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Abstract - A major challenge in chemical process design is to make design decisions based on partly 
incomplete or imperfect design input data. Still, process engineers are expected to design safe, dependable and 
cost-efficient processes under these conditions. The complexity of typical process models limits intuitive 
engineering estimates to judge the impact of uncertain parameters on the proposed design. In this work, an 
approach to quantify the effect of uncertainty on a process design in order to enhance comparisons among 
different designs is presented. To facilitate automation, a novel relaxation-based heuristic to differentiate 
between numerical and physical infeasibility when simulations do not converge is introduced. It is shown how 
this methodology yields more details about limitations of a studied process design. 
Keywords: Chemical process design; Process modeling; Simulation and optimization; Uncertainty; Process 
performance measures; Convergence; Process Simulators. 

 
 
 

INTRODUCTION 
 

Process engineers are expected to design safe, 
dependable and cost-efficient processes. During the 
stage of conceptual process design, most design 
decisions are yet to be made, as the design will 
become more detailed with each decision. Each 
decision reduces the degrees of freedom of the 
process design. Initially, as the engineer begins to 
sketch the flowsheet, there are an incredibly large 
number of process alternatives. With each decision 
made, the designed process slowly assumes shape. 
Especially at an early stage of process design, each 
decision limits the range of future choices. 
Furthermore, each decision reduces the scope of the 
impact of future decisions. Thus, at the early stages 
of process design, one sets course for the future 
process. But one steers ahead while facing large 

uncertainties, as typically detailed information on 
some aspects of the proposed flowsheet is still 
scarce. It is important to provide the decision-maker 
with as much guidance as possible to support his/her 
difficult task. Keeping in mind that one of the goals 
is to design cost-effective processes, when deciding 
between different flowsheets, the overall cost 
associated with a flowsheet is an important metric. It 
is necessary to provide costing information at every 
step as the process is designed. 

Additional difficulty stems from the complexity 
inherent to technical systems. Generally speaking, 
chemical processes are complex networks. 
Modifications to one unit operation at one location 
may propagate through the network and its feedback 
loops as represented by, e.g., recycle streams to 
result in unforeseen consequences at very different 
units of the flowsheet. Experienced process 
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engineers may be able to identify such chains of 
cause and effect, but they are typically not intuitive.  

Common to early stages of process design is the 
lack of certain information. When work is begun on a 
new process design, research has identified a promising 
path and early tests on lab and pilot plants have 
provided first estimates of the necessary data. But the 
lack of experience gained from operating a production 
size plant and the presence of considerable error bars 
on the data obtained, contribute to an additional 
challenge. When uncertainty of a subset of model-
determining parameters is present and incorporated in 
the modeled process, the complexity of the model 
increases further. In the end, impact of changes to 
underlying assumptions of the process model is even 
less intuitive—even to an experienced process 
engineer. Hence, providing engineers with a systematic 
method to foster understanding of implications of 
uncertain parameters on their current design will 
facilitate better decision-making in process design. 

Uncertainties are introduced in process design in 
many ways. Insufficient knowledge about reaction 
pathways and kinetics contributes to uncertainty just 
like limited thermodynamic data for chemical 
components does; lack of experience when performing 
a scale-up with novel process equipment presents a 
source of uncertainty as does hard to predict fouling in 
heat exchangers, distillation columns and other unit 
operations. When existing processes are modified, 
intimate knowledge of the process is available to the 
decision-maker and one expects that uncertainty is 
reduced. But even in this case, uncertainty can stem 
from varying raw material purities or from inadequate 
cost estimates for feedstock. 

As briefly mentioned, one decides between 
different process designs, which achieve the technical 
requirements, by picking the most economical one. 
Commonly, commercial deterministic process 
simulation and/or optimizing software (e.g., Aspen 
Plus) is used to design processes beginning at very 
early stages of the design process. Thus, it is necessary 
to incorporate estimated equipment capital cost as well 
as cost of process streams into process simulators, 
which are used to optimize flowsheets. The process 
engineer is provided with this information easily 
accessible alongside with the technical data in process 
simulators. Thus, tools primarily designed to aid in 
solving engineering problems can support the design 
of cost efficient processes. This possibility is, for 
example, implemented in i-TCM (Intelligent Total 
Cost Minimization), a program which allows a 
multiparameter process optimization of a plant’s total 
costs using Aspen-EO-Optimizer (Wiesel and Polt, 
2006).  

