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Abstract – Rules for control structure design for industrial processes have been extensively proposed in the literature. 
Some model-based methodologies have a sound mathematical basis, such as the self-optimizing control technology. 
The procedure can be applied with the aid of available commercial simulators, e.g., PRO/IITM and AspenPlus®, from 
which the converging results are obtained more suitably for industrial applications, lessening the effort needed to build 
an appropriate mathematical model of the plant. Motivated by this context, this work explores the development and 
application of a tool designed to automatically generate near-optimal controlled structures for process plants based on 
the self-optimizing control technology. The goal is to provide a means to facilitate the way possible arrangements of 
controlled variables are generated. Using the local minimum singular value rule supported by a modified version of 
a branch-and-bound algorithm, the best sets of candidate controlled variables can be identified that minimize the loss 
between real optimal operation and operation under constant set-point policy. A case study consisting of a deethanizer is 
considered to show the main features of the proposed tool. The conclusion indicates the feasibility of merging complex 
theoretical contents within the framework of a user-friendly interface simple enough to generate control structures 
suitable for real world implementation.

Keywords: Control structure design; VBA; PRO/II; Akima and bicubic spline; Minimum singular value; Branch-and-
bound.

INTRODUCTION

Optimal operation of process plants is at the foremost 
front in process engineering applications, but still 
represents a challenge for plant engineers. This in part is 
due to the fact that there are many different methods that 
claim to guarantee optimality, and choosing one that best 

suits a particular application is sometimes difficult. In 
addition, there can be many different ways to implement a 
given procedure, ranging from plain manual computations 
to calculations based on several pieces of software from 
which the user needs to navigate from one to the other, 
back and forth, just to get the tedious calculations done.

One such promising method to accomplish (near) 
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optimal operation of process plants is the self-optimizing 
control technology (Skogestad, 2004). Self-optimizing 
control is when an acceptable (economic) loss can be 
achieved using constant set points for the controlled 
variables, without the need to reoptimize when disturbances 
occur (Skogestad, 2000). The constant set point policy 
is simple but will not be optimal (and thus have a 
positive loss) as a result of the following two factors: (1) 
disturbances, i.e., changes in (independent) variables and 
parameters that cause the optimal set points to change, and 
(2) implementation errors, i.e., differences between the 
setpoints and the actual values of the controlled variables 
(e.g., because of measurement errors or poor control). 
The effect of these factors (or more specifically the loss) 
depends on the choice of controlled variables, and the 
objective is to find a set of controlled variables for which 
the loss is acceptable. Some contributions to the theory 
of self-optimizing control have been slowly but steadily 
incorporated into the current state of the technology. 
Halvorsen et al. (2003) found one way to determine the 
optimal linear combination of measurements to use as 
controlled variables, and also derived the approximate 
singular value rule, which is very useful for quick 
screening and elimination of poor candidate variables. 
Hori et al. (2005) considered the case of “perfect indirect 
control” where one attempts to control a combination of 
the available measurements such that there is no effect of 
disturbances on the primary outputs at steady-state. Alstad 
and Skogestad (2007) introduced the null space method 
for selecting linear combinations of controlled variables, 
where the objective was to derive a simple method for 
selecting the optimal measurement combination matrix 
H for the special case with no implementation error, 
focusing on minimizing the loss caused by disturbances. 
Alstad et al. (2009) further improved the null space 
method, providing an explicit expression for H for the 
case where the objective is to minimize the combined loss 
for disturbances and measurement errors, and extending 
the null space method to cases with extra measurements 
by using the extra degrees of freedom to minimize the 
loss caused by measurement errors. This reduced even 
more the loss caused by keeping these new controlled 
variables at constant setpoint. Jacobsen and Skogestad 
(2011) devised a way to determine regions where the active 
constraints may switch during operation. Jaschke and 
Skogestad (2012) presented a method for finding optimal 
controlled variables, which are polynomial combinations 
of measurements, and they claimed that controlling these 
variables gives optimal steady-state operation. Indeed, that 
article contains the first contribution to extend the ideas 
of self-optimizing control to the more general class of 
polynomial systems. However, these ideas, though very 
promising in the sense of reducing even further the loss in 
the constant setpoint policy by considering nonlinearities in 
the system in the form of polynomials, are not considered 

in this work. More recently, Graciano et al. (2015) argued 
that the self-optimizing control is complementary to real 
time optimization (RTO), and developed a new model 
predictive control (MPC) strategy with zone control and 
self-optimizing control variable targets in order to cope 
with infrequent setpoint updates computed by the RTO. 
Their results showed that the proposed approach improves 
the coordination between the RTO and MPC layers and, by 
giving better performance in between RTO executions, it 
also led to a higher overall profit.

