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Abstract - Coal and biomass are energy sources with great potential for use in Brazil. Coal-biomass co-
gasification enables the combination of the positive characteristics of each fuel, besides leading to a cleaner 
use of coal. The present study evaluates the potential of co-gasification of binary coal-biomass blends using 
sources widely available in Brazil. This analysis employs computational simulations using a reliable 
thermodynamic equilibrium model. Favorable operational conditions at high temperatures are determined in 
order to obtain gaseous products suitable for energy cogeneration and chemical synthesis. This study shows 
that blends with biomass ratios of 5% and equivalence ratios ≤ 0.3 lead to high cold gas efficiencies. Suitable 
gaseous products for chemical synthesis were identified at biomass ratios ≤ 35% and moisture contents ≥ 40%. 
Formation of undesirable nitrogen and sulfur compounds was also analyzed. 
Keywords: Coal and biomass energy; Co-gasification; Equilibrium modeling. 

 
 
 

INTRODUCTION 
 

Biomass has been used as an energy source since 
ancient times. It is a renewable resource, available in 
many forms throughout the world. According to 
Parikka (2004), the worldwide potential of energy 
from biomass is of about 103.8 EJ (EJ = 1018 J) per 
year, equivalent to about 5.9 trillion tons of biomass 
generated annually. In Brazil, the potential of this re-
source in the national energy matrix recently reached 
0.125 EJ, according to a technical report of the En-

ergy Research Company (EPE, 2013), which is equiv-
alent to about 7.1 billion tons of biomass. Coal, a 
fossil and non-renewable resource, is one of the oldest 
energy sources used by mankind, and is still widely 
used worldwide. Global coal reserves are estimated 
to be 861 billion tons (EIA, 2008), and account for 
more than 50% of the total energy matrix for some 
nations, such as China and India (WCA, 2012). In 
Brazil, coal is a fossil resource with great potential 
for energy cogeneration, as pointed out by the Na-
tional Agency of Electrical Energy (ANEEL, 2008). 
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Brazil has coal reserves of about 4.6 billion tons 
(EIA, 2008), corresponding to 1.4% of the national 
energy matrix (EPE, 2012). 

The coal reserves in Brazil are concentrated pre-
dominantly in the Southern region of the country, 
89.25% of them being found in the state of Rio 
Grande do Sul (ANEEL, 2008). This coal is pre-
dominantly sub-bituminous and has high ash content. 
Biomass sources are found in all regions of Brazil; 
however, their use in cogeneration brings technical 
difficulties related to the seasonal availability of 
certain types of biomass, their typical high moisture 
content and low heating value. A technical report of 
the National Agency of Electrical Energy (ANEEL, 
2012) listed eight biomass sources suitable for ther-
moelectric generation: sugarcane bagasse, black liquor 
(from cellulose industries), wood residues, biogas, 
elephant grass, charcoal, rice husk and palm kernel 
oil. A study by the Brazilian Reference Center on 
Biomass (Coelho et al., 2012) also evaluated the po-
tential of biomass as an energy source in Brazil. This 
study took into account aspects of geographical dis-
tribution and suggested the use of the following 
sources: sugarcane bagasse, forest residues, agricul-
tural residues, palm oil and biogas from various re-
newable sources. 

Gasification is a technology that allows an effi-
cient utilization of coal and biomass as energy 
sources. It consists of the thermochemical conver-
sion of carbonaceous materials at high temperatures 
in the presence of a gasifying agent, usually air and/or 
steam. The final products are essentially a gaseous 
mixture with higher heating value known as “syngas” 
and solid byproducts. The co-processing of coal-bio-
mass blends is called co-gasification. 

Co-gasification of coal-biomass blends has been 
increasingly studied because it leads to a cleaner use 
of coal. The co-processing of coal-biomass blends 
can be carried out such that undesirable characteris-
tics of one fuel can be compensated by desirable 
ones brought by the other. Some authors (Sjöström et 
al., 1999; Hernández et al., 2010; Xu et al., 2011; 
Song et al., 2013) have observed synergies using some 
combinations of these fuels. However, other authors 
(Collot et al., 1999; Zhu et al., 2008) reported the 
lack of interactions among fuels. Zhou (2014) pre-
sented a review of synergy effects during co-gasi-
fication in several experimental studies. 

Brar et al. (2012) and Emami-Taba et al. (2013) 
presented a comprehensive review of recent progress 
in coal-biomass co-gasification technologies. Differ-
ent types of chemical reactors are used in co-gasi-
fication such as entrained-flow, fixed-bed and fluid-
ized-bed gasifiers. According to Emami-Taba et al. 