In the light of recent developments, achieving the 
most economic design is even more important. The 
most ubiquitous feedstocks to the chemical industry, 
oil and gas, have increased significantly in price 
while demand has slumped recently, which sharply 
contrasts with previously experienced years of stable 
prices in the face of economic growth. Although 
such unexpected scenarios can never be completely 
ruled out, process design is not expected to 
overcompensate for such unforeseen risks or 
deviations from design conditions. A very common 
measure to account for risk stemming from 
uncertainty in design assumptions and from 
uncertainty due to prediction of uncertainty is 
overdesign. Though it may be a simple solution to 
the problem, it is a costly one, too. Nowadays, the 
designed process is expected to be less 
accommodating using this costly means of 
equipment overdesign. 

In this contribution, a method is presented that 
supports the process engineer in the presence of 
uncertainty using the principles of Monte Carlo 
methods. To compare different processes, results 
from many simulations are combined to a 
quantitative measure stating how well a given design 
copes with uncertainty. To increase the number of 
converged simulations, which is a major obstacle of 
these methods, relaxations of process constraints are 
introduced. 

The present contribution is organized as follows: 
First, different approaches presented in the 
literature are reviewed. Second, the dependability 
analysis is presented. Third, the relaxation-based 
approach used to increase the number of converged 
simulations is described. Fourth, a case study will 
illustrate the application of the method. Fifth, the 
paper is summarized and possible extensions are 
discussed. 
 
 

CHEMICAL PROCESS DESIGN UNDER 
UNCERTAINTY 

 
Literature Review 
 

When all parameters to a process are known 
exactly, the optimal design for a given process can 
be obtained by performing a single optimization. In 
case of uncertain parameters with a known 
probability distribution, computing the optimal 
design is more involved as design of a chemical 
process turns into a two-stage problem (Malik and 
Hughes, 1979). This problem can be seen as an 
example of a stochastic problem. First, design 
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decisions are made without knowing what value the 
stochastic variables will assume. Then, operating 
decisions are made after the stochastic variables took a 
value. The modeling assumption is that random 
variables exist in the model. During the first stage 
decisions, the values of these random variables are not 
known and need to be characterized by probability 
density functions. After the first stage decisions have 
been made, a particular outcome for each of the 
random variables is realized and the second stage 
decisions can be made with the precise knowledge. 

Translated to the problem of process design, the 
first stage decisions are made during the design 
phase. Then, the uncertain parameters are only 
known to lie within some bounds, possibly 
characterized by mean and variance or similar 
measures. The decisions to be made are design 
decisions, e.g., deciding between process alternatives 
and sizing process equipment. The second stage 
corresponds to the operating phase. Now, the plant 
has been built and is operated. All uncertainties are 
revealed and the goal of decisions made at this stage 
is to find the optimal operating conditions. 

Solutions of stochastic programs are found by 
repeatedly solving the second stage problem with 
different realizations of the random variables. These 
problems are called scenarios. The outcome of each 
scenario is tracked and weighted according to its 
probability of occurrence. Based on the current 
knowledge about the process, different options are 
considered. The design decisions are made by 
weighing the likelihood of all outcomes happening, 
instead of just looking for the worst case, which lead 
to costly overdesign. These methods rely on the 
possibility to solve the problems posed by scenarios 
efficiently as a large number of scenarios are to be 
considered. 

Expected values will have to be computed 
numerically, e.g., using stochastic techniques, 
leading to the repeated requirement to solve the inner 
optimization problem that selects for the operating 
conditions. Hence, determining an optimal design 
using rigorous optimization methods becomes 
computationally prohibitive when studying complex 
processes. One usually abandons the requirement to 
solve both optimization problems rigorously. It is 
common industry practice to perform the outer 
optimization, which selects the best flowsheet and 
sizes the equipment, manually based on engineering 
insight while using commercial process simulation 
and/or optimization tools, e.g., Aspen Plus, to solve 
the inner optimization problem. 