Many authors have reported results of the use of the self-
optimizing control technology that ensure the efficiency of 
the method applied to a great variety of test-bed examples 
(e.g., Jensen and Skogestad, 2007a; Jensen and Skogestad, 
2007b; Hori and Skogestad, 2007a,b; Lersbamrungsuk et 
al., 2008; Jagtap et al., 2011; Panahi and Skogestad, 2012; 
Gera et al., 2013; Jaschke and Skogestad, 2014; Khanam 
et al., 2014; Graciano et al., 2015). Moreover, application 
of this technology to different case studies using process 
simulators has also been reported in the literature 
(Araujo and Skogestad, 2007a; Araujo and Skogestad, 
2007b; Baldea, Araujo, and Skogestad, 2008; Araujo and 
Skogestad, 2008; Araujo and Shang, 2009a; Araujo and 
Shang, 2009b; Araujo and Shang, 2009c), and the results 
showed the feasibility and ease of implementation of 
the self-optimizing control procedure in such instances. 
However, much effort and time is usually expended doing 
many mathematical computations using different pieces 
of software quite alike from one another. In general, 
packages of data collected from the various simulations of 
the process are exported to some linear algebra software 
platform, like MatLab®, for calculations involving, e.g., 
matrix manipulations for building linear approximation 
models of the nonlinear plant, matrix decompositions 
for computation of gains, or integer optimizations using 
branch-and-bound techniques for feature subset selection. 
Analysis follows the calculation procedures by taking the 
results to some spreadsheet software like Microsoft® Excel 
where reports and plots are generated for final checking 
and presentation.

Therefore, one source of resistance to widespread 
industrial application of mathematically based plantwide 
control methodologies is related to the fact that too much 
effort and energy is usually expended by the engineer 
doing several computations to generate only a handful of 
candidate control structures. Many of these steps consist 
of calculations involving approximations of the actual 
process as derived from the converging results of nonlinear 
mathematical models obtained by exhaustive simulation 
through the use of some commercial simulator. These 
approximations appear disguised in the form of linear 
models that need to be built and further refined so as to 
reproduce with high degree of fidelity the main aspects 
of the underlying process behaviour around a desirable 
operating condition. For instance, sensitivity analysis is 
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usually the way one may obtain the gain matrix at zero 
frequency from simulations on a steady-state nonlinear 
model of the process using a commercial simulator. For 
each manipulated variable a run of the simulation yields 
values for the chosen candidate controlled variables that 
need to be stored for future calculations. This procedure is 
repeated for each manipulated variable, and depending on 
the dimension of the problem it may become an extremely 
tedious and time consuming task to be executed. Moreover, 
it is not always clear which step size to apply to generate a 
suitable linear model, unless the user has a deep knowledge 
of numerical methods to adjust this choice anytime the 
simulation results are not consistent.

However, even when a linear model of the plant is 
finally determined, much computation is still needed to 
select sets of candidate control structures. Particularly, 
several of these computations involve the use of many 
features of some linear algebra package depending on the 
plantwide control technique being used. Manipulations of 
functions from these packages can be difficult and generally 
require good expertise in mathematical methods, which is 
precisely what discourages most practitioner engineers 
who prefer not to devote too much time digging in too deep 
into mathematical thinking. Here is exactly where a well-
tuned automatic tool to overcome these hurdles falls into 
place.

This work aims at describing the development and 
implementation of an automatic tool to assist the plant 
engineer to determine suitable control structures based 
on the technique of self-optimizing control. The end 
result should facilitate the use of the method, as well as 
encourage the application of plantwide control studies 
on different cases in the process industry. To the authors’ 
knowledge, no such a product has been reported previously 
in the academic and industrial literature to date.

OVERVIEW OF THE SELF-OPTIMIZING 
CONTROL TECHNOLOGY

The self-optimizing control technology for the 
selection of controlled variables is the method considered 
in this work. In this section we give an overview of the 
technology, but do not present an exhaustive review on the 
subject. For details, please refer to Skogestad (2000, 2004).

The objective is to achieve self-optimizing control 
where fixing the primary controlled variables c at constant 
setpoints cs indirectly leads to near-optimal operation. 
More precisely (Skogestad, 2004): “Self-optimizing control 
is when one can achieve an acceptable loss with constant 
setpoint values for the controlled variables without the 
need to re-optimize when disturbances occur”.

For continuous processes with infrequent grade 
changes, a steady-state analysis is usually sufficient 
because the economics can be assumed to be determined 
by the steady-state operation.

