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Abstract – Empirical sigmoidal models have been widely applied as primary models to describe microbial 
growth in foods. In predictive microbiology, the maximum specific growth rate (µmax) and the lag phase (λ) are 
the parameters of some models and have been considered as biological parameters. The objective of the current 
study was to propose mathematical equations to obtain the parameters μmax and λ for any sigmoidal empirical 
growth model. In a case study, the performance was compared of two models based on empirical parameters and 
two models based on biological parameters. These models were fitted to experimental data for Lactobacillus 
plantarum in six isothermal conditions. Some advantages of the proposed approach were the practical and 
biological interpretation of these parameters, and the useful information of the secondary modeling describing 
the dependence of µmax and λ with the temperature.
Keywords: predictive microbiology; mathematical modelling; secondary models; food safety.

INTRODUCTION

In predictive microbiology, the maximum specific 
growth rate (µmax) and the lag phase (λ) are parameters 
present in some models and are supposed to have biological 
meaning (Zwietering et al., 1990). A microbial growth 
curve is usually expressed as the natural logarithm of the 
microbial count (y(t) = ln(N)) against time (t). In this curve, 
the parameter μmax is defined as the slope of the tangent 
line at the inflection point and the parameter λ is defined 
as the intercept of this tangent line with the value of the 
initial microbial count (Pirt, 1975; Zwietering et al., 1990). 
Both are the main parameters of the mathematical models 
used to describe microbial growth over time for a single set 
of environmental conditions, and such models are called 

primary models (Whiting and Buchanan, 1993).
The temperature is an important variable in food 

microbiology, since it varies during the production and 
distribution chain modifying the microbial growth rate and 
suitability. In this context, the estimation of the primary 
model parameters must be done with exactness, for each 
growth temperature, leading to secondary models that 
represent well the influence of the temperature on the 
primary models parameters (Whiting and Buchanan, 
1993). The relative errors in the prediction of microbial 
specific growth rates have been estimated as 20-50% for 
secondary models and 7-10% for primary models (Masana, 
1999). Thus, obtaining great fits for the secondary models 
can be considered as important as obtaining great fits for 
primary models.
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The literature reports a large number of empirical 
sigmoidal equations that can be applied to describe 
microbial growth in foods (primary models). Some authors 
(Tsoularis and Wallace, 2002; Baty and Delignette-
Muller, 2004; Peleg and Corradini, 2011; Vázquez et 
al., 2012; Longhi et al., 2013) have assessed general and 
specific aspects of some of these models. In general, the 
mathematical models with biological parameters are 
interesting because microbiologists can validate them 
(Baty and Delignette-Muller, 2004).

Zwietering et al. (1990) reparametrized five empirical 
sigmoidal growth models (Gompertz, Logistic, Richards, 
Stannard, and Schnute models), generating models with 
the μmax and λ parameters. Since then, modified Logistic 
and modified Gompertz models have been used in the 
reparametrized form (Gospavic et al., 2008; Pal et al., 
2008; Slongo et al., 2009; Kreyenschmidt et al., 2010; 
Longhi et al., 2013). Vázquez et al. (2012) reparametrized 
two other sigmoidal models (Bertalanffy and Weibull 
models). However, parameter rearrangements can 
modify the accuracy of the estimates, making the model 
fit differ from the original (Zwietering and den Besten, 
2011). Therefore, equations transforming one parameter 
(empirical) to another (with biological meaning) allow 
comparing different primary models.

The objective of the current study was to propose a 
generalized mathematical approach to obtain the biological 
parameters μmax and λ from any sigmoidal empirical 
equation fitted as a primary model.

THEORETICAL BACKGROUND

Sigmoidal functions frequently applied as primary 
models to describe microbial growth have one inflection 
point. The time at the inflection point (tifx) is the root in the 
Equation (1), and the model response at the inflection point 
(yifx) is obtained by substituting tifx in the original model 
equation, as shown in Equation (2).

