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Abstract - Complete modelling of the filling process occurring in a hydrogen-fueled vehicle storage cylinder 
is examined. A simultaneous modelling of the flow and heat transfer within the cylinder and cylinder wall has 
not been considered in previous studies. Rapid filling may result to an unexpected temperature rise and 
breaching of the safety standards. In the present study, initially a correlation was developed based on a 
numerical simulation for predicting the heat transfer rate between in-cylinder flow and the cylinder inside 
wall. Then, a thermodynamic model was developed for predicting transient variations of temperature and 
pressure inside the cylinder and wall temperature during the filling. The model was applied to a type III 
onboard storage cylinder filling process. The numerical results are compared with previously measured values 
and showed good agreement. The results also show that a great portion of heat dissipation from the in-
cylinder flow is stored in the cylinder wall. It is also found that ambient temperature during the refueling 
process has considerable effects on filling behavior in general and in particular on the final in-cylinder 
temperature and filled mass. 
Keywords: Hydrogen fuelling station; Fast-filling process; Heat transfer rate; Complete thermodynamic 
modelling. 

 
 
 

INTRODUCTION 
 

Utilization of hydrogen as a clean alternative fuel 
has a favourable impact on the environment (Far-
zaneh-Gord et al., 2013a). Being cleaner and more 
effective than petrol, hydrogen has been recognized 
as the primary choice for future fuels in automobiles 
(Maus et al., 2008; Zhao et al., 2012). Because of the 
recent developments in hydrogen fuel technology, 
the spread of hydrogen fuelling stations has gained 
more attention in the world (Rigas and Sklavounos, 
2005; Schoenung et al., 2006). Studies indicates that 
80 to 90% of hydrogen is stored using high-pressure 

compression in hydrogen fuelling stations and vehi-
cle cylinders (Tzimas and Filiou, 2003), due to the 
advantages of being more practical, dependable, 
durable and admissible (Zheng et al., 2008; Maus et 
al., 2008; Zhang et al., 2006) as compared to other 
methods.  

In this system, fuel is delivered from high-pres-
sure hydrogen reservoirs into the onboard vehicle 
cylinder. The station dispensers control the rate of 
hydrogen passing into the cylinder and therefore the 
rate of temperature/pressure rise inside the cylinder. 
Clearly, reducing filling time has a favourable impact 
on commercialization of hydrogen vehicles, yet it 
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may result in unexpected temperature rise and 
breaching of the safety standards (Zhao et al., 2012; 
ISO15869 2005; ISO11439 2005). Due to the im-
portance of temperature rise during the filling pro-
cess, several experimental, numerical and theoretical 
studies have been performed on the issue. Yang 
(2009) developed a thermodynamic and heat transfer 
analysis of an onboard cylinder hydrogen refuelling 
process. The cylinder was assumed to be adiabatic, 
isothermal, or diathermal, while hydrogen was con-
sidered to be both an ideal and a real gas with a con-
stant inlet flow rate. For an ideal gas, simple analyti-
cal expressions are derived for the tank temperature 
and pressure during adiabatic, isothermal, and dia-
thermal refuelling conditions. Non-ideality is treated 
using the newly developed equation of state for nor-
mal hydrogen based on the reduced Helmholtz free 
energy formulation. Lower tank temperatures and 
pressures and longer filling times are always pre-
dicted when the real gas assumption is applied.  

In another study, Mohamed and Paraschivoiu 
(2005) modelled hydrogen release from a high-pres-
sure chamber based on the real gas assumption. 
Zheng et al. (2010) simulated an optimizing control 
method for a high utilization ratio and fast filling 
speed in hydrogen fuelling stations. It was shown 
that the optimizing control method can meaningfully 
improve the utilization ratio, while allowing for ac-
ceptable refuelling time. Farzaneh-Gord et al. 
(2012a) have also carried out a theoretical analysis to 
study the effects of storage types and conditions on 
the performance of hydrogen filling stations and the 
filling process for an adiabatic cylinder. 