It is assumed that the optimal operation of the system 
can be quantified in terms of a scalar (usually highly 
nonlinear) cost function (performance index) J0, which is 
to be minimized with respect to the available degrees of 
freedom u0,

0
0 0min ( , , )

u
J x u d

subject to the (usually highly nonlinear) constraints

1 0 2 0( , , ) 0; ( , , ) 0g x u d g x u d= ≤

Here d represents all of the disturbances, including 
exogenous changes that affect the system (e.g., a change in 
the feed), changes in the model (typically represented by 
changes in the function g1), changes in the specifications 
(constraints), and changes in the parameters (prices) that 
enter in the cost function and the constraints. x represents 
the internal variables (states). One way to approach this 
problem is to evaluate the cost function for the expected 
set of disturbances and implementation errors using, e.g., 
techniques of nonlinear numerical optimization. The main 
steps of this procedure can be as follows (Skogestad, 2000):

1.	 Definition of the number of degree of freedom.
2.	 Definition of optimal operation (definition of the cost 

function and constraints, including the process model).
3.	 Identification of important disturbances (typically, feed 

flow rates, active constraints and input errors).
4.	 Numerical optimization of the defined mathematical 

problem as given, e.g., by Equations 1 and 2.
5.	 Identification of candidate controlled variables.
6.	 Evaluation of loss for alternative combinations of 

controlled variables (loss imposed by keeping constant 
set points when there are disturbances or implementation 
errors), including feasibility investigation.

7.	 Final evaluation and selection (including controllability 
analysis).

In step 3 the important disturbances as well as their 
magnitude and frequency are determined based on the 
experience of the process engineer. These are usually 
related to the economics of the plant due to long term 
changes caused by plant throughput, changes in product 
specification, prices of raw material, utilities and energy, and 
equipment constraints. However, short term disturbances 
can also be considered, such as input errors due to, e.g., 
imperfect valves, and changes in feed conditions like 
temperature, composition, and pressure. These are the kind 
of disturbances we consider in this work.

The optimization in this case is used to determine the 
best operating conditions for each important disturbance 
as per step 3 above, as well as to define the set of active 

(1)

(2)
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constraints used to select controlled variables. Indeed, 
to achieve optimal operation, the active constraints are 
chosen to be controlled. The difficult issue is to decide 
which unconstrained variables c to control.

Unconstrained problem: The original independent 
variables u0 are divided into the variables u’, used to 
satisfy the active constraints g’2 = 0, and the remaining 
unconstrained variables u. The value of u’ is then a 
function of the remaining independent variables (u and 
d). Similarly, the states x are determined by the value of 
the remaining independent variables. Thus, by solving the 
model equations (g1 = 0), and for the active constraints (g’2 
= 0), one may formally write x = x(u,d) and u’ = u’(u,d), 
and the cost as a function of u and d becomes J = J0(x,u0,d) 
= J0(x(u,d), u’(u,d), u, d) = J(u,d).

The remaining unconstrained problem in reduced space 

is then given by

min ( , )
u

J x d

where u represents the set of remaining unconstrained 
degrees of freedom. This unconstrained problem is the 
basis for the local method introduced below.

Degrees of freedom analysis

It is very important to determine the number of steady-
state degrees of freedom because this in turn determines 
the number of steady-state controlled variables that need to 
be chosen. To find them for complex plants, it is useful to 
sum the number of degrees for individual units as given in 
Table 1 (Skogestad, 2002).

Table 1 - Typical number of steady-state degrees of freedom for main process units.

Process unit DOF

Each external feed stream 1 (feedrate)

Splitter n - 1 split fractions (n is the number of exit streams)

Mixer 0

Compressor, turbine, and pump 1 (work)

Adiabatic flash tank 0a

Liquid phase reactor 1 (holdup)

Gas phase reactor 0a

Heat exchanger 1 (duty or net area)

Columns (e.g., distillation) excluding heat exchangers 0(a) + number of side streams
(a) Add 1 degree of freedom for each extra pressure that is set (need an extra valve, compressor, or pump), e.g., in the flash tank, gas phase 
reactor, or column.

Local (linear) method

In terms of the unconstrained variables, the loss function 
around the optimum can be expanded as (Skogestad, 2000):

2

2

1( , ) ( )
2optL J u d J d z= − =

With:

1/2 1/2 1( ) ( )uu opt uu optz J u u J G c c−= − = −

where G is the steady-state gain matrix from the 
unconstrained degrees of freedom u to the controlled 
variables c (yet to be selected) and Juu is the Hessian of 
the cost function with respect to the manipulated variables 
u. Truly optimal operation corresponds to L = 0, but 
in general L > 0. A small value of the loss function L is 
desired as it implies that the plant is operating close to its 
optimum. Note that the main issue here is not to find the 

optimal set points, but rather to find the right variables to 
keep constant.

Assuming that each controlled variable ci is scaled such 
that:

' ' '

2
1c opte c c= − ≤

the worst case loss is given by (Halvorsen, Skogestad, 
Morud, & Alstad, 2003):

( )2
max 21 1/2

1

1 1max
2ce

uu

L L
S GJσ≤ −

= =
  

where S1 is the scaling matrix for ci given by:

1
1

( )i

S diag
span c

 
=  

 

(3)

(4)
(5)

(6)

(7)
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where span(ci) = Dci,opt(d) + ni. Here, Dci,opt(d) is the 
variation of ci due to variation in disturbances and ni is the 
implementation error of ci.