(2013), fluidized-bed gasifiers are the most used 
ones. Brar et al. (2012) pointed out that the operating 
temperature of gasifiers ranges from 850 to 1000 ºC, 
with a maximum temperature limit established to 
avoid ash sintering. The authors also observed that 
gasifiers operate from atmospheric pressure up to 20 
bar. Emami-Taba et al. (2013) found that the increase 
of biomass ratio in the blends favors the formation of 
CO2, CO, and hydrocarbons due to the increase in the 
carbon conversion, resulting in higher biomass reac-
tivity. Concomitantly, H2 production is disfavored by 
the increase of the biomass ratio in the blends, due to 
the greater oxygen content present in biomass. The 
authors also concluded that the increase of biomass 
ratio increases the cold gas efficiency. 

The investigation of favorable combinations of 
coal and biomass for co-gasification (from both tech-
nical and economic points of view) is the first step 
towards the design of efficient energy cogeneration 
and chemical synthesis processes. Experimental 
analysis would be costly and time-demanding, be-
cause of the great number of possible coal-biomass 
combinations and corresponding relative propor-
tions. The use of theoretical analysis, employing 
reliable computational simulations, is an alternative 
and attractive approach for a preliminary screening 
of the best options.  

In the present study, we carried out a theoretical 
analysis to investigate which combinations of coal 
and biomass sources widely available in Brazil are 
the most advantageous for co-gasification, as well as 
the optimal relative fractions of each fuel. For this 
purpose, we employed a thermodynamic equilibrium 
model, a tool widely used to study how particular 
fuel characteristics affect the composition of gener-
ated gaseous products. The following solid biomasses 
are considered in this study: (1) rice husk (Oryza sp.), 
(2) coconut residues (Cocos nucifera L.), (3) ele-
phant grass (Pennisetum purpureum Schum.), (4) 
sawmill wood wastes (Pinus elliottii Engelm.), (5) 
charcoal, (6) sugarcane bagasse and (7) sugarcane 
straw (Saccharum sp.). The co-gasification potential 
in cogeneration and chemical synthesis is evaluated 
for varying operating parameters: biomass ratio in 
the blend (BR, %w/w), moisture content (MC, %w/w) 
and amount of air as gasifying agent (equivalence 
ratio, ER), keeping pressure and temperature fixed. 
We found out that binary coal-biomass blends with 
biomass ratios (BR) higher than 5% lead to more 
than 80% cold gas efficiency, and that blends with 
less than 35% BR can generate gaseous products 
suitable for chemical synthesis. The reduction of 
gaseous emissions that are undesirable from an envi-
ronmental point of view was also investigated. 
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THERMODYNAMIC EQUILIBRIUM 
MODELING 

 
There are two types of phenomenological models 

for gasification systems, based on either a kinetic ap-
proach or an equilibrium approach (Li et al., 2001). 
Kinetic models are able to predict the behavior of 
gasification systems in more details; however, they 
require the knowledge of kinetic parameters (ranging 
from a few to thousands), which are typically obtained 
experimentally. On the other hand, equilibrium mod-
els require a reduced amount of information; however, 
they are only valid under chemical equilibrium con-
ditions. Equilibrium models are valuable because 
they can predict the thermodynamic limits of a gasi-
fication system (Prins et al., 2007). This approach is 
independent of the gasifier type, being suitable to 
study the influence of operating parameters on the 
gaseous product composition of the process (Puig-
Arnavat et al., 2010). According to Puig-Arnavat et 
al. (2010), the largest discrepancies between predic-
tions of equilibrium models and the corresponding 
values from actual gasification systems are found 
under low gasification temperatures. As a result, CO 
and H2 contents are typically overestimated and CO2, 
CH4, tar and char contents are underestimated. 

There are few references in the literature for 
kinetic models of co-gasification processes (Usón et 
al., 2004; Chen and Hung, 2013; Mtui, 2013; Xu, 
2013). According to Villanueva et al. (2008), the use 
of an equilibrium model is a good approach for en-
trained-flow gasifiers; for downdraft fixed-bed gasi-
fiers this approach is only valid for high tempera-
tures and large residence times in the reduction zone. 
However, the authors recommend the use of adapted 
equilibrium models for updraft fixed-bed and fluid-
ized-bed gasifiers. For a preliminary evaluation of 
the potential application of different biomass sources 
in co-gasification, as proposed in this work, an equi-
librium approach is appropriate. 