More rigorous methods have been developed 
since the 1970’s that focus on justifying and, if 

possible, reducing process overdesign. Freeman and 
Gaddy suggested a new measure, which they termed 
dependability, to quantify how well a proposed 
flowsheet meets its specifications as measured by a 
certain process performance criterion under 
uncertainty (Freeman and Gaddy, 1975). Finding this 
measure requires the solution of an integral over the 
probability density distribution of the considered 
performance measure. The authors state that 
integrating will in most cases require numerical 
integration and suggest that Monte Carlo methods 
are suited. They give an example that consists of a 
simple process flowsheet and showcase the method. 
Though they introduced the concept of dependability 
first, their paper lacked a clear definition. Later, 
Pistikopoulos and Mazzuchi (1990) introduced the 
notion of stochastic flexibility, which is defined 
strikingly similar to dependability. Both concepts 
measure the probability that a process is feasible 
given a joint probability density distribution of the 
uncertain parameters. Similarly, Straub and 
Grossmann (1990) also used the notion of stochastic 
flexibility citing earlier work by Pistikopoulos and 
Mazzuchi. Both, Grossman and Pistikopoulos refer 
to earlier work by Kubic and Stein (1988), who 
introduced yet another term, design reliability. They 
actually cite the paper by Freeman and Gaddy, but 
also do not mention the notion of dependability. 

Grossmann and Sargent suggested an 
optimization formulation that requires the process to 
remain feasible for all possible realizations of the 
uncertain parameters (Grossmann and Sargent, 
1978). As outlined before, design decisions are held 
constant across all scenarios while operating 
decisions are adjusted to each scenario. The authors 
propose to approximate the expected value of the 
objective that is defined as an integral over the 
probability density distribution by a finite weighted 
sum of representative scenarios. They claim that the 
density function is typically not known very 
precisely so that a small number of samples may 
give a sufficient answer. These sample points should 
be selected to cover the likely range. 

Grossmann et al. extended these ideas. The 
authors use the notion of flexibility, the property of a 
process to ensure feasible regions of operation for 
any realization of the uncertain parameters 
(Grossmann et al., 1983). In the publication, 
optimization formulations to design a process for a 
fixed degree of flexibility are presented and 
generalized to give the optimal degree of flexibility. 
In the first case, the designer specifies the range of 
parameters for which the process is to remain 
feasible. In the second case, an optimal trade-off 
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between the cost of the plant and its flexibility is 
found. Here, a two-staged problem is formulated, 
which includes a feasibility constraint that is 
responsible for meeting all specifications for any 
realization of the uncertain parameters. The expected 
value of the cost subject to the feasibility constraint 
is minimized. The feasibility constraint is written as 
a max-min-max constraint that is difficult to 
compute. To remedy this problem, an index of 
flexibility is introduced that stems from the length of 
the side of the largest hypercube that can be 
inscribed into the feasible region of the process about 
the nominal point of design. 

The methods presented by Grossmann and 
coworkers lead to nonlinear programming problems 
that can be of considerable size as each subproblem 
stemming from a sampled realization of the 
uncertain parameters contains a complete model of 
the flowsheet. Thus, typically decomposition 
methods such as Bender’s decomposition are 
employed to make the problem computationally 
feasible. Recent numerical methods for solving these 
robust optimization problems are reviewed by, e.g., 
Diehl et al. (2008). In the paper, the authors present a 
generalized semi-infinite programming formulation 
to study the worst-case behavior of a system in the 
context of control, which can be interpreted to 
address similar questions as raised by uncertainty 
during the design phase. A local reduction approach 
is employed so that the inner problem can be 
replaced by its optimality conditions, which turns the 
generalized semi-infinite program into a locally 
reduced finite NLP. Note that these discussed 
formulations can lead to considerable overdesign, as 
they require by definition that the process remains 
feasible for any possible realization of the uncertain 
parameters. Thus, it yields process designs that 
include sufficient design reserves to cope with 
parameter variations within the specified bounds. 

Common to the previously discussed methods is 
the need to evaluate expected values. As in most 
cases of practical importance no analytical solution 
can be found, different methods are used to solve the 
integral over the probability density distribution. One 
wide known method with a wide range of 
applications is Monte Carlo methods. Here, the 
integral is approximated by sampling points 
randomly from the range space according to their 
probability. The expected value follows then simply 
by adding the function values of sampled points 
(Sprow, 1967). 

Though in principle such methods can be applied 
to problems of arbitrary dimension, one also needs to 
consider the computational expenditure necessary to 

find a converged solution. The original Monte Carlo 
methods assume that the points are sampled 
randomly according to their probability. 
Developments to improve the rate of convergence 
have led to so-called quasi-Monte Carlo methods 
that use deterministically determined series of 
samples. The key idea is to use additional 
information when selecting sample points. For 
example, Latin hypercube sampling techniques 
divide the sampled space into hypercubes of equal 
probability and require that from each hypercube 
only one point is sampled, thus forcing the algorithm 
to sample a more representative portion of the space 
in fixed time (McKay et al., 1979). 
 