If the matrix Juu is too cumbersome to be obtained, 
and if it is assumed that each ‘‘base variable’’ u has been 
scaled such that a unit change in each input has the same 
effect on the cost function J (such that the Hessian Juu is a 
scalar times a unitary matrix, i.e., Juu = aU), then Equation 
6 becomes

( )
max 2

1

1
2

L
S G

α

σ
=

  

where a = s(Juu). Thus, in order to minimize the loss, L, 
s(S1GJuu

-1/2) or alternatively s(S1G) should be maximized; 
the latter is the original minimum singular value rule of 
Skogestad (2000).

As it can be seen, in the method of selection of self-
optimizing control structures we need to obtain the gain 
matrix G and the Hessian matrix Juu in order to compute the 
value of the loss function L. In this work, we used the Akima 
Cubic Spline interpolation method to obtain these matrices. 
Moreover, the loss function L depends on the subset of 
candidate controlled variables that maximize the minimum 
singular value s(S1GJuu

-1/2) (or s(S1G)). In other words, 
we start with a big gain matrix G’ where all candidates 
are included, this gives a tall matrix with more rows than 
columns. But since the calculation of the loss function uses 
only a subset of these variables corresponding to exactly 
the number of unconstrained degrees of freedom, one needs 
to search among all possible square submatrices G to find 
the one that gives the maximum minimum singular value 
according to the formulas in Equation 6 or 8. These subsets 
can be obtained by a feature selection method. In this work 
we use the branch-and-bound bidirectional algorithm as 
described in Cao and Kariwala (2008). The technique takes 

advantage of the monotonicity property of the minimum 
singular value to quickly determine the subset of controlled 
variables that minimizes the loss function.

In the following subsections, we give a brief review of 
the mathematical concepts used by the proposed automatic 
tool to select the best sets of self-optimizing control 
structures.

Computation of the gain and Hessian matrices

The accuracy with which the gain G and Hessian 
Juu matrices are obtained is crucial to the success of the 
application of the self-optimizing local method described 
in the last section. However, mathematical models in 
commercial process simulators do not make analytical first 
or second order derivative information available to the 
user. Therefore, numerical, less precise methods are the 
only viable manner to derive such information.

G and Juu are calculated with respect to the nominal 
optimal operating point, i.e., when disturbances are 
nominal. One straightforward way to numerically obtain 
the gain matrix G is to use finite differences, like the simple 
first order forward difference approximation in Equation 9, 
to compute each element Gi,j (Araujo et al., 2007a).

0

( ) ( )( ) lim ji

h
j j

c u e h c uc u
u h→

+ −∂
=

∂

where i = 1, …, nc is the index set of candidate variables, 
j = 1, …, nu is the index set of manipulated variables, h is 
the vector of increments for each input uj, and ej = [0 0 
0 … 1 … 0] is the zero vector except for the jth-element 
which is 1.

The Hessian Juu can be similarly evaluated by, e.g., the 
following simple approximation in Equation 10 (Araujo et 
al., 2007a).

0

( ) ( ) ( ) ( )( ) lim
[ ]

ii jj ii jj
Th

i j ij

J u E h E h J u E h J u E h J uJ u
u u hh→

+ + − + − + +∂
=

∂ ∂

where Eij is the zero matrix except for the ij-element which 
is 1.

Equation 9 has a significant advantage, that is to say, 
the realization of a single increment for obtaining the gain 
element Gi,j. However, one important factor to be addressed 
is the accuracy of the above computation, since Gi,j is being 
evaluated at a single point, and it is known that the accuracy 
increases as higher order methods that compute the value 
of the function at more points are used. Moreover, the size 
of the increment is hard to determine due to both rounding 
error and formula error. These problems become even 
more serious when the objective is to compute the Hessian 

matrix Juu, a matrix of second derivatives, as shown in 
Equation 10.

A workaround to achieve better accuracy without the 
instability problems common to finite difference methods 
is to use polynomial approximations. In this work we use 
the piecewise cubic polynomial approximation of each Gi,j 
via the Akima cubic spline, as well as each element of the 
Hessian matrix Juu via the bicubic spline. It is important to 
note that, like any other numerical method used to compute 
second derivatives, high accuracy in the calculation of 
the Hessian matrix cannot be guaranteed due to intrinsic 
sensitivity of the approximation, unless an analytical 

(8)

(9)

(10)
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solution can be employed, which does not happen in the 
majority of the cases. This is why in the present work we 
used the bicubic spline to compute the Hessian matrix Juu 
due to its smoothness property to obtain the best non-linear 
(polynomial) approximation from simulation data around 
the desired operating point.

