
 
 
 
 
 
 
 
 

  ISSN 0104-6632                         
Printed in Brazil 

www.abeq.org.br/bjche 
 
 

Vol. 33,  No. 04,  pp. 1063 - 1071,  October - December,  2016 
dx.doi.org/10.1590/0104-6632.20160334s20150103 

 
*To whom correspondence should be addressed  
 
 
 
 

Brazilian Journal 
of Chemical 
Engineering 

 
 

CHARACTERIZATION AND EVALUATION OF 
WAXY CRUDE OIL FLOW 

 
G. B. Tarantino, L. C. Vieira, S. B. Pinheiro, S. Mattedi, L. C. L. Santos,  

C. A. M. Pires, L. M. N. Góis* and P. C. S. Santos 
 

Universidade Federal da Bahia, Escola Politécnica, Departamento de Engenharia Química. 
Rua Aristides Novis, 02, 3° Andar, Federação, CEP 40210-630, Salvador - BA, Brazil. 

Phone: + 55 71 3283-9464 
E-mail: lmario@ufba.br 

 
(Submitted: February 22, 2012 ; Revised: May 28, 2015 ; Accepted: July 16, 2015) 

 
Abstract - Part of the oil found in the Brazilian subsoil has a high wax content, which makes its flow process 
difficult at low temperatures because of the increase in the viscosity of the fluid. This paper studied the flow 
behavior of waxy crude oil under variation in the temperature of the external environment of the flow, the 
volumetric flow rate of the oil and the emulsified water content of the oil. The results were compared with 
those obtained for a non-waxy crude oil that had similar rheological properties at temperatures above the wax 
appearance temperature (WAT). The proposed tests were based on the experimental design technique, and the 
behavior of the fluids was evaluated based on the pressure variation generated by the flow. 
Keywords: Waxy crude oil; Pressure variation; Crystallization. 

 
 
 

INTRODUCTION 
 

Paraffinization is one of the main problems in oil 
production and causes considerable losses to the oil 
industry. The wax precipitation phenomenon associ-
ated with paraffin deposition can result in unsched-
uled production shutdowns and promote operational 
risk conditions. Moreover, it can cause production 
losses and irreparable damage to equipment (Pauly et 
al., 2004). 

In the Bahian Recôncavo region, the produced 
crude oil exhibits a density of approximately 30° API, 
almost no sulfur and high concentrations of dis-
solved waxes. Although these properties are great for 
the manufacture of lubricant oils and yield high 
added value, the presence of wax adds many com-
plications to production, transportation and storage 
by hindering the flow in pipes (Thomas, 2004; Novaes, 
2009). 

Paraffins are both linear (n-paraffins) and branched 
(iso-paraffins) chain alkanes, and they have low re-
activity with most compounds. Their chains can have 
a high carbon number, which implies a higher wax 
appearance temperature. The low-molecular-weight 
paraffins are the main components of natural gas, 
and the medium- and high-molecular-weight ones are 
found in crude oil (Farayola et al., 2010; Gao, 2008; 
Jamaluddin et al., 2001).  

Paraffins are in equilibrium with other crude oil 
components, and any change in pressure, tempera-
ture and even composition can affect the equilibrium, 
thereby influencing the formation of precipitate. 
According to Santos (1994), the greater the crude oil 
wax content, the greater the precipitation rate and, 
therefore, the amount of precipitated wax. The light 
oil components keep the waxes soluble. The high pres-
sure of the reservoirs maintains the light compounds 
solubilized in the crude oil, which favors the solubili-
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zation of waxes in the fluid (Tinsley; Prud’Homme, 
2010). This condition ensures low viscosity and 
Newtonian behavior of the crude oil (Azevedo, 2003). 

Temperature also influences the solubility of 
waxes in crude oil. When approximately 5% of the 
waxes crystallize because of oil cooling, a crystal lat-
tice appears and traps some of the oil inside; this 
process is called “gelling” and hinders the fluid flow. 
Thus, the crude oil flow rate also interferes with wax 
solubility. The lower the oil flow rate, the longer it 
stays inside the piping, which favors heat exchange 
with the external environment (Vieira, 2008). 

Once production starts, the oil flows through the 
pipelines, losing heat to the external environment, 
with consequent temperature decreases and reduced 
soluble light oil fractions. Such production condi-
tions cause the oil viscosity to increase, which leads 
to production problems due to the precipitation of 
waxes (Venkatesan et al., 2005; Gao, 2008).  