Liss and Richards (2002), Liss et al. (2003), 
Newhouse and Liss (1999), Chan Kim et al. (2010) 
and Liu et al. (2010) have examined the fast filling 
of hydrogen cylinder experimentally. They all re-
ported a high temperature rise in the cylinder during 
the fast filling process. Chan Kim et al. (2010) have 
also studied the thermal characteristics of a type IV 
cylinder filling process using computational fluid 
dynamics (CFD) analysis. The results show good 
agreement with the experiments, specifically as the 
initial in-cylinder pressure increases. Similar CFD 
analysis has been carried out by Heitsch et al. 
(2011), where the fast filling process of hydrogen 
tanks is simulated. It was found that the local tem-
perature distribution in the tank depends on the mate-
rials of the liner and the outer thermal insulation. 
Different material combinations (type III and IV) 
were investigated. Dicken and Merida (2008) have 
also modelled the filling process of a hydrogen cylin-
der using CFD tools and experiments. They com-
puted the heat transfer rate from in-cylinder gas to 

the ambient numerically but failed to present a gen-
eral correlation.  

Since the hydrogen and Compressed Natural Gas 
(CNG) infrastructures are similar, it is also con-
structive to consider the comparable studies on CNG 
(Thomas et al., 2002; Shipley, 2002). These studies 
also reported a temperature rise of about 40K during 
the filling process of storage gas cylinders. The tem-
perature rise reduces the density of filled gas, result-
ing in an under-filled cylinder relative to its rated 
specification. It was also found that ambient tem-
perature influences the filling process and storage 
capacity (Shipley, 2002). 

Farzaneh-Gord et al. (2007, 2008a, 2008b, 2011, 
2012b, 2012c, 2013b) have also simulated the fast 
filling process of CNG in several studies. The results 
indicated that ambient temperature has considerable 
effects on the filling process and final cylinder con-
ditions. They also employed a theoretical analysis to 
study the effects of buffer and cascade storage tanks 
on the performance of a CNG fuelling station (Far-
zaneh-Gord et al., 2011). The effects of natural gas 
compositions on the fast filling process for buffer 
and cascade storage tanks have also been examined 
(Farzaneh-Gord et al., 2012b, 2012c). The storage 
tanks are treated as adiabatic in all of their studies.  

Nooralipour and Farzaneh-Gord (2013) studied 
the CNG fast filling process using commercial CFD 
software. Although their numerical findings compare 
well with the available experimental data, the com-
putations were so time demanding that some im-
provements in the modelling are necessary. Also in 
another study, Deymi-Dashtebayaz et al. (2014) pre-
sented the full simulation of rapid refuelling of a 
CNG Vehicle on-board cylinder.  

The above review of related literature indicates a 
shortage of information regarding the thermal aspect 
of the hydrogen cylinder fast filling process. In the 
present study, initially the filling process is numeri-
cally modelled to evaluate the heat transfer rate be-
tween in-cylinder gas and the cylinder wall by devel-
oping a correlation for predicting the inner convec-
tive heat transfer coefficient. Then, with the help of 
the developed correlation, a simultaneous thermody-
namic modelling of the in-cylinder gas and cylinder 
wall was performed for predicting the thermal char-
acteristics of the filling process with reasonable ac-
curacy and minimal computational cost. 
 
 

THE METHOD AND MODELLING 
 

Figure 1 shows an on-board storage cylinder which 
receives the compressed gas from high-pressure 
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density and i  can be calculated from the known 

values of the inlet temperature and pressure. In the 
present study, these properties are chosen to be 
identical to the values reported by Dicken and Merida 
(2007, 2008). 

Also the Reynolds and Mach numbers in the inlet 
could be obtained as: 
 

4 i
i

i i

m
Re

d



               (4) 

 

i
i

i

Ve
Ma

C
                (5) 

 

where , ,   and i i i iRe Ma d   are the Reynolds and 
Mach numbers, diameter and viscosity of the inlet 
cylinder. 