The advantage of employing piecewise cubic spline 
polynomial functions of higher degree may be seen 
in certain applications, e.g., when a smooth function 

undergoes an abrupt change somewhere in the region 
of interest, in which case the approximation gets very 
unstable and inaccurate, as it happens with, e.g., the 
natural spline approximation since it utilizes all data points 
simultaneously to calculate the coefficients for the entire 
range of interpolation. As a consequence, one may expect 
possible oscillations in the vicinity of a point outside the 
curve, as shown in Figure 1. 

Figure 1. Behavior of the natural spline vis-à-vis the Akima spline showing oscillation of the former around an outlier

Thus, one disadvantage of cubic splines is that they 
could oscillate in the neighbourhood of an outlier. On the 
graph of Figure 1 one can see a set of points having one 
outlier. The cubic spline with boundary conditions is green-
coloured. On the intervals which are next to the outlier, the 
spline noticeably deviates from the given function because 
of the outlier. The Akima spline is red-coloured. It can be 
seen that, in contrast to the cubic spline, the Akima spline 
is less affected by the outliers. In other words, the Akima 
spline is a special spline which is stable to the outliers, 
and this is one of the reasons this spline interpolation 
technique was used in this work to avoid these oscillations 
which can seriously compromise the computation of the 
elements of the gain matrix G, which is very sensitive to 
such degenerations.

The method of Akima (1969) is based on a piecewise 
function given by a polynomial of the third order in 
each interval for the case of a single-valued function. In 
this case the method is somewhat similar to the natural 
spline function of degree three. As in the spline function, 
the continuity of the function itself and of its first-order 
derivative is assumed. However, instead of assuming the 
continuity of the second-order derivative as in the third-
order spline function, the Akima method determines the 
direction of the tangent locally under certain assumptions. 
By doing so, a curve piecewise to the given set of data 

points can be fitted without having discontinuities in the 
curve and its slope, and this represents an advantage of the 
Akima spline over the other spline interpolation methods, 
which improves the accuracy of the interpolation. This is 
yet another reason to use this interpolation method in this 
work since data points between interpolation points can be 
predicted more accurately, and as a result derivatives can 
be calculated more precisely to determine the gain matrix 
G.

It is assumed that the direction of the slope of the curve 
at a given point (xi, xi+1) is determined by the coordinates 
of five points fi-2, fi-1, fi, fi+1, and fi+2, the function values in 
the vicinity of the point in question. In other words, points 
that are more than two intervals away are assumed not to 
affect the determination of the slope. The coefficients of 
the piecewise cubic polynomial are adjusted locally, which 
in turn requires information only about the points in the 
vicinity of the range of interpolation. In other words, the 
function values at (xi, xi+1) depend on the values of fi-2, fi-1, fi, 
fi+1, and fi+2. The idea of the method is to obtain the slope of 
the curve at each point, thus ensuring the continuity of the 
first and second derivatives. The method then assumes that 
the slope of the curve is given by five points, i.e., the point 
of interest being the centre point, two points downstream 
and two upstream (Akima, 1969; Dubey and Upadhyay, 
1989). So, given a set of five points (named 1, 2, 3, 4 and 
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5) in coordinate plane, the slope of the curve at the central 
point is given by Equation 11:

( )
( )
4 3 2 2 1 3

4 3 2 1

m m m m m m
t

m m m m
− + −

=
− + −

where m1, m2, m3 e m4 are the slopes of the lines given by 
the segments 45, 34, 23, and 12, respectively.

The slope of the curve at point 3 depends only on the 
slopes of four segments, regardless of the interval between 
them. When m1 = m2 and m3 = m4, Equation 11 returns a 
different result for t. In this case, t is recalculated using an 
arithmetic average of the values of m2 and m3, i.e.:

( )2 3

2
m m

t
+

=

When the slopes of the curves for the set of points are 
obtained, four boundary conditions are used to determine 
the piecewise polynomial, namely:

1 1 1and atdyy y t x x
dx

= = =

2 2 2and atdyy y t x x
dx

= = =

where y is the piecewise cubic polynomial:

( ) ( ) ( )2 3
0 1 1 2 1 3 1y p p x x p x x p x x= + − + − + −

The coefficients p0, p1, p2 and p3 are determined by 
applying the boundary conditions in Equations 13 and 14 
to Equation 15. This produces the following expressions 
for the coefficients:

0 1p y=

1 1p t=

( )
( )

( )

2 1
1 2

2 1
2

2 1

3
2

y y
t t

x x
p

x x

 −
− − − =

−

( )
( )

( )

2 1
1 2

2 1
3 2

2 1

2 y y
t t

x x
p

x x

 −
+ − − =

−

Note that the interpolated points are independent 
of the scaling of the x and y axes. After obtaining the 
piecewise cubic polynomials in each interval, first and 
second order derivatives are then calculated by analytically 
differentiating Equation 15 with respect to x, therefore 
producing the gain matrix.