The model employed uses an equilibrium approach 
with a non-stoichiometric formulation (Baratieri et al., 
2008; Rodrigues et al., 2010). This formulation 
calculates the product composition by performing the 
total Gibbs free energy minimization of an ideal 
multi-phase mixture. This equilibrium model allows 
calculating an equilibrium state with a large number 
of phases and chemical species. A list of expected 
species in the product must be established a priori. 
Thus, a large solution space must be used, comprising 
even rarely detected species (Baratieri et al., 2008). 

The main assumptions of the model are the fol-
lowing: 

1. The feed stream (fuel and gasifying agent) 
consists of a combination of C, H, O, N, S, Cl, Ar, 
Si, Ca, Al, Fe, Na, K, Mg, P, and Ti atoms; 

2. A multi-phase formulation consists of a two-
phase mixture: gas- and solid-phase; 

3. The fraction of non-converted solid carbon 
(char) is represented by graphitic carbon; 

4. The process takes place in a perfectly mixed 
reactor in the steady-state at fixed pressure and tem-
perature.  

5. The gasification reaction rates are fast enough 
and residence time is sufficiently long to reach the 
equilibrium state. 

The first and second assumptions are taken into 
account by choosing a list of expected chemical spe-
cies from the NASA thermodynamic database (Gordon 
and McBride, 1971; Gordon et al., 1993). As a result, 
the solid-phase consists of 163 species and the gas-
phase consists of 205 species. However, if only the 
products with concentrations higher than 1 ppm in the 
equilibrium state are considered relevant, the model 
is simplified to a solid-phase consisting of solid car-
bon and 47 chemical species and a gas-phase consist-
ing of 38 chemical species. The chemical species 
considered in the model are listed in Table 1. The 
model was implemented using the Cantera package 
(Goodwin et al., 2013). Cantera is an open-source 
library of object-oriented functions for solving prob-
lems in different areas such as chemical kinetics, ther-
modynamics and transport processes. The Cantera 
library has been successfully used in the simulation 
of coal and biomass thermochemical conversion 
problems (Baratieri et al., 2008; Baggio et al., 2009; 
Caton et al., 2010; Messig et al., 2010). 

The model was validated using experimental data 
for co-gasification processes from the literature and 
was compared with predicted values of an equilib-
rium model from the literature before carrying out 
the proposed study. A set of recent data for three ex-
perimental systems was chosen for model validation 
since they present detailed information regarding 
feedstock and product composition under typical op-
erating conditions, and distinct gasifier configura-
tions. More specifically, these systems involve coal-
biomass co-gasification in entrained-flow (Hernández 
et al., 2010) and fluidized-bed gasifiers (Li et al., 
2010; Song et al., 2013) in the temperature ranges of 
1000 to 1150 ºC, at atmospheric pressure, and using 
air/steam as gasifying agent.  
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Table 3: Characterization of the fuels considered in this study. 
 

Coal1 Rice husk2 Coconut 
residue3 

Sawmill 
wood waste4

Charcoal5 Sugarcane 
bagasse6 

Sugarcane 
straw6 

Elephant 
grass7 

Proximate analysis (%wt, db) 
Moisture (wb 11.06 12.00 83.74 11.78 7.14 50.20 2940 9.97 
Volatile matter 20.29 67.80 10.20 86.44 N/A 79.90 83.30 68.93 
Fixed carbon 25.09 13.60 79.70 13.22 N/A 18.00 12.80 7.95 
Ash 42.71 18.60 10.30 0.35 2.43 2.20 3.90 12.84

Ultimate analysis (%wt, daf) 
C 33.39 38.30 48.23 51.46 65.19 44.60 46.20 46.52 
H 3.47 4.00 5.23 6.10 5.55 5.80 6.20 5.87 
N 0.61 0.50 2.98 0.26 0.83 0.60 0.50 1.47 
O 16.68 38.60 33.19 41.85 25.65 44.50 43.00 46.04 
S 2.15 0.08* 0.12 0.01* 0.37 0.10 0.10 0.10 
Cl 0.013 0.12* N/A 0.01* N/A 0.02 0.10 0.21* 

HHV (MJ/kg, b) 13.39 15.49 22.81 20.25 25.28 18.10 17.40 16.94 

wt = weight, db = dry basis, wb = wet basis, daf = dry ash free basis, N/A = not available. 
1Kalkreuth et al. (2006), 2CIENTEC (1986) apud Hoffmann (1999), 3Andrade et al. (2004) and Nogueira et al. (2000) apud Andrade et al. 
(2004), 4Wander et al. (2004), 5Fuwape (1993), 6Linero and Lamônica (2005) apud Seabra et al. (2010), 7Broetto et al. (2012) 
*Mean value from Vassilev et al. (2010). 