Proposed Approach: Relaxation-Based 
Dependability Analysis 
 

Building upon Freeman and Gaddy’s approach, a 
Monte Carlo scheme is employed to study the impact 
of uncertain parameters on the design of a process 
plant. Utilizing i-TCM, processing equipment and its 
limitations are modeled in Aspen Plus using short-
cut sizing methods. The simulation runs are 
controlled via an Excel interface. One of the greatest 
obstacles of automated process simulations is the 
difficulty to differentiate between physical 
infeasibility and numerical difficulties within the 
solver. A heuristic priority scheme is proposed that 
supports the user in significantly increasing the 
number of converged runs by augmenting the 
optimization with a tailored relaxation scheme. With 
this procedure, the process engineer gains insight 
into the limitations of the process without the need of 
interpreting the results of failed simulation runs–in 
itself a difficult and sometimes even hopeless task in 
times of equation-oriented simulation.  

As discussed in the beginning, uncertainty can 
increase the difficulty of process design 
considerably. In this case, dependability analysis 
provides a very helpful tool to support process 
engineers in the design process. In combination with 
the novel approach presented in this paper and 
showcased in a case study, dependability analysis 
can enhance understanding of complex chemical 
processes significantly. Unlike several approaches 
proposed in the literature, relaxation-based 
dependability analysis is a tool to support daily 
process engineering work without the need for 
intensive user intervention and numerical tuning 
effort. Another key characteristic of the proposed 
method is that existing process models can be used 
for the analysis in straight forward manner via an 
easy-to-use interface.  
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DEPENDABILITY ANALYSIS 
 

Keeping track of uncertain parameters and the 
implications of variations of them becomes 
increasingly difficult as their number increases. 
While one may be able to compare different designs 
qualitatively when uncertainty is restricted to one or 
two parameters and a narrow bandwidth, quantitative 
comparisons quickly become intractable. For one, 
the need to keep track of probabilities and different 
values for the objective make it a cumbersome 
problem to carry out manually. Thus, engineers 
typically design for a nominal point of operation and 
consider some perturbations manually. While this 
procedure may build intuition and thus may enable 
predictions about the performance when other 
parameter variations occur, it is certainly a 
challenging task for complex process flowsheets. 

In order to move past just qualitative comparisons 
among competing designs, a quantitative measure that 
can be calculated automatically provides a great 
support tool to the process engineer. It allows ranking 
designs and then focusing on different behaviors over 
the range of studied parameter variations, thus freeing 
the process engineer from a manual task while 
supporting a much more complex task. 
 
Dependability as a Quantitative Measure 
 

Freeman and Gaddy (1975) propose such a 
measure that they termed dependability, defined as the 
probability that the process meets its specification, 
 

0

d 0 0 d 0
x

D(x ,s) P(x ) (x ,x ,s)dx= δ∫ ,       (1) 

 
where dx  notes the design variables, s  the process 
specifications, 0x  the uncertain parameters, 0P(x )  the 
probability density function for 0x  and 

0 d(x ,x ,s)δ states if the design meets the specifications 
under the assumed uncertain parameters ( 1)δ = , or if 
does not ( 0)δ = . 0P(x )  will be known in advance, 
whereas 0 d(x ,x ,s)δ is typically an unknown function. 
The calculation of D is termed solving the outer 
problem in analogy to bilevel programs. 

To determine 0 d(x ,x ,s)δ , the so-called inner 
problem is solved. While the outer problem focuses 
on the uncertain parameter, the inner problem adjusts 
the operating conditions to ensure that a feasible 
process is found, if possible. Recall that the design is 
fixed so that the degrees of freedom of this problem 

correspond to the adjustments possible once a design 
has been chosen and built such as reflux ratios in 
distillation columns or reactor temperatures. It is 
important to point out that there is no trivial method to 
determine 0 d(x ,x ,s)δ  which is not accessible a priori. 
In practice, to solve the inner problem and determine 
feasibility of the design for the specific sample of the 
uncertain parameters, a commercial process simulator 
with its rigorous process models is used. 