In order to reflect the true nature of the Akima method 
when applied to smooth curve fitting some aspects must 
be considered. Since the method interpolates the given 
data points it is applicable only to the case where the 
precise values of the coordinates of the points are given. 
It should be recognized that all experimental data have 
some errors in them, and unless the errors are negligible it 
is more appropriate to smooth the data, i.e., to fit a curve 
approximating the data appropriately, than to fit a curve 
passing through all the points. In the present work our set 
of points is deterministically calculated by a commercial 
simulator, therefore no error is attributed due to experiment. 
Use of this method is not recommended when given data 
points manifest apparent regularity or when we have a 
priori knowledge on the regularity of the data. This is not 
the case when working with information obtained from 
simulations using a mathematical model since no one can 
guarantee regularity of the data. As is true for any method 
of interpolation, no assurance can be given of the accuracy 
of the interpolation, unless the method in question has been 
checked in advance against precise values or a functional 
form. The method yields a smooth and natural curve and is 
therefore useful in cases where manual, but tedious, curve 
fitting will do in principle. This is clearly the reason why it 
is used in situations like the one approached in this work. 
For single-valued functions, the resultant curve is invariant 
under a linear-scale transformation of the coordinate 
system. In other words, different scalings of the coordinates 
result in the same curve. This favors the use of scaling of 
the manipulated and specially controlled variables that 
otherwise can vary widely in magnitude.

In the computation of Juu we seek an estimate of J(u1, 
u2, …, unu) from an n-dimensional grid of tabulated values 
of J and n one-dimensional vectors giving the tabulated 
values of each of the independent variables u1, u2, …, unu. 
In two dimensions (the case of more dimensions being 
analogous in every way), suppose a matrix with function 
values J’[1…m][1…n] is available as obtained, e.g., from 
simulations in a commercial simulator. The values of each 
element of the vectors u1’[1…m] and u2’[1…n] are also 
given. Then we have that J’[j][k] = J(u1’[j], u2’[k]), and we 
desire to estimate, by interpolation, the function J at some 
not tabulated point (u1, u2). In a square grid this would 
correspond to having u1’[j] £ u1 £ u1’[j+1] and u2’[k] £ u2 
£ u2’[k+1] such that J1 º J’[j][k], J2 º J’[j+1][k], J3 º J’[j+1]
[k+1], and J4 º J’[j][k+1]. The bicubic spline interpolating 
function, and derivatives are given in Equations 20:

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)
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where the scaled coordinates t and v are given, e.g., by 
Equations 21 and 22, respectively.
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The quantities cij are obtained from the functions and 
derivative values are a complicated linear transformation, 
with coefficients which, having been determined once 
in the mists of numerical history, can be tabulated and 
forgotten. In order to increase smoothness, the values of 
the derivatives at the grid points are determined globally 
by one-dimensional splines. To interpolate one functional 
value, m one-dimensional splines across the row of the table 
are performed, followed by one additional one-dimensional 
spline down the newly created column. However, to save 
precomputation and storage of all derivative information, 
spline users typically precompute and store only one 
auxiliary table of secondary derivatives in one direction 
only, then one need only do spline evaluations (not 
constructions) for the m row splines. Nevertheless, a 
construction and evaluation is still necessary for the final 
column spline. For more information on this procedure, 
the reader is referred to Numerical Recipes (2007). After 
numerically obtaining the Hessian matrix Juu, we still need 
to do a slight adjustment to make it positive definite. To 
this end we perform a modified Cholesky factorization 
(Nocedal and Wright, 2006), which guarantees that the 
final Hessian is positive definite without modifying it 
substantially. This is done by increasing the diagonal 
elements of Juu encountered during the factorization (where 
necessary) to ensure they are sufficiently positive.

The branch-and-bound method for variable selection

In the self-optimizing control technology, the number 
of candidate controlled variables should naturally exceed 
the number of unconstrained degrees of freedom for the 
definition of the control structure (Skogestad, 2000). 
Therefore the gain matrix G’ is usually a tall matrix, and 
one needs to select those rows (controlled variables) that 
maximize the minimum singular value of S1GJuu

-1/2 (or 
S1G) according to the maximum singular value rule, as 
discussed previously.

Screening through all possible subsets of controlled 
variables, i.e., all possible square G matrices, one at 
time in order to evaluate s(S1GJuu

-1/2) (or s(S1G)) can be 
overwhelming even for small problems due to the effect 
of the combinatorial explosion. For example, with 10 
unconstrained degrees of freedom and 50 candidate 
controlled variables, which represents a modest process 
plant, there are:

1050 50! 1 02722781 10
10 10!40!