 
 

Table 4: Ash composition of the fuels considered in this study. 
 

 Ash composition (%wt, db) 
Fuel SiO2 CaO Al2O3 Fe2O3 Na2O K2O MgO P2O5 TiO2 SO3 
Coal1 29.04 1.02 9.02 4.21 0.16 0.70 0.41 0.03 0.36 2.28 
Rice husk2 94.48 0.97 0.21 0.22 0.16 2.29 0.19 0.54 0.02 0.92 
Coconut residue3 29.14 25.99 4.49 5.60 2.54 19.40 5.60 5.92 0.24 3.27 
Sawmill wood waste4 22.22 43.03 5.09 3.44 2.85 10.75 6.07 3.48 0.29 2.78 
Charcoal4 22.22 43.03 5.09 3.44 2.85 10.75 6.07 3.48 0.29 2.78 
Sugar cane bagasse5 46.79 4.91 14.60 11.12 1.61 6.95 4.56 3.87 2.02 3.57 
Sugar cane straw6 43.94 14.13 2.71 1.42 1.35 24.49 4.66 4.13 0.16 3.01 
Elephant grass7 46.18 11.23 1.39 0.98 1.25 24.59 4.02 6.62 0.08 3.66 

wt = weight, db = dry basis. 
1Kalkreuth et al. (2006), 2Mean value from five sources (Vassilev et al., 2010), 3Mean value for natural biomass (Vassilev et al., 2010), 4Mean 
value for woody biomass (Vassilev et al., 2010), 5Mean value from two sources (Vassilev et al., 2010), 6Mean value for straws (Vassilev et 
al., 2010), 7Mean value for grasses (Vassilev et al., 2010). 

 
of a coal-biomass blend can properly raise or reduce 
these contents; also, the high oxygen content in bio-
mass (25.65 to 46.04%) can favor gasification reac-
tions without injecting additional oxygen into the 
gasifier. Some biomasses also have lower nitrogen 
content (0.26 to 0.5%) compared to coal (0.61%), 
which decreases the production of nitrogen-contain-
ing compounds (NH3), minimizing the environmen-
tal impact caused by the emissions. 
 
Gas Composition and Carbon Conversion 
 

The composition of the gaseous products from 
gasification of pure coal and different types of bio-
masses (each one in pure form) were computed for 
1000 ºC, 0% MC, ER = 0.4 and 0 ≤ BR ≤ 100%. The 
results are summarized in Table 5.  Then, the product 
composition resulting from coal-biomass co-gasifica-
tion under different biomass ratios was calculated 
using the same set of parameters (1000 ºC, 0% MC 

and ER = 0.4). Results for wood waste are shown in 
Figure 6. We observed that the product composition 
estimated for gasification of a coal-biomass blend is 
practically identical to the mass average of the values 
estimated for gasification of each individual fuel; 
deviations were smaller than 1.5%, which can be 
attributed to numerical errors in calculations. In other 
words, the product composition varied linearly with 
BR. We observed an analogous behavior for the other 
computed properties, such as gas yield, heating value 
of gaseous products and cold gas efficiency. Conse-
quently, the gaseous product composition and the 
other aforementioned parameters from coal-biomass 
co-gasification can be estimated from mass-averaged 
values of the corresponding parameters obtained for 
gasification of pure coal and biomass. In the follow-
ing paragraphs, we discuss the influence of the bio-
mass ratio on the operational parameters of interest 
directly from the values obtained for the gasification 
of pure fuels, given in Table 5. 
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Table 6: Results for coal and wood gasification at 1000 ºC and 1 atm. 
 

 MC 
(%wt) 

ER Gas composition (%vol, wb) CC  
(%) 

Gas yield 
(Nm3/kg, db) 

HHV 
(MJ/kg, db)