According to Vieira (2008), the first paraffin crys-
tals start to form at a specific temperature, which is 
called the wax appearance temperature (WAT) and 
varies depending on the origin of the crude oil. Crys-
tallization occurs in three steps: 

 Nucleation – formation of small particles of 
crystallized material from which the first paraffin 
crystals will grow. 

 Growth – mass transport of the solution to-
wards the nuclei formed during the nucleation stage. 

 Agglomeration – when the growing crystals are 
joined together, thereby yielding larger crystals. 

With the nuclei already formed, there is incorpora-
tion of new paraffin molecules at the growth sites, and 
additional molecules of other species are grouped at 
these sites and become part of the structure. The nu-
clei form an ordered lamellar-structure arrangement. 

After crystallization starts in a medium that con-
tains water as an emulsion, the crystal lattice for-
mation phenomenon occurs in a different manner. 
When the emulsion is of the water-in-oil type, the oil 
is waxy and the fluid temperature is below the WAT, 
the precipitated waxes are deposited onto the surface 
of the water drops, thereby contributing to the 
growth of the formed precipitate (Oliveira et al., 
2010). When a large crystal lattice is in the vicinity 
of the water drops, a structure is formed; this struc-
ture percolates the drops into the lattice and captures 
them. According to Visitin (2008), this structure also 
provides mechanical resistance to the flow, thereby 
resulting in an increase in the viscosity and pour 
point of the oil. 

The present study aims to evaluate and compare 
the flow of two types of crude oil, waxy and non-
waxy, by measuring the pressure variation of the 

system under the influence of the flow rate, tempera-
ture and content of emulsified water. 
 
 

MATERIALS AND METHODS 
 
Crude Oil  
 

The characteristics that influenced the choice of 
oils used in this study were obtained from the rheo-
logical behavior of the samples. Although the availa-
ble oils had different wax contents, WATs and com-
positions, for a comparative study of the influence of 
the content of emulsified water, temperature and oil 
flow rate in the context of loss of flow, it was neces-
sary for the oils to be rheologically similar such that 
any differences originated exclusively from phenom-
ena that characterize the increase in fluid viscosity 
and its implications for the flow. 

After a series of comparative tests to search for a 
non-waxy oil with rheological behavior similar to 
that of the waxy oil above the WAT, a non-waxy oil 
was defined as the reference for comparison in the 
study.  

The WAT of each oil was determined through dif-
ferential scanning microcalorimetry, µDSC. The 
analysis was made using a DSC-VII microcalorime-
ter, Setaram, with a 500 µL stainless steel pressure 
cell and the data acquisition and analysis was made 
through the Setsoft 2000 software. The procedure 
realized in the tests consists of heating the sample to 
80 °C during one hour and a sample of known weight 
is placed in the cell and then in the equipment. The 
analysis is made by cooling the sample from 80 °C 
to 0 °C at a rate of 0.8 °C/min. Microcalorimetry 
measures any release or absorption of heat by the 
sample while it cools. The evaluated temperature 
range consisted in the cooling of the oils from 80 °C 
to 0 °C. The only possible exothermic event in this 
temperature range is the release of heat related to the 
crystallization of waxy species present in the sample. 
The greater the crystallization peak area, the greater 
the amount of wax present in the sample, and the 
higher the temperature at which crystallization oc-
curs, the greater the length of the carbon chain of the 
crystallized paraffins. Figure 1 shows the microcalo-
rimetry curve of the waxy oil, which has a WAT of 
310.5 K. 

Figure 2 shows the microcalorimetry curve of the 
low-paraffin oil. This sample exhibits two points at 
which the line tangent to the crystallization curve 
crosses the abscissa, thereby generating a WAT at 
316.4 K and a second crystallization event at 290.7 K. 
This effect occurs because the long-chain n-alkanes, 
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The highest levels of the variable “water cut“ 
were set to be 35% because, when this level was 
greater than 40%, the viscosity increased, which 
yielded difficulties in pumping the sample. 

The influence of the temperature on the crystal-
lization of paraffins dissolved in crude oil, and con-
sequently its viscosity, is of paramount importance to 
this work. Preliminary tests demonstrated that, below 
291.15 K, the waxy crude oil used as a sample did 
not flow properly because of its high viscosity. For 
this reason, 293.15 K was set as the lowest tempera-
ture level used in this study. 