Before discussing more details of the procedure, it 
is worthwhile to note certain aspects of dependability. 
A different interpretation of it can be given by the 
percentage of time when the plant is operating in 
specification (Freeman and Gaddy, 1975). In many 
cases, D 1<  does not necessitate that, on average, the 
process will not be able to meet the specification, for 
which it has been designed. On the contrary, in certain 
cases, a plant with a smaller additional design margin 
may still be able to make up for times of reduced 
production when the varying parameters are in its 
advantage at a later time. Also, D 1< does not entail 
that the plant is down at some instances throughout the 
year, though product quality or quantity may be 
reduced. In contrast, methods requiring the process 
to stay within its specifications at all times 
(e.g., Grossmann et al., 1983) lead to greater 
equipment overdesign to fulfill these conditions. This 
is more important when the uncertainty stems from 
parameters that continue to vary when the process is 
operational, such as feedstock purity conditions. In 
contrast to uncertainties in, e.g., kinetic constants 
whose value is unknown, but actually does not vary, it 
is not necessary to design processes that are always 
capable of delivering nominal capacity. 
 
Determining Dependability Using a Quasi Monte 
Carlo Method 
 

In order to obtain an estimate for the 
dependability, the integral in Eq. 1 has to be solved. 
When examining the integrand, one notes that δ  is a 
complicated function and it is in most cases not 
known upfront. On the other hand, the probability 
density function for the uncertain parameters is 
specified when the problem is set up using the 
available information such as confidence intervals on 
experimental data or known variations in raw 
materials. Though the integral is too complex to be 
solved analytically, it can be solved by numerical 
means. Monte Carlo (MC) methods are widely used to 
solve such—typically multi-dimensional—integrals in 
many different contexts and also have been applied to 
supplement decision-making (Sprow, 1967).  
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Instead of using numerical quadrature formulas 
like Gaussian quadrature that construct a converging 
series, Monte Carlo methods approximate integrals 
by different means. They randomly sample the 
function value at different locations in parameter 
space. In particular, the accuracy of the result 
follows from the law of large numbers and is 
independent of problem dimensionality (Caflisch, 
1998). However, its rate of convergence can be slow, 
especially when highly accurate results are required. 

In contrast to random Monte Carlo methods, 
which use randomly selected samples in parameter 
space according to the probability distribution 
function, quasi-Monte Carlo methods uses a 
deterministic number sequence that is chosen 
explicitly to increase the rate of convergence 
(Morokoff and Caflisch, 1994). In contrast to the 
random selection, a deterministic sequence of points 
can ensure that the most representative sample of the 
parameter space is obtained. It has been pointed out 
in the literature that these sampling methods only 
need to visit a small fraction of the space to obtain a 
representative answer (Bernardo et al., 1999). As 
Monte Carlo methods are often applied to problems 
where each function evaluation at a sample point is 
computationally expensive, as is the case in the 
problem studied here, simulations only on the order 
of hundreds to thousands can be performed in 
reasonable time. On the other hand, the sampled 
space is multidimensional for most problems in 
industrial applications so that there is great need to 
ensure that the available computational effort is used 
to explore as much of the space as possible. Thus, 
quasi-Monte Carlo methods provide a more efficient 
means for numerical integration here. 

Latin hypercube sampling, an example of a quasi-
Monte Carlo method, divides parameter space in each 
dimension in equally probable sections and samples 
only once from each section. It has been shown that 
quasi-Monte Carlo methods are capable of 
outperforming random Monte Carlo methods in terms 
of obtaining more accurate results with the same 
number of evaluations (Morokoff and Caflisch, 1994). 
However, the authors also point out that quasi-Monte 
Carlo methods become less advantageous as the 
dimensionality of the problem increases due to 
increases in discrepancy. This can be explained as 
follows: deterministic sampling sequences are 
constructed using geometrical arguments in order to 
guarantee a favorable spacing. However, as the 
dimensionality of the problem increases, sequences 
suggested in the literature show repetitious, correlated 
behavior in projections of some dimensions. This can 
be overcome by increasing the number of samples 

taken. For the problem considered here, the number of 
uncertain parameters, which are studied 
simultaneously, is small so that the discussed problem 
does not impair the method. 

To overcome this shortage, a Hammersley 
sequence was used in this contribution to obtain the 
deterministic number sequence for the quasi-Monte 
Carlo method. Diwekar and Kalagnanam (1997) 
proposed this low-discrepancy sequence that can 
easily be expanded to higher dimensions. They 
provide a description of an algorithm that constructs 
the sequence, which has been implemented in this 
work. Furthermore, the authors also presented 
evidence for favorable convergence properties of 
their proposed sequencing method. 