The heat released from the in-cylinder gas to the 
wall is calculated according to:  
 

 i C C iwQ A T T               (6) 
 

where , , , and i C C iwA T T are the internal convection 
heat transfer coefficient, cylinder surface area, in-
cylinder gas temperature and inside-wall tempera-
ture, respectively. i  can be calculated by employ-
ing the definition of the Nusselt (Nu) number: 
 

idNu
K


                (7) 

 

where K  and d  are the thermal conductivity coeffi-
cient for in-cylinder hydrogen gas at its temperature 
and the inside diameter of the inlet tube, respectively. 

To our best knowledge there is no correlation 
available for variations of the heat transfer rate 
during the filling process of a compressed hydrogen 
onboard cylinder. In the present study, the following 
correlation was developed based on CFD results for 
the Nusselt number (Deymi-Dashtebayaz et al., 
2014): 
 

0.7184

22512 1163.4        IF <0.03

22358               IF 0.03

RA RA

RA RA

m m
Nu

m m

  
 

 

 
    (8) 

 

where RAm  is the ratio of inlet mass flow rate, m , 

to the maximum mass flow rate, maxm : 
 

max
RA

m
m

m





              (9) 

Maximum mass flow rate occurs in the choking 
condition and can be calculated according to 
Costhuizen and Carscallen (1997): 
 

1
( )

1
max 0 0

2
( )

1
m A P










        (10) 

 
where 0 0,   and P   are the isentropic exponent, 
density, and pressure of the high pressure hydrogen 
reservoir, respectively. 

Combining Equations (1), (2) and (6), the 
following equation is obtained:  
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which can be rearranged to: 
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 (12) 

 
If the inside wall temperature, Tiw, and the inter-

nal heat transfer coefficient are known (or the cylin-
der is assumed to be adiabatic), then from equations 
10 and 1 the in-cylinder gas density and internal en-
ergy can be determined. Other thermodynamic 
properties are then obtained from thermodynamic 
tables. Farzaneh-Gord et al. (2007, 2008a, 2008b, 
2011, 2012a, 2012b, 2013a) have used the same 
method to analyse the filling process of an adiabatic 
cylinder. Here, the energy equation for the cylinder 
wall was also solved simultaneously to determine the 
inside wall temperature.  
 
The Energy Equation for the Cylinder Wall 
 

Heat transfer between hydrogen and the ambient 
includes convective heat transfer between in-cylinder 
hydrogen and the inside wall, heat conduction within 
the wall and finally free convection heat transfer 
between the exterior wall and ambient. The cylinder 
wall is made of a highly conductive aluminium liner 
and a comparatively insulating carbon fibre and 
epoxy wrapping. For simplicity, the thermal proper-
ties of both liner and laminate are assumed to be 
constant. The in-cylinder temperature rise is affected 
by the material properties of the liner and laminate. 

The cylinder wall is divided into two control vol-
umes (liner and laminate) and the energy equation 
was applied to both systems according to: 
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d Inlet tube diameter (m) 
g Gravitational acceleration (m/s2) 
h Specific enthalpy (kJ/kg) 

 m  Mass flow rate (kg/s) 
u Internal energy (kJ/kg) 
h Enthalpy (kJ/kg) 
t time (seconds) 
z Height (m) 
A area (m2) 
M Molecular weight (kg/kmol) 
Ma Mach number  
P Pressure (bar or Pa) 

Q   Heat transfer rate (kW) 

Re Reynolds number  
T Temperature (K or oC) 
V Volume (m3) 
Ve Velocity (m/s) 
W Actual work (kJ/kg) 

 W  Actual work rate (kW or MW) 
x Thickness (m) 
v Specific volume (m3/kg) 
 
Greek Letters 
 
  Heat transfer convection coefficient 

(W/m2K) 
  Thermal conductivity (W/mK) 
  Isentropic Exponent  
  Density (kg/m3) 
 
Subscript 
 
0 Rest condition 
i  initial or inlet condition 
e exit condition 
max maximum 
p present time of filling process 
s start of filling process 
av average 
gen generation 
C hydrogen on-board cylinder  
CV control Volume 
R reservoir tank 
RA ratio 

   ambient 
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