The maximum specific growth rate (μmax) is obtained 
by substituting tifx into the first derivative of the sigmoid 
model, as shown in Equation (3).

Equation (4) can be obtained from the definitions of µmax 
and λ (Pirt, 1975; Zwietering et al., 1990) (see Figure 1), 

in which y0 is the natural logarithm of the initial microbial 
count (y0 = ln(N0)). 

Finally, λ can be isolated from Equation (4), resulting 
in Equation (5).

Figure 1. Typical sigmoidal curve of the microbial growth with 
the graphical representation of the parameters µmax and λ, and 
the indication of the time at the inflection point (tifx), the model 
response at the inflection point (yifx), and the natural logarithm of 
the initial microbial count (y0).

Concisely, the present approach, based on previous 
studies (Zwietering et al., 1990; Vázquez et al., 2012), 
proposes four generalized steps (represented by Equations 
(1), (2), (3), and (5)) to obtain the µmax and λ parameters for 
any sigmoid equation. The values of tifx and yifx (inflection 
point) are dependent on the empirical parameters estimated 
through fitting the model to the experimental data.

A sigmoidal empirical equation, in general, has one 
inflection point and, thus, one root can be calculated by 
applying Equation (1) (the time at the inflection point). If 
this root can be calculated for the sigmoidal equation, this 
approach can be applied to it.

Two empirical sigmoidal growth models were chosen 
for a case study: a Shifted Logistic Function (Equation 
(6)) and Power Type Growth (Equation (7)) (Corradini and 
Peleg, 2005). In Equations (6) and (7), A, b, k, n and tc are 
empirical parameters.
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Table 1. Equations obtained in the transformation of the empirical parameters A, b, k, n, and tc to the µmax and λ parameters for the Power 
Type Growth and Shifted Logistic Function models.

Power Type Growth Shifted Logistic Function
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The corresponding equations for tifx, yifx, μmax and λ were obtained by applying the proposed methodology to Equations 
(6) and (7) and are shown in Table 1.

The Gompertz modified model (Equation (8)) and the 
Logistic modified model (Equation (9)) are sigmoidal 
growth models that were reparametrized by Zwietering 
et al. (1990) and were used in the case study. For both 
Equations (8) and (9), the value of the function at t equal 

to zero (y(0)) is different from the value of the parameter y0 
(i.e., y(0) ≠ y0). This inequality creates a problem to define 
the boundary conditions of the differential equations when 
one tries to use these models to assess the microbial growth 
under non-isothermal conditions.
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The Square Root secondary model (Equation (10)) 
(Ratkowsky et al., 1982) has been widely used to describe the 
dependence of µmax and λ with the temperature (Xanthiakos 
et al., 2006; Gospavic et al., 2008; Kreyenschmidt et al., 
2010; Longhi et al., 2017; Silva et al., 2017; among others). 

In Equation (10), p is the temperature-dependent parameter 
(µmax or 1/λ), T is the temperature, and m (empirical 
parameter) and Tmin (theoretical temperature for minimal 
microbial growth) are the parameters to be estimated by 
fitting the model to the data.

( )minp m T T= − (10)
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CASE STUDY

Material and methods

Shifted Logistic Function, Power Type Growth, 
Gompertz Modified, and Logistic Modified primary 
models were fitted to the growth experimental data of 
Lactobacillus plantarum in MRS (Man, Rugosa and 
Sharp) culture medium at six isothermal conditions (4, 8, 
12, 16, 20, and 30 °C) (data published by Longhi et al., 
2013). The Shifted Logistic Function and Power Type 
Growth models were fitted in their original forms and the 
values of the empirical parameters A, b, k, n, and tc were 
obtained. After that, the biological parameters μmax and λ 
were obtained by the equations shown in Table 1. Then, the 
Square Root secondary model (Equation (10)) was fitted to 
the μmax and λ values, obtained from the Shifted Logistic 
Function and Power Type Growth models, as dependent on 
the environmental temperature. The values of μmax and λ for 
the Gompertz Modified and Logistic Modified models, as 
well as the fit of the Square Root secondary model, were 
obtained by Longhi et al. (2013).