Other authors have applied different numerical 
integration methods to the problem of design under 
uncertainty (e.g., Straub and Grossmann, 1990 and 
Bernardo et al., 1999). As Bernardo et al. remark, the 
number of required samples grows exponentially with 
the dimensionality of the problem when quadrature 
methods, e.g., Gaussian quadrature, are used. They 
also note that a sampling technique, i.e., a quasi-Monte 
Carlo method, is more adequate for problems with a 
larger number of uncertain parameters. Thus, for a 
small number of parameters as considered in the case 
study, quadrature techniques may be more efficient, 
but more complex scenarios will require a quasi-
Monte Carlo technique and thus it was decided to 
utilize the latter throughout. 
 
Implementation of Dependability Analysis 
 

Dependability is accessible to determination with 
the tools available to process engineers, a key feature of 
this approach to ease industrial application. In contrast 
to rigorous methods discussed above that depend on 
specialized optimization software, the stochastic 
approach can be carried out using process simulation 
tools in combination with standard office software. The 
method presented above can be implemented in 
commercial process optimization tools, in this case 
Aspen Plus, in connection with an external controller 
for the Monte Carlo simulations, here Microsoft Excel. 
At each sampled point, a simulation of the process 
flowsheet with modified parameters is conducted. 
Simulations and their data in Aspen Plus are accessible 
from Excel using an ActiveX automation server 
interface. Additionally, routines to determine the 
Hammersley sequence, to transform this uniform 
sequence to the specified probability distribution of the 
uncertain parameter, and to control runs in Aspen Plus 
are implemented in Visual Basic for 
Applications (VBA) in Excel. Furthermore, post-
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processing and visualizing of accumulated data is also 
included in the Excel workbook. In detail, for each 
individual Aspen Plus run, information on the values of 
the sampled parameters, selected computed variables, 
and status of the run are reported to the user as a 
reference. These data are aggregated and reported for 
each variable as mean and standard deviation. 
Furthermore, dependability and fraction of converged 
simulations are provided. 
 
 

RELAXATION-BASED DEPENDABILITY 
ANALYSIS OF FLOWSHEET SIMULATIONS 

 
In early attempts of this work, it was quickly 

realized where major obstacles lie in this approach. 
The need to repeatedly perform process flowsheet 
simulations requires great autonomy of the software. 
But every user of flowsheeting software is aware of the 
difficulty inherent to converging these simulations. 
Flowsheets are therefore carefully constructed by 
increasing complexity slowly. To address this 
difficulty when varying parameters repeatedly, the 
need for additional heuristics to guide the software to a 
converged solution had been identified. 

For further discussion, a distinction will be made 
between reasons that can cause a flowsheet 
simulation or optimization to fail. Firstly, the 
flowsheet may be physically infeasible, for example 
energy balances cannot be satisfied with the given 
specifications, separations are physically infeasible 
at the attempted conditions or the intended reaction 
pathways fail to deliver the necessary conversion. In 
this situation, the designed process is clearly unable 
to perform its task. Secondly, a flowsheet simulation 
may fail due to numerical reasons such as slow 
convergence, numerical instability or difficulty to 
identify a feasible solution. However, process 
simulators such as Aspen Plus do not provide results 
that differentiate between these reasons for which a 
simulation did not converge. This task is left up to 
the user’s experience to decide and select how to 
move forward in resolving this situation. 
 
Relaxations as an Aid in Differentiating between 
Numerical and Physical Infeasibility 
 

A novel idea is introduced here to overcome the 
lack of robustness when solving the optimization 
problem for the process flowsheet automatically: A 
heuristic based on relaxations is used. Since only 
converged results—regardless of their success—
provide insight into physical constraints of the 
problem, it is essential to reduce infeasibility due to 

numerical reasons without requiring user interaction. 
Otherwise, when nonconverged runs are excluded, 
the statistic can be severely biased and report too 
optimistic values as simulations are more likely to 
converge for perturbation towards physically 
“easier” parameter values.  

As outlined, non-convergence of a flowsheet can 
be either due to numerical issues when solving the 
flowsheet or physical infeasibility of the designed 
process subject to the assumed conditions. While the 
latter provides the engineer with useful information 
about the design, the former is unfavorable as 
numerical problems conceal the question of physical 
feasibility. In general, it is a very time-consuming, 
manual task to converge a process flowsheet. In this 
case, such a path is infeasible as it will be necessary 
to perform on the order of hundreds or thousands 
simulations for one specific process design. The 
novel idea that can greatly boost convergence—key 
to providing reliable information about the process—
is a heuristic used to prioritize competing restrictions 
using insights from daily operations. When operating 
a plant, the most important objective is to keep a 
plant running that is tied into a large production 
network as it serves both as a consumer of 
intermediates from other processes and produces 
feedstock for even other plants. Thus, if fluctuations 
in uncertain parameters cannot be overcome by the 
implemented control loops, it is more important to 
keep production quality on target than produce the 
required quantity. Although cost-effectiveness is 
important, shutting down a process can have costly 
repercussions on a larger scale. This creates several 
staggered goals for the process to meet: If the 
uncertainties cause the process to fail the most 
stringent target, there are still looser restrictions to 
meet. Thus, by providing these relaxations of the 
original specifications, one can increase 
convergence, albeit to less stringent targets. 