The highest temperature level was defined based 
on the need to expose the waxy crude oil to condi-
tions in which crystallization of solubilized paraffins 
occurs, i.e., at temperatures close to its WAT. There-
fore, the highest level was set to 298.15 K. 

The residence time in the test tube is also a factor 
that influences the crude oil flow. The greater the 
residence time, the greater the heat exchange with 
the external environment, which results in a wider 
variation of fluid viscosity. Based on this infor-
mation, it was assumed that 150 mL/min would be 
adequate for the minimum flow rate level. 

The maximum flow rate level was set to 200 
mL/min, which is close to its maximum operating 
condition, 275 mL/min. 
 
Experimental Methodology 
 

One liter of the sample with a determined water 
cut was initially heated to 333.15 K in a storage ves-
sel such that the solubility of all paraffins in the oil 
was ensured. At the same time, the oil was circulated 
through the system’s bypass until its temperature was 
stabilized. At the end of this step, the sample flowed 
through the cooling system. 

During the test, the oil that fed the unit was 
cooled to 328.15 K. After the cooling that occurred 
throughout the test tube, the oil returned to the begin-
ning of the process to be reheated to make the pre-
cipitated wax soluble. 

The temperature and pressure values at the inlet 
and outlet of the test tube were recorded during the 
tests every 10 seconds. The pressure difference be-
tween the inlet and outlet of the test tube measured 
over time was the response obtained for each test. In 
most of the tests, the maximum pressure variation 
was achieved in less than two hours of operation. 
The results indicated that the best strategy to com-
pose the experimental design was acquisition of pres-
sure change data at a fixed time. The shortest time at 
which the maximum pressure was attained was used 
as the time to measure the differential pressure value 
for all tests. 

RESULTS AND DISCUSSION 
 
Waxy Crude Oil 
 

The tests were conducted according to the distri-
bution in Table 2 and the pressure differential oc-
curred due to the wax precipitation. The pressure 
difference was calculated from the pressure variation 
between two manometers, the first one located at the 
beginning of the flow and the second one at the end 
of the flow; these manometers present 99 percent 
accuracy. In most cases, the maximum pressure vari-
ation of the system occurred at different times. Be-
cause the goal of the research is to study the pressure 
variation based on the influence of the variables (the 
emulsified water in the crude oil (A), temperature 
(T) and flow rate (Q)), the differential pressure values 
considered as test responses were those attributed to 
the lowest operating time that reached the maximum 
pressure variation of the system. The worst flow con-
dition was achieved in test 1, with a temperature of 
293.15 K, flow rate of 150 mL/min and water cut of 
5%; in this test a pressure difference of 8.03 bar was 
achieved in 36 minutes. Thus, the reference operat-
ing time was 36 minutes. The pressure variation 
responses are found in Table 3. 
 
Table 3: Pressure differential of the samples pre-
pared with waxy crude oil. 
 

Tests Temperature 
(K) 

Flow rate 
(mL/min) 

Water cut 
(%) 

Pressure 
differential 

(bar)
1 293.15 150 5 8.03
2 298.15 150 5 1.07
3 293.15 200 5 4.92
4 298.15 200 5 0.71
5 293.15 150 35 5.67
6 298.15 150 35 3.06
7 293.15 200 35 3.77

 
The data in Table 3 were processed with the aid 

of parametric statistics. The empirical models pre-
sented in Figures 6 and 7 were evaluated for signifi-
cance through analysis of variance based on the Pa-
reto diagram shown in Figure 5. 

It can be observed from Figure 5 that the varia-
bles that significantly influenced the flow process 
were the temperature, oil flow rate, the interaction 
between the temperature and oil flow rate and the 
interaction between the temperature and water cut. 
The significance of the interactions between the two 
variables leads to the conclusion that it is not possi-
ble to analyze the behavior of the system based on 
only one variable while keeping the other variables 
fixed. The experimental data were properly fitted to a 
linear plane model with a regression coefficient (R²) 



10

o
fo
 

F
re
 

p
p
p
en
ra
es
p
w
 

F
 

p
th
ti
in
fr
te
it
im
lo

068    G. B

f 0.98, whic
or describing

Figure 5: Par
esults. 