The fitting of the mathematical models to the 
experimental data was performed by the Curve Fitting 
Tool (cftool) available in the MATLAB R2011b software, 
version 7.13 (MathWorks, Natick, USA), using a non-
linear least squares method and the trust-region reflective 
Newton algorithm. The value of the initial try of each 
parameter was selected from the observation of the 
experimental data. The 95% confidence intervals of the 
model parameters were obtained in the fitting procedure. 
The statistical indexes Root-Mean-Square Error (RMSE) 
and the Adjusted Coefficient of Determination (R2

adj) 
(standard outputs of the Curve Fitting Tool) were used to 
assess the ability of the primary and secondary models to 
describe the experimental data.

Results and discussion

The values of the empirical parameters (A, b, k, n, and 
tc) and the 95% confidence intervals, estimated by fitting 
the Power Type Growth and Shifted Logistic Function 
models to the experimental data, are shown in Table 2. In 
the same table, the values of µmax and λ obtained for the 
Power Type Growth and Shifted Logistic Function models 
with the Equations of Table 1 are shown, as well as the 
values of µmax and λ from the Gompertz Modified and 
Logistic Modified models obtained by Longhi et al. (2013).

The fitting of the four sigmoidal models (Shifted 
Logistic Functions, Power Type Growth, Gompertz 
modified and Logistic Modified) to the experimental 
data of the growth of L. plantarum at 4, 8, 12, 16, 20 and 
30 °C are shown in Figure 2. One important issue to be 
observed is the availability of experimental data in the 
stationary growth phase because the parameter related to 

the asymptote (the A parameter in the four models) affects 
the value of the other parameters.

It can be seen in Table 2 that it is difficult to interpret 
and compare the values of the empirical parameters. On 
the other hand, the values of the µmax and λ parameters have 
the same biological meaning and units (µmax [1/h] and λ 
[h]) for all assessed models (Power Type Growth, Shifted 
Logistic Function, Logistic Modified and Gompertz 
Modified), facilitating the interpretation and comparison of 
these results. Furthermore, the empirical parameters of the 
Shifted Logistic Function and Power Type Growth models, 
shown in Table 2, showed larger 95% confidence intervals 
in relation to µmax and λ for the Gompertz Modified and 
Logistic Modified models, which can be considered to be 
another disadvantage of the models built with empirical 
parameters.

A high uncertainty can be observed for the λ parameter 
of the sigmoidal models. In general, this uncertainty 
increases at lower temperatures (as can be seen by the 
confidence intervals in Table 2) because the distance 
between the inflection point and the interception with 
the value of the initial microbial count also increases. At 
4 °C, the uncertainty in the value of the λ parameter is 
greater than 32%, while for the higher temperatures, the 
uncertainty is lower than 23%.

The values of the empirical b and n parameters of the 
Power Type Growth model and the values of λ and µmax 
transformed with Equations (1) to (5) are shown in Figure 
3 as a function of the temperature. It can be seen that the 
values of the empirical parameters (b and n) have no clear 
correlation with the temperature, mainly the b parameter, 
which presented intermediate values at 4, 8, and 16 °C, a 
high value at 12 °C, and lower values at 20 and 30 °C. For 
the n parameter, a rapid increase in their value from 4 to 
8 °C can be observed, but from 8 to 30 °C it remains at a 
conservative value, which even the exponential or power 
model cannot fit well to the data. Therefore, it becomes 
difficult to find an appropriate secondary model for these 
data. On the other hand, the µmax and λ values transformed 
from the empirical parameters presented clear temperature 
dependences, which can be described by the Square Root 
secondary model, resulting in good statistical indexes, as 
shown in Table 3.