Lastly, it should be noted that constraint relaxation 
in the context of this paper differs from the idea 
suggested by Bernardo et al. (1999). They introduced a 
strategy to simplify the integration to determine the 
expected value of the objective function that they also 
call constraint relaxation. For partially feasible 
solutions, they suggest to penalize the solution by 
adding a penalty term to the objective. Here, constraint 
relaxation is a method to increase the number of 
convergent process simulations. 
 
Algorithmic Details 
 

According to this ranking the most important 
priority is to produce substances of desired purity, 
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the second priority is to achieve the desired quantity 
of product, and lastly, the operating costs are to be 
minimized. Hence, the optimization problem within 
Aspen Plus is set up to maximize product subject to 
purity constraints and includes an upper limit on the 
produced amounts. 

The starting point of all simulations is a 
converged simulation supplied by the user that has 
been set up for the nominal point of design. The 
uncertain parameters are adjusted each time 
according to the sampled values. First, the simulation 
is started from the converged flowsheet. If this 
flowsheet converges, the results are directly used 
when calculating the expected value. Otherwise, 
either physical infeasibility or numerical problems 
lead to convergence problems. In this case, bounds 
of the optimization problem can be selectively 
relaxed to user-specified new values when the 
original problem does not converge. Here, the 
intention is to increase the range of feasibility. If the 
problem converges in a second attempt with the 
relaxed bounds, this solution is used as the starting 
point for a homotopy method. After each successful 
convergence of the optimization problem, the 
relaxed bounds will be consecutively retightened 
until the original constraints are reached. If the 
flowsheet can be converged with the original 
constraints in place, the results are used in the 
calculation of the integral. Otherwise, the results do 
not participate in the process evaluation, but they are 
noted in the detailed output to the user. Apparently, 
one is attempting to operate the process just beyond 
its physical limit in this case, which is useful 
information when studying the feasibility limits of a 
proposed process design. 

Dependability can be viewed as a condensed 
measure of the ability of the process design to cope 
with varying conditions. In combination with 
heuristics to improve convergence of the flowsheet, 
it can be determined automatically. Certainly, more 
converged runs increase the statistical foundation for 
the measure of dependability. Furthermore, more 
detailed information about feasibility limits also 
gives the process engineer a better understanding of 
physical limitations of the process. 
 
 

CASE STUDY: ETHYLENE OXIDE 
SYNTHESIS 

 
To illustrate the above-described method, a 

process to synthesize ethylene oxide is studied that 
was set up based on available information in the 
literature (Onken and Behr, 1996; Rebsdat and 

Mayer, 2005). The process is modeled and solved in 
Aspen Plus using the equation-oriented (EO) 
simulation mode. 
 
Setting up simulation for Relaxation-based 
Dependability Analysis 
 

First, an optimal process design—in terms of 
minimized overall cost—is found using short-cut 
equipment sizing and costing methods to provide the 
baseline for the analysis of effects of uncertain 
parameters (Biegler et al., 1997; Wiesel and Polt, 
2006). The dimensions resulting from this 
optimization are subsequently adjusted to account for 
empirical overdesign factors. Then, physical 
limitations of used equipment are included in the 
model using simplified physical measures, such as F-
factors for distillation columns, similar to those used 
in the sizing procedures. As mentioned earlier, the 
optimization problem to solve for the dependability 
analysis is to maximize product quantity subject to 
unbounded feed streams, product purity restrictions 
and the above designed plant with its modeled 
physical limitations, e.g., an upper limit on the 
product quantity. 

In this case study, uncertainty in conversion rates 
used to model the reaction kinetics as well as 
fluctuating raw material purities are regarded. It is 
assumed that all parameters follow a triangular 
distribution with specified lower and upper limits as 
well as a mode. The number of simulations, that are 
performed sampling the uncertain parameters 
according to the above-described quasi-Monte Carlo 
technique, is increased until the results converge to 10-1. 
It is found that 1000 simulations are required, which is 
in agreement with results reported by Bernardo et al. 
(1999). Overall, the simulations require computation 
time on the order of several hours. 
 