Figure 6 s
erature and 
ressure varia
ressure drop
nt temperatu
ange. The hig
st ambient t
ressure drop

when a higher

Figure 6: Resp

The lowes
osed an aver
hat was belo
ion of large 
ncreasing the
rom Figure 3
est tube dire
t lost heat to 
mmersed ove
ower the oil 

B. Tarantino, L. C

ch implies th
g the behavio

reto diagram

shows the be
flow rate as

ation. It can 
p occurred at
ure for all fl
ghest pressur
emperature 

p was indepe
r ambient tem

ponse surface

st ambient tem
rage tempera
w its WAT (
amounts o

e viscosity of
3. The resid
ctly influenc
the environm

er a longer t
flow rate in

C. Vieira, S. B. Pi

hat the mode
or of the stud

m of the waxy

ehavior of th
s a function
be observed 
t the highest
low rates in 
re drop occu
and lowest f

endent of the
mperature wa

e - flow rate a

mperature le
ature of the 
(37.4 °C). Th
f waxes occ
f the oil, as c

dence time o
ced its tempe
ment in whic
time period.

n the system

inheiro, S. Matted

Brazilian Jou

l is appropri
died system.

y crude oil fl

he ambient te
n of the syst

that the low
t level of am
the conside

urred at the lo
flow rates. T
e flow rate o
as imposed.

and temperatu

evel (20 °C) i
waxy crude 

hus, crystalli
curred, there
can be observ
f the oil in 
erature becau
ch the tube w
 Therefore, 
, the greater

 
 
 
 

di e Silva, L. C. L
 

 
urnal of Chemica

 
 
 
 

iate 

 
low 

em-
tem 

west 
mbi-
ered 
ow-
The 
only 

 
ure. 

im-
oil 

iza-
eby 
ved 
the 

ause 
was 
the 

r its 

res
av
am
vis
(25
tem
sam

did
Ho
po
an
dro
wa
tha
en
in 
am
pre
the
led
ab
the
lea
 

Fig
 

am
the
no
to 
act
sm
bil
hav
 
Re
 

to 

L. Santos, C. A. M

al Engineering 

sidence time
erage tempe

mount of crys
scosity. Near
5 °C), the flo
m pressure b
mple remain
For the stu

d not have a 
owever, its i
ortant. Figure
d lowest wat
op. This effe
ax on the in
an the effect 
ce was so st
the oil/wate

mount of cry
essure drop o
e “gelling” o
d to a more f
sent. The wa
e precipitate
ading to decr

gure 7: Resp

At the high
mount of wate
e pressure d

omenon occu
split and be

tion of shea
maller the siz
lity and divis
ve a piston s

eference Cru

The non-wa
the same me

M. Pires, L. M. N.

in the test t
erature of the
stallized wax
r the highest 
ow rate did 
because the 
ed above the

udied parame
significant e
interaction w
e 7 shows th
ter cut consp
ect occurred 

ncrease in vi
of the emul

trong that th
er ratio of th
ystallized par
of the system
of the paraffi
flexible struc
ater droplets 
, thereby m

reased pressu

onse surface 

hest temperat
er mixed wit
differential o
rred because
ecome incre
ar stresses c
e of these dr
sibility, whic
hape. 

ude Oil 

axy crude oi
ethodology a

. Góes and P. C. 

tube. This im
e oil, which
x and conseq
ambient tem
not interfere
outlet temp

e WAT. 
eter ranges, 
effect on the 
with tempera
hat the highe
pired to reduc
d because the
iscosity was 
lsified water.
he larger the 
he sample, t
araffin and th
m. This resul
in in the pres
cture than wh
increased th

making its flo
ure gain due 

- water cut an

ture levels, t
th the crude o
of the syste
e the water d
easingly sma
caused by t
rops, the low
ch caused the

il was evalua
applied for th

S. Santos 

mplied a low
increased th

quently the o
mperature lev
e with the sy
perature of th

the water c
pressure dro
ature was im
st temperatu
ce the pressu
e effect of th

much great
. This interfe
amount of o

the greater th
he greater th
lt suggests th
sence of wat
hen water w

he flexibility 
ow easier an
to “gelling”.