The values of the empirical k and tc parameters of the 
Shifted Logistic Function model and the values of λ and 
µmax transformed with Equations (1) to (5) are shown in 
Figure 4. For the Shifted Logistic Function model, it can 
be seen that all parameters presented a linear dependence 
with the temperature, which could be described by the 
Square Root secondary model, resulting in good statistical 
indexes, as shown in Table 3. In this case, the statistical 
indexes of the Square Root secondary model were better 
for the k and tc empirical parameters than for µmax and λ. 
As µmax is a linear transformation of k (which is multiplied 
by (A/4), as shown in Table 1), they have similar statistical 
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Table 2. Values of the empirical parameters A, b, k, n and tc (± 95% confidence intervals) obtained by fitting the Power Type Growth and 
Shifted Logistic Function models to L. plantarum dataa at 4, 8, 12, 16, 20, and 30 °C, values of the µmax and λ parameters obtained from 
the Power Type Growth and Shifted Logistic Function empirical models, and values of the µmax and λ parameters obtained by fitting the 
Logistic Modifieda and Gompertz Modifieda models.

Model Parameter Temperature
4 °C 8 °C 12 °C 16 °C 20 °C 30 °C

Shifted 
Logistic 
Function

Aa 1.39
(± 0.21)

2.01
(± 0.15)

2.20
(± 0.09)

2.26
(± 0.06)

2.61
(± 0.18)

2.63
(± 0.10)

ka [h-1] 0.010
(± 0.003)

0.040
(± 0.008)

0.103
(± 0.014)

0.173
(± 0.014)

0.252
(± 0.047)

0.592
(± 0.066)

tc
a [h] 161.2

(± 18.8)
70.1

(± 4.1)
30.0

(± 1.2)
16.9

(± 0.4)
9.5

(± 0.7)
4.8

(± 0.2)

µmax [h
-1] 0.004 0.020 0.057 0.098 0.164 0.389

λ [h] 26.3 25.4 12.3 6.5 2.9 1.8

Power Type 
Growth

A 1.62
(± 0.43)

2.09
(± 0.19)

2.28
(± 0.05)

2.31
(± 0.11)

2.55
(± 0.06)

2.73
(± 0.21)

b [hn] 7,180
(± 10,246)

9,550
(± 106,230)

22,320
(± 10,880)

4,069
(± 4,084)

394.5
(± 162.7)

72.94
(± 48.33)

n 1.57
(± 0.34)

2.65
(± 0.51)

2.91
(± 0.15)

2.89
(± 0.37)

2.57
(± 0.19)

2.63
(± 0.48)

µmax [h
-1] 0.004 0.021 0.060 0.106 0.187 0.406

λ [h] 24.3 25.5 12.0 6.7 3.3 1.7

Logistic 
Modified

µmax
a [h-1] 0.004

(± 0.001)
0.021

(± 0.003)
0.062

(± 0.008)
0.103

(± 0.007)
0.181

(± 0.031)
0.417

(± 0.048)

λa [h] 48.4
(± 15.5) 

29.3
(± 6.7)

14.0
(± 2.2)

7.3
(± 0.8)

3.7
(± 1.2)

2.1
(± 0.4)

Gompertz 
Modified

µmax
a [h-1] 0.004

(± 0.001) 
0.020

(± 0.002)
0.058

(± 0.003)
0.099

(± 0.007)
0.177

(± 0.014)
0.390

(± 0.038)

λa [h] 31.3
(± 12.7) 

25.0
(± 5.3)

11.8
(± 0.8)

6.2
(± 0.8)

3.2
(± 0.6)

1.6
(± 0.3)

aData from Longhi et al. (2013).

Figure 2. Fitting of the four sigmoidal growth models (Shifted Logistic Functions, Power Type Growth, Gompertz modified and 
Logistic Modified) to the experimental data of the growth of L. plantarum at 4, 8 and 12 °C (in left plot), 16, 20 and 30 °C (in right plot).

indexes. On the other hand, the λ parameter is obtained by 
a non-linear equation (Table 1), with k and tc as parameters, 
resulting in values less correlated with the temperature.

