuracy and CPU time for two-phase 
flows. As it does not require the jacobian matrix 
evaluation, it can be easily generalized for complex 
flow closure relations. 
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NOMENCLATURE 
 
a�   specific area  
A    Jacobian matrix  
Ak EOS parameter  
B  vector of non-conservative 

terms 
 

c   speed of sound  
Cd  drag coefficient  
Cp  specific heat at constant 

pressure 
 

Cv  specific heat at constant 
volume 

 

CFL  Courant-Friedrichs-Lewy 
number, CFL = Δt 
(c+max(v))/Δx 

 

f    flux vector  
F   numeric flux vector  

D
kF   drag force due to interface 

and wall on phase k 
 

Di
kF   interfacial drag force on 

phase k 
 

Dw
kF   wall drag force on phase k  

gx  component of the gravity 
acceleration vector in the x 
direction 

 

g   non-homogeneous vector in 
conservation equations 

 

G   derivative of the convex 
function 
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m�    mass flux  
M        Mach number  
p   pressure  
Pk  pressure part of the flux  
pi  interfacial pressure  
S  convex function  
t   time  
u  vector of conservative 

variables g g g g g
t

l l l l l

u [ , v ,
, v ] 

= α ρ α ρ⎛ ⎞
⎜ ⎟α ρ α ρ⎝ ⎠

 
 

U    vector of reconstructed 
variables 

 

w  vector of non-conservative 
variables ( )tg g lw ,v ,v ,p⎡ ⎤= α⎣ ⎦

 
 

v   velocity for one dimensional 
flows 

 

x   spatial coordinate  
Y  AUSMDV weighting 

function 
 

 
Greek Symbols 
 
α   volume fraction  
η  dissipation function  
σ    pressure correction 

parameter 
 

Δ  variation  
ε   Δt/Δx ratio  
γ   ratio of specific heats, γ = 

Cp/Cv 
 

Π  EOS parameter  
ψk  convection part of the flux  
ρ  density  
θ   weighting parameter of 

hybrid method 
 

Θ  flux limiter  
 
Subscripts 
 
j   value at cell j  
j+1/2   value at xj+1/2 (cell face)  
0  initial values  
k  denotes phase k  
 
Superscripts 
 
AUSM related to AUSM method  
L left state  
LW  related to Lax-Wendroff 

method 
 

LF  related to Lax-Friedrichs 
method 

 

n  value at time instant n  
R   right state   
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