CGE 
(%) H2 CO CH4 

(ppm)
CO2 H2O H2S  

(ppm) 
NH3 

(ppm) 
High ash coal 0 0.1 

0.2 
0.6 

22.4 
19.0 
4.92 

28.1 
31.1 
11.6 

296 
85.6 
0.02 

0.17 
0.39 
10.5 

0.23 
0.39 
7.39 

2920 
2340 
1320 

8.33 
7.34 
1.21 

69.6 
90.4 
100.0 

0.59 
0.68 
0.59 

3.76 
4.85 
2.85 

50.2 
58.4 
24.9 

 10 0.2 
0.4 
0.6 

22.8 
12.3 
5.89 

27.7 
16.9 
9.16 

10.1 
0.45 
0.02 

3.39 
7.83 
11.3 

4.63 
9.43 
12.1 

2070 
1570 
1260 

8.71 
4.21 
1.53 

99.3 
99.9 
100.0 

0.79 
0.70 
0.62 

4.33 
3.34 
2.19 

75.3 
48.4 
26.5 

 20 0.2 
0.4 
0.6 

23.4 
12.8 
6.13 

21.1 
12.8 
6.81 

3.11 
0.23 
0.01 

6.47 
9.42 
11.9 

11.9 
15.6 
17.7 

1830 
1430 
1170 

8.46 
4.27 
1.56 

99.8 
100.0 
100.0 

0.82 
0.71 
0.61 

3.32 
2.51 
1.59 

82.9 
51.5 
26.7 

 40 0.2 
0.4 
0.6 

20.5 
10.9 
4.42 

10.8 
6.26 
2.74 

0.41 
0.03 
0.001 

9.41 
10.6 
11.7 

29.5 
30.7 
31.2 

1370 
1130 
95 

6.17 
3.07 
0.88 

100.0 
100.0 
100.0 

0.78 
0.65 
0.53 

1.74 
1.21 
0.62 

95.4 
52.7 
20.8 

Wood waste 0 0.1 
0.2 
0.6 

33.2 
27.6 
7.23 

38.7 
39.4 
13.3 

1130 
13.8 
0.06 

0.12 
0.58 
11.2 

0.17 
0.67 
10.1 

1.62×10–4 
1.42×10–4 
1.89×10–4 

12.6 
11.2 
2.04 

81.7 
100.0 
100.0 

1.46 
1.63 
1.27 

9.82 
11.9 
6.54 

90.5 
100.0 
38.8 

 10 0.2 
0.4 
0.6 

28.2 
15.2 
7.59 

34.8 
21.0 
11.8 

22.6 
0.86 
0.05 

2.88 
7.97 
11.7 

3.86 
9.51 
12.4 

1.94×10–4 
2.17×10–4 
2.26×10–4 

11.3 
5.53 
2.16 

100.0 
100.0 
100.0 

1.67 
1.47 
1.28 

10.0 
7.87 
5.45 

104.1 
68.2 
39.4 

 20 
 

0.2 
0.4 
0.6 

28.1 
15.2 
7.51 

29.9 
18.0 
9.93 

9.39 
0.55 
0.03 

5.09 
9.18 
12.3 

7.93 
12.8 
15.4 

2.56×10–4 
2.68×10–4 
2.79×10–4 

11.0 
5.46 
2.10 

100.0 
100.0 
100.0 

1.67 
1.45 
1.26 

8.24 
6.39 
4.31 

105.4 
67.5 
37.6 

 40 0.2 
0.4 
0.6 

25.7 
13.4 
5.73 

19.7 
11.3 
5.35 

1.98 
0.14 
0.005 

8.77 
11.2 
13.2 

19.0 
21.9 
23.4 

4.12×10–4 
3.98×10–4 
3.84×10–4 

9.30 
4.37 
1.36 

100.0 
100.0 
100.0 

1.54 
1.30 
1.08 

5.01 
3.63 
2.09 

97.5 
56.5 
25.6 

wt = weight, vol = volume, wb = wet basis, db = dry basis, HHV = higher heating value, CGE = cold gas efficiency. 

 
similar gaseous products composition, but elephant 
grass has about 6 times higher ash content than cane 
bagasse. The cold gas efficiency (CGE) relates the 
heating value of the gaseous products with the heat-
ing value of solid fuel. The coal gasification reached 
a CGE of 44.0% for the operating conditions studied 
here. The co-gasification of coal-biomass blends 
could attain a CGE of 75.9% by using charcoal 
blends. 

The increase of ER led to the decrease of gas 
yield, heating value and cold gas efficiency, as shown 
in Table 6. Actually, higher gas yield could be ob-
served at lower ER due to non-converted solid 
carbon. At higher ER, the remaining air amount de-
creases the yield of useful gas (H2O and N2-free 
basis) as soon as solid carbon is converted to gaseous 
products. The same trend was observed with the in-
crease of MC; however, the highest values of those 
parameters were observed at 10 ≤ MC ≤ 20%. These 
trends were also observed for the other blends. The 
coal-biomass co-gasification allows obtaining values 
of CGE higher than 80% with at least 5% BR, MC ≥ 
5% and 0.1 ≤ ER ≤ 0.4 for most of cases. 
 