. 
= = × 

 

possible control structures, without including the alternative 
ways of controlling inventories. Clearly, an analysis of all 
of them is intractable.

Fortunately, methods of feature selection applied to 
variable selection overcome this problem quite effectively. 
One such method, and the one used in this work, is the 
branch-and-bound algorithm. This global optimization 
technique, also known as branching and pruning, can solve 
combinatorial problems of selecting subsets of variables 
without the need for thorough evaluation of all existing 
subsets in the problem. Since its first appearance in the 
literature as proposed by Lawlere and Wood (1966) and 
further modified to introduce a simplified algorithm that 
could be used in subroutines (Narendra & Fukunaga, 1977), 

(20)

(21)

(22)
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the technique has been improved to make the method still 
more efficient, with fewer iterations and runtime (Cao 
& Saha, 2005; Cao & Kariwala, 2008; Kariwala & Cao, 
2009; Saha & Cao, 2003).

The principle underlying the branch-and-bound 
algorithm for subset selection is based on the fact that 
resolving a difficult problem can be equivalent to solving 
a series of simple related problems derived from the main 
problem such that the solution to these simple problems can 
lead to the solution of the original problem. If the solution 
is not adequate, the subdivision of the problem is repeated 
until there are no more sub-problems to be solved. This is 
the general principle of the branch-and-bound algorithm.

Suppose XS = {x1, x2, …, xS} is a set of S elements and 
suppose a subset Xn with n elements is selected from XS 
(Xn ⊂ XS). Thus, there are S!/n!(S – n)! possible ways of 
selecting Xn subsets out of XS. If we let Γ be the criterion 
function used during the selection procedure, then there 
is a subset of n elements, denoted X*

n, which satisfies the 
following equality:

( ) ( )* max
n S

n nX X
X X

⊂
Γ = Γ

Thus, we can say that X*
n is the global optimal subset 

solution of Equation 23 with respect to the criterion Γ. 
It is assumed that the criterion function Γ satisfies the 
monotonicity property given by:

( ) ( ), if n S n SX X X XΓ ≤ Γ ⊆

According to this property a subset with fewer variables 
cannot be better than any larger set containing this subset 
(Saha & Cao, 2003).

Ordinary branch-and-bound algorithms are 
unidirectional, in a sense that either the subsets can be 
shrunk one by one until the target size, or the subsets can 
be expanded until reaching the desired size. In the case of 
the descending branch-and-bound algorithm, suppose m > 

n and that ( )n mXΓ is an upper limit on Γ descending on all 
subsets of m elements, Xm, i.e.:

( ) ( )max
n m

n m nX X
X X

⊆
Γ ≥ Γ

Additionally, let B be the lower limit of Γ(X*
n), or:

( )*
nB X≤ Γ

So, it follows that:

( ) ( ) ( )*if  ,        n m n n n mX B X X X XΓ < Γ < Γ ∀ ⊆

Th condition described in Equation 27 indicates that 
no subset of Xm can be an optimal subset. Thus, Xm and 
all subsets thereof can be discarded without further 
evaluation. Analogously, the selection of a subset can 
also be performed in ascending order. An upward search 
starting from an empty set gradually expands the superset 
element by element to achieve the size requirements for a 
subset. Cao and Kariwala (2003) showed that if we assume 
B as the lower limit of Γ(X*

n) as defined in Equation 25, and 
taking ( )n mXΓ  (with m < n) as an upper limit upward on all 
Γ subsets of m elements Xm, it follows that:

( ) ( )max
n m

n m nX X
X X

⊇
Γ ≥ Γ

Therefore,

( ) ( ) ( )*if  ,        n m n n n mX B X X X XΓ < Γ < Γ ∀ ⊇

Equation 29 guarantees that none of the supra sets Xm 
can be globally optimal. Therefore, Xm and their supra sets 
can be pruned without additional considerations.

In this work, in order to obtain the best sets of 
controlled variables using the branch-and-bound technique 
just described we used the bidirectional branch-and-
bound algorithm proposed by Cao & Kariwala (2008), 
where the search is carried out in both directions, making 
this a much more efficient method than traditional 
unidirectional branch-and-bound algorithms. The code 
was re-implemented as a Visual Basic for Application 
(VBA) subroutine based on the original implementation 
developed by Dr. Yi Cao using Matlab® 7.4 (R2007a) 
that can be found in the File Exchange on the MathWorks 
website (the complete code can be found in the MathWorks 
File Exchange website under the following address: http://
www.mathworks.com/matlabcentral/fileexchange/17480-
bidirectional-branch-and-bound-minimum-singular-value-
solver-v2, accessed on September 10, 2013).  