An additional analysis was carried out by comparing the 
values of µmax and λ obtained by the Gompertz Modified, 
Logistic Modified, Shifted Logistic Function, and Power 
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Figure 3. Left: n parameter data (circles), the obtained √µmax parameter data (squares), and the fit of the Square Root secondary model 
to the √µmax data (line). Right: b parameter data (circles), the obtained √(1/λ) parameter data (squares), and the fit of the Square Root 
model to the √(1/λ) parameter data (line). All the parameter data correspond to the Power Type Growth model.

Table 3. Values of the m and Tmin parameters (± 95% confidence intervals) obtained by fitting the Square Root secondary model to the 
data for the empirical parameters k and tc of the Shifted Logistic Functiona model, to the values of the µmax and λ parameters obtained 
from the Power Type Growth and Shifted Logistic Function empirical models, and to values of the µmax and λ parameters obtained by 
fitting the Logistic Modifieda and Gompertz Modifieda models.

Model Parameter m (°C−1 h−0.5) Tmin (°C) R2
adj RMSE (h-0.5)

Shifted Logistic 
Function

ka [h-1] 0.0256 (± 0.0013) 0.01 (± 0.88) 0.998 0.010
(1/tc)

a [h-1] 0.0151 (± 0.0015) −0.55 (± 1.92) 0.993 0.011
µmax [h

-1] 0.0218 (± 0.0007) 1.37 (± 0.47) 0.999 0.005
(1/λ) [h-1] 0.0238 (± 0.0075) -1.89 (± 5.95) 0.939 0.056

Power Type Growth
µmax [h

-1]  0.0224 (± 0.0010) 1.31 (± 0.78) 0.999 0.008
(1/λ) [h-1] 0.0237 (± 0.0066) -1.85 (± 5.24) 0.952 0.049

Logistic Modified
µmax

a [h-1] 0.0226 (± 0.0009) 1.33 (± 0.68) 0.999 0.007
(1/λ) [h-1] 0.0227 (± 0.0043) -1.03 (± 3.44) 0.977 0.032

Gompertz Modified
µmax

a [h-1] 0.0219 (± 0.0010) 1.28 (± 0.76) 0.999 0.008
(1/λ) [h-1] 0.0249 (± 0.0055) -1.19 (± 4.05) 0.969 0.041

aData from Longhi et al. (2013).

Figure 4. Left: √k parameter data (circles), the obtained √µmax parameter data (squares), and the fits of the Square Root secondary model 
to the data. Right: √(1/tc) parameter data (circles), the obtained √(1/λ) parameter data (squares), and the fits of the Square Root model 
to the data. All the parameter data correspond to the Shifted Logistic Function model.
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Type Growth models. It can be seen in Table 2 that, for the 
µmax parameter, the Logistic Modified model presents the 
higher values at most temperatures (4, 8, 12, and 30 °C), 
the Shifted Logistic Function model presents the lower 
values at all temperatures, and the Gompertz Modified 
and Power Type Growth models present similar values. 
For the parameter λ, the Logistic Modified model presents 
the higher values at all temperatures. In general, the values 
of the model parameters are associated with the format of 
the sigmoidal functions, in which the Logistic Modified 
presents the strictest format (resulting in higher values of 
µmax and λ) among the evaluated models. On the other hand, 
the shift in the logistic function proposed by Corradini and 
Peleg (2005) leads to lower values of µmax for the Shifted 
Logistic Function model.

In general, in addition to the advantages presented 
previously, another important gain of finding biological 
parameters is the possibility to fit the same secondary 
model (as the Square Root model in this case study) to the 
µmax and λ parameters and to compare the parameter values 
of the secondary models.

CONCLUDING REMARKS

Some advantages of analyzing biologically meaningful 
µmax and λ parameters instead of empirical parameters 
were observed, for instance the possibility of comparing 
different parameter of the sigmoidal models and of finding 
an appropriate secondary model that describes well the 
dependence of the parameters with the temperature.
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