Nitrogen and Sulfur Compounds 
 

The evaluation of nitrogen and sulfur compound 
production (NH3 and H2S) is important when the 

gaseous products are applied in chemical synthesis, 
fuel cells, and energy cogeneration. There are toler-
ance limits for NH3 and H2S contents according to 
the application. According to Emami-Taba et al. 
(2013), NH3 and H2S contents must be smaller than 1 
ppm (10-4 %vol) in chemical synthesis, and sulfur 
release must be close to zero in fuel cells. H2S con-
tent should be smaller than 47 ppm and NH3 smaller 
than 65 ppm for use in energy cogeneration. 

Table 5 shows that coal gasification generates 
gaseous products that meet the limits for NH3 con-
tent (3.53 ppm) but not for H2S content (1690 ppm) 
in energy cogeneration. The appropriate H2S content 
can be achieved using blends of coconut residue 
(31.2 ppm), wood waste (0.2 ppb), sugarcane straw 
(37.0 ppm) or elephant grass (7.06 ppm). This hap-
pens due to the lower content of S in such biomasses 
compared to coal. However, some types of biomasses 
with lower content of S have greater H2S production 
because of the type of ash composition that may sup-
port H2S release. 

The content of H2S in the products of dry coal-
wood blends co-gasification at 1 atm is shown in 
Figures 7 and 8. Figure 7 shows the resulting content 
of H2S at ER = 0.4 for 75 ≤ BR ≤ 100% and tempera-
tures of 900, 1000, 1100 and 1200 ºC. Moreover, 
Figure 8 shows the variation of H2S at 1000 °C for 0 
≤ ER ≤ 1, and 75, 80, 85, 90, and 95% BR. The 



41

in
th
E
m
ta
v
su
p
C
u
E
v
fo
 

F
ti
1
H
 

F
ca
at
fo

10     

ncrease of BR
he gaseous p

ER also con
mation. These
ally in the lit
alue of ER 
umption surp
lained by the

CaS) in ash c
cts. The ent

ER = 1.0 due
ariation of M
ormation. 

Figure 7: H2S
ion in the ran
200 °C at ER

H2S limit for 

Figure 8: H2

ation in the 
t 1000 ºC. D
or cogenerati

   

R led to the 
product. Low

ntributed to 
e trends have
terature (Ema
approximate

passes its pro
e conversion
contents to g
tire consump
e to the oxid
MC revealed

S content for
nge of 75 ≤ 

ER = 0.4. Da
cogeneration

S contents fo
ranges 0 ≤ E

Dashed line (
ion. 

    

decrease of 
wer tempera
the decreas

e been observ
ami-Taba et 
ely equal to 
oduction, wh

n of solid-S (m
gaseous-S in
ption of H2S
dation of H2

d a minor inf

r dry coal-wo
BR ≤ 100% 
shed line (--
n. 

for dry coal-w
ER ≤ 1 and 7
(---) indicate

R. Rodrigues, A

Brazilian Jou

f H2S content
ature and lar
se of H2S f
ved experim
al., 2013). A
0.2, H2S c

hich can be 
mainly FeS a

n gaseous pr
S takes place

2S to SO2. T
fluence on H

ood co-gasifi
and 900 ≤ T

--) indicates 

wood co-gas
75 ≤ BR ≤ 9
es the H2S li

 
 
 
 

A. R. Muniz and N
 

 
urnal of Chemica

 
 
 
 

t in 
rger 
for-

men-
At a 
on-
ex-
and 
rod-
e at 
The 
H2S 

 
ica-
T ≤ 
the 

 
sifi-
5% 
mit 

wi
ble
nu
lea
BR
Hi
du
of 
in 
val
mo
 
Su
 

sis
era
pre
lec
eac
res
cog
nar
ble
80
± 5
the
H2

env
als
of 

be 
bio
equ
lim
app
and
ate
nu
pri
Ele
and
me
ser
can
BR
rat
rat
low
ien
con
ele

N. R. Marcilio 

al Engineering 

The approp
th at least 9
ends at ER =

ut blends, the
ast 90% BR,
R of elephan
gher values 

uction. There
NH3 format
Table 6. The
lues for chem
ost of the stu

ummary of R

This section
s of coal-biom
ation and ch
esents a sum
ction of bina
ch coal-biom
sponding to
generation a
rio (I) consid
ends to reac
% for cogen
5% for chem
e same cond
2S and NH3

vironmental 
so shown for
using coal-b
The results 
used for co

omass ratio a
uivalence ra

miting values 
plied to cog
d sugarcane 
e H2S and NH
ut and sugarc
iate H2S and
ephant grass
d NH3 limiti
ended H2S a
rved for cha
n also be suit

R ≤ 35% and
tio did not h
tio; however
wer content 
nt for chemic
nut, wood, su
ephant grass b

priate H2S co
95% BR for

= 0.4 and 100
ese conditio
99% BR of 

nt grass also 
of ER decrea

e is an increa
tion at highe
e recommen
mical synthe

udied cases. 