nd temperatur

the greater th
oil, the great

em. This ph
droplets tende
aller under th
the flow. Th
wer their flex
e fluid flow

ated accordin
he waxy crud

wer 
he 
oil 
vel 
ys-
he 

cut 
op. 
m-
ure 
ure 
he 
ter 
er-
oil 
he 
he 

hat 
ter 

was 
of 
nd 
. 

 
re. 

he 
ter 
he-
ed 
he 
he 
xi-
to 

ng 
de 



o
u
 
T
p

 

th
th
sh
th
(R
m
st

ca
w
an
In
n
 

F
fl
 

fl
b
th
le
w

il. Table 4 p
sed in the sta

Table 4: Pre
ared with n

Tests Tem

1 2
2 2
3 2
4 2
5 2
6 2
7 2
8 2
9 2

10 2
11 2

The data in
he significan
he Pareto di
how the effe
his evaluatio
R²) of 98.96

model properl
tudy.  

According
antly influen

waxy crude o
nd interactio
n contrast, th
ot significan

Figure 8: Par
low results. 

Figure 9 sh
low rate on t
e observed th
he water cut 
evel. Howev

when the wat

Brazilian J

presents the 
atistical analy

ssure differ
non-waxy cru

mperature 
(K) 

Flo
(m

293.15 
298.15 
293.15 
298.15 
293.15 
298.15 
293.15 
298.15 
295.65 
295.65 
295.65 

n Table 4 wer
nce values for
iagram in F
ects of the op
on, with a c
6%. This resu
ly represente

g to Figure 8
nced the pre
oil flow wer
on between t
he temperatu
nt. 

reto diagram

hows the inf
the pressure 
hat the press
was lower, 

ver, the pres
ter cut was h

Chara

Journal of Chemic

pressure dif
ysis.  

rential of the
ude oil. 

 
ow rate 

mL/min) 
Wate

(%

150 5
150 5
200 5
200 5
150 3
150 3
200 3
200 3
175 2
175 2
175 2

re fitted with
r the variabl
igure 8. Fig
perational va
oefficient of
ult indicates

ed the physic

8, the variab
essure variati
re the flow r
the flow rate
ure and its in

m of the non-

fluence of th
variation of 

sure variation
regardless o

ssure variatio
higher, as wa

acterization and E

cal Engineering V

fferential valu

e samples p

er cut 
%) 

Pressu
differen

(bar)
5 0.49
5 0.37
5 0.57
5 0.58
5 1.48
5 1.42
5 1.93
5 2.02
0 1.00
0 1.01
0 0.95

h a linear mod
es are shown

gures 9 and 
ariables used
f determinat
s that the lin
al system un

les that sign
ion in the n
rate, water c

e and water c
nteractions w

-waxy crude 

e water cut a
the flow. It c

n was less wh
of the flow r
on was grea

as the flow ra

 
 
 
 

Evaluation of Wa
 

 
Vol. 33,  No. 04,  

 
 
 
 

ues 

pre-

re 
ntial 
)

del; 
n in 

10 
d in 
tion 
near 
nder 

nifi-
non-
cut, 
cut. 

were 

 
oil 

and 
can 
hen 
rate 
ater 
ate. 

Th
sam
it 
flo
the
oc
sig
the
 

Fig
 

dro
im
im
cre
flo
ob
wa
the
inc

tem
sho
ran
en
ity
can
we
tio
ser

per
wa
par
are
be
tem
sec
no

axy Crude Oil Flo

pp. 1063 - 1071,

he water infl
me manner t
exhibited a 

owing with a 
e continuous
curred, this 

gnificant phe
e oil viscosity

gure 9: Resp

It is notewo
oplets in the 

mply wax dep
mposed on t
eased the pr
ow rate exhib
bserved for t
axy crude oil
e pressure va
crease in the 

Figure 8 sh
mperature w
own in Figur
nge was very
ce of the tem

y was very 
nce. The tem
ell above the
on event of t
rved in Figur
The microc

ratures above
as little para
raffin remain
ea observed 
cause the inl
mperature of
cond crystal

ot significant 

ow                       

  October - Decem

uenced the n
that it influen
flow simila
liquid, thus 

s phase. Bec
phenomenon

enomenon of
y. 

