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Abstract - In this work, a simplified kick simulator is developed using the ANSYS® CFX software in order to 
better understand the phenomena called kick. This simulator is based on the modeling of a petroleum well 
where a gas kick occurs. Dynamic behavior of some variables like pressure, viscosity, density and volume 
fraction of the fluid is analyzed in the final stretch of the modeled well. In the simulations nine different 
drilling fluids are used of two rheological categories, Ostwald de Waele, also known as Power-Law, and 
Bingham fluids, and the results are compared among them. In these comparisons what fluid allows faster or 
slower invasion of gas is analyzed, as well as how the gas spreads into the drilling fluid. The pressure 
behavior during the kick process is also compared t. It is observed that, for both fluids, the pressure behavior 
is similar to a conventional leak in a pipe. 
Keywords: Drilling; Kick; Well Control; CFX. 

 
 
 

INTRODUCTION 
 

The kick is a fluid flow from the petroleum reser-
voir into the well during the drilling process. It can 
happen if the differential pressure between the for-
mation pressure and the fluid circulation (flow) pres-
sure and the permeability of the rock are large 
enough. The main causes of kick are: mud weight 
less than formation pore pressure; lost circulation of 
drilling fluid; failure to keep the hole full with fluid 
while tripping; swabbing while tripping. (Grace, 
2003; Avelar, 2008). 

The main indications of a well kick are: sudden 
increase in drilling rate; increase in fluid volume at 

the surface; pressure reduction due to the removal of 
the drilling column, this pressure reduction may gen-
erate negative pressure, allowing the formation fluid 
to flow into the well; gas, oil or water-cut mud; 
change in pump pressure. (Grace, 2003; Ajienka and 
Owolabi, 1991). 
 
Drilling Fluids 
 

Drilling fluids are complex mixtures of solids, 
liquids, chemicals, and sometimes even gases. From 
the chemical point of view, they can assume aspects 
of suspension, colloidal dispersion or emulsion, de-
pending on the physical state of the components 
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 The variation of the gas compressibility was 
considered to be very small, and therefore neglected; 
 The temperature variation in the evaluated 

stretch was neglected;  
 The physicochemical properties of drilling 

fluids and gas remained constant in the analyzed 
section;  
 The drilling fluid and gas inlet pumping 

speeds were considered constant in the analyzed 
time interval. 

 
Initial Conditions  
 

The initial condition of the well represents a nor-
mal drilling situation, with known constant flow rate 
of circulating drilling fluid and without the presence 
of gas within the well. In this case, the drilling veloc-
ity lev  at the entrance of the well is calculated by 

Equation (5), 
 

2
 

/ 4
l

le
i

Q
v

d



              (5) 

 

where Q  is the volumetric flowrate of drilling fluid 

injected into the well, and id  is the diameter of the 

drill string. 
The pressure ( )formationp  at the point where the en-

trance of drilling fluid occurs is given by Equation (6). 
 

 formation l pp SIDPP gD            (6) 

 
where SIDPP is the shut-in drill pipe pressure; l  is 

the density of the drilling fluid; g is the acceleration 
of gravity, and Dp is the depth of the well at that 
point. 

After a determined period of time, a formation 
with pressure above the one exerted by the drilling 
fluid is reached, the gas from this formation begins 
to enter the well. The pressure of this porous for-
mation was estimated to be 10% greater than that 
exerted by the drilling fluid at the same point, which 
was also calculated by Equation (6). 

During the entry of gas into the well, the fluid 
pumping conditions remain unchanged and the ve-
locity of the liquid at the entrance of the well can be 
calculated by Equation (5). In this step, the input 
flow of gas is determined by the equation of perma-
nent radial flow in porous medium for compressible 
fluids, shown in Equation (7) (Rosa et al., 2006). 

2 (  )
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The entrance velocity of the gas into the well is 

calculated by Equation (8). 
 

2 (  ) 1
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d d H
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 

    (8) 

 
where  and res resK H  are the permeability and reser-

voir height, respectively, (  )formation bottomp p  is the 

differential pressure in the bottomhole; g  is the gas 

viscosity; resd  and ed  are the diameters of the reser-

voir and the well, respectively; e resd H  is the sur-

face area of the gas entrance. The gas density is cal-
culated using Equation (9). 
 

 
'  

bottom atm
g

p p M

Z RT



            (9) 

 
where bottomp  and atmp  are the pressures in the bot-

tomhole and the atmospheric pressure, respectively, 
M is the molecular mass of the gas, Z' is the com-
pressibility factor, R is the universal gas constant, T 
is the temperature in the bottomhole.  

The gas viscosity ( )g  given in micropoise was 

calculated by Equation (10), which was developed 
by Lee et al. (1966). 
 

''exp ' Y
g gK X               (10) 

 
where 
 

  1.57.77 0.063 
'

122.4 12.9  

M T
K

M T




 
        (11) 

 
1914.5

' 2.57  0.0095 X M
T

          (12) 

 
' 1.11 0.04 'Y X             (13) 

 
where g  is the gas density, g/cm3; T is the local 

temperature given in °R and M is the molecular 
weight of the gas, in g/mol. Other parameters and 
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NOMENCLATURE 
 
de Well outer diameter (m) 
di Inner diameter of drill string (m) 
Dp depth of the well (m) 
dres Reservoir diameter (m) 
g acceleration of gravity (m.s-²) 
Hres Reservoir height (m) 
K consistency index (kg.m-¹s-²sn) 
K' LEE equation parameter --- 
Kres Reservoir permeability (m²) 
M Molecular mass of the gas --- 
n behavior index --- 
patm Atmospheric pressure (Pa) 
pformation Formation pressure (Pa) 
Pbottom Bottomhole pressure (Pa) 

gQ  Flow of gas (m³.s-¹) 

lQ  Flow of drilling fluid (m³.s-¹) 
R Universal gas constant (m².s-².T-¹) 
SIDPP shut-in drill pipe pressure (Pa) 
T Bottomhole temperature (K) 
vge Velocity of the gas in the entrance (m.s-¹) 
vle Velocity of the drilling fluid in the  

entrance (m.s-¹) 
X Cartesian coordinate (m) 
X' LEE equation parameter --- 
Y Cartesian coordinate (m) 
Y' LEE equation parameter --- 
Z Cartesian coordinate (m) 
Z' Compressibility factor --- 
 

Greek Letters 
 
γ  Shear stress rate (s-¹) 
µa Apparent viscosity (Pa.s) 
μg Gas viscosity (Pa.s) 
µp Plastic viscosity (Pa.s) 
ρg Gas density (kg.m-³) 
ρl density of the drilling fluid (kg.m-³) 
τ  Shear stress (Pa) 
τL Yield stress (Pa) 
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