Results of the Dependability Analysis 
 

In the studied case, more than 95% of all 
simulations converged; 18% required lower product 
quantity to converge whereas more than 77% 
complied with the process specifications. Therefore, 
the dependability of the design is 0.77. Figure 1 
shows that these different result areas are rather 
cleanly separated from each other except for a few 
numerical artifacts. 

In the reported case, the plant is capable of 
producing on average close to 98% of nominal 
product quantity when neglecting samples for which 
no information is available due to nonconverged 
simulation runs. 



 
 
 
 

Supporting Chemical Process Design Under Uncertainty                                                                         459 
 

 
Brazilian Journal of Chemical Engineering Vol. 27,  No. 03,  pp. 451 - 460,  July - September,  2010 

 
 
 
 

 

Figure 1: Plot of simulation results show the influence of two uncertain parameters on 
process dependability. Bounds of the dependable range are approximated and included 
for illustration. 

 
Discussion 
 

As Figure 1 shows, the process is well behaved in 
proximity to its nominal point of design. However, 
as conversion rates deviate in unfavorable directions, 
the limits of the process are tested and exceeded as 
denoted by decrease of product. When the studied 
parameters vary even more, numerical issues inhibit 
further studies, as convergence is lost. 

Although the dependability of the designed 
process appears to be fairly low, the design is 
capable of nearly achieving nominal product 
quantity. The discrepancy between low dependability 
and high actual product quantity can be explained by 
the only gradual decline of product output as the 
process is operated at points beyond its name plate 
production bound. Here, the importance of as many 
as possible converged simulations becomes obvious 
since conclusions can only be drawn from results of 
converged results. Therefore, if one were to not 
account for and not to include this region between 
fulfilling specifications and no convergence in 
numerical results for averaged process state 
variables, the actual performance of the plant would 
be greatly underestimated, resulting in the seemingly 
need for greater equipment overdesign.  
 
 

CONCLUSION AND FUTURE WORK 
 

With relaxation-based dependability analysis, an 
approach has been proposed in this work to support 

process design when some parameters are not known 
exactly. One important aspect of the methodology is 
the interconnection of process simulator and simple 
user interface to encapsulate and automate repeated 
Aspen Plus runs. Equally important are the proposed 
heuristic means of relaxation to differentiate between 
numerical problems and physical limitations. These 
lead to an increase in converged runs which allow 
this approach to generate non-trivial insight into 
complex chemical processes and to provide a 
quantitative measure of sensitivity of the designed 
process to uncertain parameters. Hence, the proposed 
method can provide help to process engineers when 
designing processes to meet uncertain process 
conditions on one the hand while, on the other hand, 
limiting unnecessary process overdesign. 

The method of relaxation-based dependability 
analysis can be applied to study effects of manifold 
uncertain influences to a process. Though in the case 
study presented uncertainties have been restricted to 
process parameters, the method can be easily 
extended to incorporate uncertain cost coefficients, 
e.g., to study the impact of fluctuating raw material 
costs. Likewise, the proposed priority ranking need 
not be applicable for all processes; it can be adjusted 
to meet different priorities without further 
implications to the methodology. 

Monte Carlo methods rely on performing many 
simulations. Thus, there will be many simulations in 
close proximity to the base case as these are very 
likely and, in most cases, these simulations will 
converge and report a positive outcome. It would be 
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very helpful to be able to identify this range of 
converged simulations with positive outcomes based 
on already performed simulations. If such 
identification can be made with sufficient 
confidence, simulations within this range may be 
skipped and recorded as successful, thus freeing 
computational efforts that can be focused on the 
more difficult regions of parameter space. 

Another important issue for practical applications 
is to design good graphical representations of results 
obtained with multiple varying parameters. Once the 
number of parameters is increased past three, only 
projections onto a lower dimensional space can be 
viewed, thus loosing information. Hence, complex 
interactions between multiple parameters are 
difficult to identify. Here, statistical methods can be 
helpful and should be investigated. 
 
 

NOMENCLATURE 
 

dD(x ,s)  dependability of design dx  under 
specifications s  

0 d(x ,x ,s)δ signifies if design dx  meets 
specifications s  under assumed 
uncertain parameters 0x  ( 1)δ =  or not 
( 0)δ = . 

0P(x )  probability density function for 0x  
s  process specifications 

0x  uncertain parameters 

dx  design variables 
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