ponse surface

orthy that, w
flow, the inc

position but 
these drople
ressure varia
bited behavio
the waxy cr
l a decrease 
ariation, in th
flow rate inc

hows that the
as not signif
re 10. Becau
y small, from
mperature on
small, which

mperature lev
 temperature
the non-wax
re 2. 
alorimetry c
e the second 
affin crystall
ned soluble, 
in Figure 2. 
let temperatu
f the system 
lization even
in the define

                           

ember,  2016 

non-waxy cr
enced the wa
ar to that o
increasing th

cause no wax
n appeared t
f those that i

e – water cut 

with the pres
ncrease in flo

rather increa
ets and con
ation. For th
or that was o
rude oil. W
in the flow 

he non-waxy
creased the p
e variation o
ficant, and th
use the studie
m 20 °C to 25
n the increase
h justifies it
vels set for 
e of the seco
xy crude oil 

curves indica
crystallizatio

lization, and
 as indicated
In the tests a

ure was 55 °
m remained w

nt; thus, this
ed level rang

                       10

rude oil in th
axy oil, that i
f small soli
he viscosity 
x precipitatio
to be the mo
interfered wi

and flow rate

sence of wat
ow rate did n
ased the she

nsequently i
his reason, th
opposite to th

Whereas in th
rate increase

y crude oil th
pressure gain
of the ambie
his fact is al
ed temperatu
5 °C, the infl
e in oil visco
ts non-signif
the tests we
nd crystalliz
(17.6 °C) o

ate that at tem
on event, the
d most of th
d by the sma
analyzed her
C, the averag

well above th
s variable w
ge. 

069 

he 
is, 
ds 
of 
on 
ost 
ith 

 
e. 

ter 
not 
ear 
in-
he 

hat 
he 
ed 
he 

n. 
ent 
so 

ure 
lu-
os-
fi-

ere 
za-
ob-

m-
ere 
he 
all 
re, 
ge 
he 

was 



10

F
p
 
M
 

cu
g

tr
at
p
cr
 

 

070    G. B

Figure 10: R
erature. 

Memory Effe

As can be 
urred in tripl
ate phenome

Figures 11
riplicate with
t the middle
ressure, the 
redibility to t

Figure 11: T

Figure

B. Tarantino, L. C

Response sur

ect 

seen in Tab
licate in the p
ena such as a
1 and 12 sh
h samples of 
e point of 3

differential 
the test and i

Triplicate tes

e 12: Triplica

C. Vieira, S. B. Pi

rface - wate

ble 2, trials 9
planning in o
a memory eff
how the test
f both oils. It
36 minutes, 

values are 
its repeatabil

t with non-w

ate test with w

inheiro, S. Matted

Brazilian Jou

er cut and te

, 10 and 11 
order to inve
fect. 
s performed
is evident th
comparing
similar, giv

lity. 

waxy crude o

waxy oil. 

 
 
 
 

di e Silva, L. C. L
 

 
urnal of Chemica

 
 
 
 

 
em-

oc-
esti-

d in 
hat, 
the 

ving 

 
oil. 

 

 

we
ev
wa
the
wo
pro
an
rat

wa
ver
the
oil
tem
an
the
wa
eff
lon
cau
tem
flo
thr
wa
mo
ab
spl
beh
inc

wa
eff
in 
mo
po
of 
be
lar
an
pro
flo
inc
 
 

 

Ev
Ap
CA
log

L. Santos, C. A. M

al Engineering 

Although th
ere very simi
idenced by F
axy crude oil
e waxy crud
orking range
oved to be d
d interaction
te and water 

The variabl
axy crude oi
rsely propor
e large amou
l, once the 
mperature, a
d contribute
e system. Th
as inversely p
fect occurre
nger residenc
using further
mperature. T
ow, with wax
rough the in
ax precipitate
ore flexible,
sence of pre
lit because o
haved like 
creasing its v

The non-w
ater cut, flow
fects. Becaus
the non-wax

ost significan
rtional to the
emulsified w
cause the be
r to that of a
d, unlike th
oportional to
ow rate, the g
crease in asso

A

To Brazilian
valuation of 
perfeiçoamen
APES), Natio
gical Develo

M. Pires, L. M. N.

CONCLU

he rheologic
ilar at tempe
Figure 3, the 
l was comple
de oil at lo
e used, the 
ependent on 
n between c
cut.  

le that was th
il was the te
tional to the 

unt of wax tha
WAT was a
large amou

d to increasi
he flow rate
proportional 
d because l
ce time for t
r heat loss an
he presence 
x precipitatio
nteraction of
e. This intera

thereby fac
ecipitate, the
of the shear 
a solid disp

viscosity. 
axy crude o
w rate and c
se of the sma
xy crude oil,
nt was the w
e pressure ga
water, the gr
ehavior of the
a solid. The 

he waxy cru
o the pressu
greater the sh
ociated press

CKNOWLE

n Federal Ag
Graduate Ed

nto de Pess
onal Council 
opment (Con

. Góes and P. C. 