Results by E

n summarize
mass co-gasi
hemical syn

mmary of gu
ary blends o

mass blend, th
the utilizatio

and chemical
ders the reco
ch a cold g
neration, and
mical synthes
ditions of sce

contents, i.e
friendly sce

r pure coal, t
biomass blen

show that al
ogeneration p
and moisture
atio. The rec

were not ob
generation pu

bagasse blen
H3 limiting v
cane straw b
d NH3 limiti
s blends ach
ing values fo
and NH3 lim
arcoal blends
table for chem
d higher mois
have a signif
r, higher val
of H2 and C
cal synthesis
ugarcane bag
blends achiev

ontents coul
r co-gasifica
00 ºC. In the
ns were ach
sugarcane s
achieved th

ase both H2S
ase of H2S a
er values of 
ded H2S and
esis were no

Evaluation o

es the results
ification for 
nthesis purpo
idelines to h
of coal and 
here are two 
on of gaseou
l synthesis p

ommended bi
as efficiency

d H2/CO rati
sis. Scenario 
enario (I) an
e., scenario 
enario. Both
to demonstra
ds instead of
ll coal-bioma
purposes for 
e content and
commended 
bserved for p
urposes. Ric
nds achieved
alues for BR 

blends achiev
ing values fo
ieved the ap
or BR ≥ 55%

miting values 
s. All coal-b
mical synthes
sture content
ficant effect 
lues of ER w
O that could
s purposes. R
gasse, sugarc
ved the recom

d be achieve
ation of woo
e case of coc
hieved with 
straw and 69
his condition
S and NH3 pr
and a decrea
MC as show

d NH3 limitin
t observed f

f Scenarios

s of the anal
energy coge
oses. Table 
help in the s

biomass. F
scenarios co

us products f
purposes. Sc
iomass ratio 
y higher tha
o equal to 2
 (II) conside
nd appropria
(II) shows a

h scenarios a
ate the benefi
f pure coal. 
ass blends ca
any values 

d low values 
H2S and NH

pure coal whe
ce husk, woo
d the appropr
≥ 95%. Coc

ved the appr
or BR ≥ 75%
ppropriate H2

%. The recom
were not o

iomass blen
sis purposes f
ts. Equivalen
on the H2/C
would lead 

d be inconve
Rice husk, c
cane straw an
mmended H2

ed 
od 
o-
at 
% 

ns. 
ro-
ase 
wn 
ng 
for 

ly-
n-
7 

se-
or 

or-
for 
ce-
in 
an 

2.0 
ers 
ate 
an 

are 
fits 

an 
of 
of 
H3 
en 
od 
ri-

co-
ro-
%. 
2S 
m-
b-
ds 
for 
nce 
CO 

to 
n-

co-
nd 
2S  



 
 
 
 

Evaluation of Biomass and Coal Co–Gasification of Brazilian Feedstock Using a Chemical Equilibrium Model                                   411 
 

 
Brazilian Journal of Chemical Engineering Vol. 33,  No. 02,  pp. 401 - 414,  April - June,  2016 

 
 
 
 

Table 7: Guidelines for selection of binary coal-biomass blends. 
 

Blend Scenario* Cogeneration purposes Chemical synthesis purposes 

  BR (%) MC (%) ER BR (%) MC (%) ER 

Coal (I) N/A 10–50 ≤ 0.25 N/A 40–50 —
(II) Not found N/A 50 ≥ 0.75 

Coal-rice husk (I) — — ≤ 0.35 — 40–50 — 
(II) ≥ 95 ≤ 5 ≤ 0.1 ≤ 20 50 ≥ 0.75 

Coal-coconut (I) — — ≤ 0.4 ≤ 65 40–50 — 
(II) ≥ 70 5–30 ≤ 0.3 ≤ 10 50 ≥ 0.75 

Coal-wood (I) — — ≤ 0.3 ≤ 60 40–50 — 
(II) ≥ 90 ≤ 25 ≤ 0.3 ≤ 10 50 ≥ 0.75 

Coal-charcoal (I) — — ≤ 0.5 ≤ 35 40–50 — 
(II) Not found ≤ 5 50 ≥ 0.75 

Coal-cane bagasse (I) — — ≤ 0.4 ≤ 85 40–50 — 
(II) ≥ 95 ≤ 10 ≤ 0.1 ≤ 10 50 ≥ 0.75 