USIONS 

cal propertie
eratures abov
e flow behavi
etely differen

ower temper
flow of wa
the flow rat

combination

he most sign
emperature, w
 pressure ga

hat was prese
achieved by 
unt of paraff
ing the press
e was also s
l to the press
low flow ra
the oil in the
nd conseque
of emulsifie

on, induced 
f water drop
action made 
cilitating its

e water drop
imposed by

persed in th

oil was influ
combination
all amounts o
, the variabl
water cut, w
ain. The grea
reater the sy
e water drop
flow rate w

ude oil, its 
ure gain. Th
hear and, con
sure variation

EDGMENT

gency for th
ducation (Co
soal de Nív

for Scientifi
nselho Nacio

S. Santos 

es of both oi
ve the WAT, 
ior of the no
nt from that 
ratures. In th
axy crude o
te, temperatu
s of the flo

nificant for th
which was i
in. Because 
nt in the crud
lowering th

fin crystallize
sure change 
significant an
sure gain. Th
ates caused 
e line, thereb
ntly decrease

ed water in th
gel formatio

plets with th
the precipita

s flow. In th
plets tended
y the flow an
e oil, thereb

uenced by th
n of these tw
of wax prese
e that was th

which was pr
ater the amou
stem viscosi

plets was sim
was significa
influence w
he greater th
nsequently, th
n. 

TS 

he Support an
oordenação d
el Superior
ic and Techn
nal de Dese

ils 
as 

on-
of 
he 
oil 
ure 
ow 

he 
in-
of 
de 
he 
ed 
in 
nd 
his 

a 
by 
ed 
he 
on 
he 
ate 
he 
to 
nd 
by 

he 
wo 
ent 
he 
ro-
unt 
ity 

mi-
ant 

was 
he 
he 

nd 
de 

- 
no-
en-



 
 
 
 

Characterization and Evaluation of Waxy Crude Oil Flow                                                                          1071 
 

 
Brazilian Journal of Chemical Engineering Vol. 33,  No. 04,  pp. 1063 - 1071,  October - December,  2016 

 
 
 
 

volvimento Científico e Tecnológico - CNPQ), and 
Petrobras (Petróleo Brasileiro S.A). 
 
 

REFERENCES 
 
Azevedo, L. F. A., Wax deposition in subsea pipe-

lines: A review of modeling attempts. Petroleum 
Science and Technology, 21, 393-408 (2003). 

Camargo, R. M. T., Gonçalves, M. A. L., Montesanti, 
J. R. T., Cardoso, C. A. B. R., Minami, K. A., Per-
spective view of flow assurance in deepwater 
fields in Brazil. Offshore Technol. Conf. OTC – 
16687 (2004). 

de Oliveira, A. G., Caracterização da Distribuição do 
Tamanho de Gotas em Emulsões Água e Óleo Uti-
lizando Diferentes Técnicas de Medição [Charac-
terization of Size Distribution of Water and Oil 
Emulsion Drops Using Different Measurement 
Techniques]. Instituto de Engenharia Mecânica, 
UNIFEI, Master's Thesis (2010). (In Portuguese). 

de Oliveira, M. C. K Teixeira, A., Vieira, L.C., Car-
valho, R. M., Carvalho, A. B., Couto, B. C., Flow 
Assurance Study for Waxy Crude Oils. Energy & 
Fuels, 26, 2688-2695 (2012). 

de Oliveira, M. C. K., Carvalho, R. M., Carvalho, A. 
B., Couto, B. C., Faria, F. R. D., Cardoso, R. L. P., 
Waxy crude oil emulsion gel: Impact on flow as-
surance. Energy & Fuels, 24, 2287-2293 (2010). 

Farayola, K. K., Adeboye, Y. B., Adekomaya, O. A., 
Thermodynamics prediction of wax precipitation 
using the Patel-Teja equation of state. In: Nigeria 
Annual International Conference and Exhibition. 
Society of Petroleum Engineers, (SPE), Paper 
136966 (2010).  

Gao, S., Investigation of interactions between gas 
hydrates and several other flow assurance ele-
ments. Energy & Fuels, 22, 3150-3153 (2008). 

Jamaluddin, A. K. M., Nighswander, J., Joshi, N., A 
systematic approach in deepwater flow assurance 
fluid characterization. In SPE Annual Technical 
Conference and Exhibition Society of Petroleum 
Engineers (SPE), Paper 71546 (2001).  

Langevin, D., Poteau, S., Hénaut, I., Argillier, J. F., 
Crude oil emulsion properties and their applica-
tion to heavy oil transportation. Oil & Gas Sci-
ence and Technology, 59, 511-521 (2004). 

Novaes, R. C. S., Campos Maduros e Áreas de Acu-
mulações Marginais de Petróleo e Gás Natural 
uma Análise Econômica no Recôncavo Baiano 
[Mature Fields and Areas of Marginal Accumula-
tion of Crude Oil and Natural Gas, an Economic 
Analysis at the Bahian Reconcavo], Escola Poli-

técnica, Universidade de São Paulo, Master’s Dis-
sertation (2009). (In Portuguese). 

Pauly, J., Daridon, J., Coutinho, J. A. P., Solid depo-
sition as a function of temperature in the nC10+ 
(nC24-nC25-nC26) system. Fluid Phase Equilib-
ria, 224, 237-244 (2004). 

Ronningsen, H. P., Bjorndal, B., Hansen, A. B., Peder-
sen, W. B., Wax precipitation from North Sea 
crude oils. 1. Crystallization and dissolution 
temperatures, and Newtonian and Non-Newto-
nian flow properties. Energy & Fuels, 5, 895-908 
(1991). 

Santos, P. C. S., Precipitação de Parafina em Mistu-
ras de Petróleo: Medidas Experimentais e Mo-
delagem Termodinâmica. [Wax Precipitation in 
Crude Oil Mixtures: Experimental Measurements 
and Thermodynamic Modeling]. Faculdade de 
Engenharia Mecânica, UNICAMP, Master’s Dis-
sertation (1994). (In Portuguese). 

Senra, M., Panacharoensawad, E., Kraiwattanawong, 
K., Singh, P., Fogler, H. S., Role of n- polydisper-
sity on the crystalization of n-alkanes from solu-
tion. Energy & Fuels, 22, 545-555 (2008). 

Skrifvars, B. J., Hansen, L. A., Frandsen, F. J., Dam-
Johasen, K., Sorensen, H. S., Characterization on 
ashes and deposits from high-temperature coal-
straw co-firing. Energy & Fuels, 13(4), 803-816 
(1999). 

Szklo, A. S., Fundamentos de Refino de Petróleo. 
[Fundamentals of Petroleum Refining]. Rio de Ja-
neiro, Ed. Interciência, (2005). (In Portuguese). 

Thomas, J. E., Fundamentos de Engenharia de Petró-
leo. [Fundamentals of Petroleum Engineering]. 
Rio de Janeiro, 2ª Ed., Interciência (2004). (In 
Portuguese). 

Tinsley, J. F., Prud’Homme, R. K., Deposition appa-
ratus to study the effects of polymers and asphal-
tenes upon wax deposition. Journal of Petroleum 
Science and Engineering, 72, 166-174 (2010). 

Venkatesan, R., Nagarajan, N. R., Paso, K., Yi, Y. B., 
Sastry, A. M., Fogler, H. S., The strength of paraf-
fin gels formed under static and flow conditions. 
Chemical Engineering Science, 60, 3587-3598 
(2005). 

Vieira, L. C., Estudo do efeito da pressão sobre a 
Cristalização de Parafinas de Petróleos. [Study of 
the effect of pressure on the crystallization of 
crude oil paraffins]. Instituto de Macromoléculas, 
UFRJ, Ph.D. Thesis (2008). (In Portuguese). 

Visintin, R. F. G., Lockhart, T. P., Lapasin, R., 
D’Antona, P., Structure of waxy crude oil emul-
sion gels. Journal Non-Newtonian Fluid Me-
chanics, 149, 34-39 (2008). 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