Coal-cane straw (I) — — ≤ 0.45 ≤ 90 40–50 — 
(II) ≥ 75 ≤ 20 ≤ 0.3 ≤ 10 50 ≥ 0.75 

Coal-elephant grass (I) — — ≤ 0.4 — 40–50 — 
(II) ≥ 55 — ≤ 0.4 ≤ 15 50 ≥ 0.75 

N/A = not applicable, —(dash) = any value. 
*Scenario (I) considers the recommended BR to reach CGE ≥ 80% for cogeneration purposes and H2/CO = 2.0 ± 5% for 
chemical synthesis purposes. Scenario (II) includes scenario (I) and appropriate H2S and NH3 contents. 

 

 
and NH3 limiting values for BR ≤ 10%, ~50% MC, and 
equivalence ratio values higher than 0.75. Charcoal 
blends achieved the recommended H2S and NH3 lim-
iting values for BR ≤ 5%.We can point out that higher 
moisture contents in the analysis may be assumed as 
a combination of moisture and steam amounts in the 
feed stream as long as the simulations do not include 
the initial state of H2O as liquid (moisture) or vapor 
(steam). 
 
 

CONCLUSIONS 
 

This study evaluated the potential of co-gasifica-
tion of coal-biomass blends from sources available in 
Brazil for energy cogeneration and chemical synthe-
sis purposes. A thermodynamic equilibrium model 
was employed, requiring a reduced amount of infor-
mation. This model proved to be satisfactory, com-
paring its predictions to experimental and simulated 
data available in the literature at high temperature 
(1000 ≤ T ≤ 1150 ºC). The study of the co-gasifica-
tion potential of these blends identified the operating 
conditions (ER, MC and BR) required to achieve the 
optimal gaseous products in cogeneration and chemi-
cal synthesis. Synergic effects were not observed in 
the predictions of the equilibrium model; the product 
compositions showed linear relationships with the 
linearly changing biomass ratio. Charcoal and wood 
blends led to gaseous product with higher heating 
values for 0% MC and ER = 0.4. Values higher than 

80% CGE were achieved by blends with ER ≤ 0.3. 
Based on technical criteria, suitable conditions for 
obtaining co-gasification products appropriate to use 
in chemical synthesis were identified for BR ≤ 35% 
and 40 ≤ MC ≤ 50%. Another aspect evaluated was 
the content of undesirable nitrogen and sulfur com-
pounds in the gaseous products. The results showed 
that is possible to obtain a suitable gas fuel for co-
generation within recommended H2S limits only for 
BR ≥ 95% by gasifying most of the coal-biomass 
blends. However, NH3 release was shown to be 
adequate for all cases studied. The contents of H2S 
and NH3 in the products were below the values rec-
ommended in chemical synthesis for BR ≤ 5% and 
higher values of MC and ER. This study is the first 
step towards the selection of optimal coal-biomass 
blends for co-gasification. Future studies will take 
into account economic criteria and other technical 
issues, such as regional and seasonal availability of 
biomass sources.  
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NOMENCLATURE 
 
ΔHr Heat of reaction (MJ/kmol) 
N Number of chemical species 

2On  Number of moles of O2 injected into the 
reactor (kmol) 

2 ,O stoicn  Stoichiometric number of moles of O2 
(kmol) 

xi,est Estimated volume fraction of species i 
(m3/m3) 

xi,exp Measured volume fraction of species i 
(m3/m3) 

Y Gas yield (Nm3/kg) 
 
Abbreviations 
 
BR Biomass Ratio (kg/kg) 
CC Carbon Conversion (kmol/kmol) 
CGE Cold Gas Efficiency (MJ/MJ) 
daf Dry ash-free basis  
db Dry basis (H2O-free basis) 
ER Equivalence Ratio (kmol/kmol) 
HHV Higher Heating Value (MJ/kg) 
LHV Lower Heating Value (MJ/kg or MJ/Nm3) 
MC Moisture Content (kg/kg) 
N/A Not Available, Not Applicable  
%vol Volume percent (m3/m3) 
wb Wet basis  
%wt Weight percent (kg/kg) 
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