Monotonicity of the minimum singular value. The 
criterion function for the branch-and-bound algorithm 
used in this work is obviously the minimum singular value, 
and the only limitation to use the method just described is 
that this criterion function must satisfy the monotonicity 
property of Equation 24. Suppose G’ is the system’s 
gain matrix of unconstrained variables u comprising 
all the candidate controlled variables for the selection. 
Take a subset of these variables that corresponds to the 

selection of a row of G’. Assume [ ]1, , T
Sg g  and denote 

1,
T

i i iG G g− =   , where i = n,..., S. Then, it can be shown that 
the monotonicity of the minimum singular value means:

( ) ( ) ( )1r r rn n SG G Gσ σ σ+≤ ≤ ≤

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

http://www.mathworks.com/matlabcentral/fileexchange/17480-bidirectional-branch-and-bound-minimum-singular-value-solver-v2
http://www.mathworks.com/matlabcentral/fileexchange/17480-bidirectional-branch-and-bound-minimum-singular-value-solver-v2
http://www.mathworks.com/matlabcentral/fileexchange/17480-bidirectional-branch-and-bound-minimum-singular-value-solver-v2
http://www.mathworks.com/matlabcentral/fileexchange/17480-bidirectional-branch-and-bound-minimum-singular-value-solver-v2
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Therefore, since the minimum singular value possesses 
the monotonicity property, global optimality is always 
guaranteed using the branch-and-bound method. For more 
results on this refer to Cao et al. (1998).

As the selection of manipulated variables is determined 
by the user, it is prone to generate singular gain matrices, that 
is to say, matrices with column rank deficiency. Therefore, 
as a matter of precaution, a safeguard check of the rank of 
G’ obtained by the Akima cubic spline is performed prior 
to the application of the branch-and-bound technique. If 
the calculated rank of G’ is found to be deficient then the 
branch-and-bound technique is applied to select the best 
sets of manipulated variables. After choosing a suitable set, 
the calculations are then resumed to find the best sets of 
controlled variables.

DEVELOPMENT OF THE PROPOSED 
AUTOMATIC TOOL

Studies like the ones reported by Araujo and Skogestad 
(2007a), Araujo and Skogestad (2007b), Araujo and 
Skogestad (2008), and in the PhD thesis of Araujo (2007) 
under the supervision of Dr. Sigurd Skogestad, use 
mathematical models of whole large scale processes at 
steady state derived from the commercial simulator Aspen 
Plus®. From these models, simulations are performed and 
the information needed to obtain the gain matrix G’ is read 
in Microsoft Excel® with the aid of the OLE technology 
(Windows® Object Linking and Embedding). However, 
the evaluation of G’, the calculation of the Hessian matrix, 
inverse matrix computation, minimum singular values 
calculations, and branch-and-bound optimization were 
done using the arsenal of mathematical tools available in 
Matlab®.

As this work aims at minimizing the effort expended 
by the engineer when executing the most laborious steps 
of the method, such as construction of the gain matrix 
and obtaining the best sets of variables, we then chose 
Microsoft Excel® as the platform for user interaction 
integrated with the commercial simulator PRO/IITM (2012) 
for model simulation. These choices were dictated by the 
widespread and easy use of Microsoft Excel® (here we 
used Microsoft Office 2010) with its known Visual Basic® 
Editor (VBE) where applications with Visual Basic® for 
Applications (VBA) can be developed. Moreover, the 
software for process simulation development at steady 
state, PRO/IITM version 9.1, allows for process design and 
operational analysis, which was developed for rigorous 
calculations of mass and energy balances for a wide range 
of chemical, petrochemical, and refining processes. The 
choice of PRO/IITM was due to stable communication 
with Microsoft Excel® via COM technology (described 
in more detail in the next section), in addition to detailed 
documentation giving step-by-step instructions on how to 
efficiently transfer data between both platforms (Invensys, 
2011). 

Communicating Microsoft Excel® with PRO/IITM

Microsoft Excel® and PRO/IITM communicate via 
Component Object Model (COM) technology under 
Microsoft Windows®. The PRO/IITM architecture for 
communication using COM technology is better visualized 
in Figure 2.

According to the Invensys’s COM Server Programmer’s 
Guides and Tutorial (Invensys, 2008), the COM server 
consists of the following parts:

●● The PRO/IITM COM server provides support for COM 
interface on PRO/IITM. Other applications written in 
Microsoft Excel®, Visual Basic, C++, and any other 
language with COM communication interacts with this 
interface.

●● The PRO/IITM server’s consists of several DLLs 
(Dynamic Link Library). This includes functions that 
access and manage data objects from PRO/IITM such as 
routines that calculate properties of a process stream.

●● The PRO/IITM Database (with extension .prz) contains 
all the data need to model and run the simulation.

Users with access to the PRO/IITM COM server include 
applications in VB, Excel Macro, C++, C #, Java, Matlab 
or any other application that supports COM technology. 
In this work, the application uses subroutines built in the 
Visual Basic for Application in Microsoft Excel®.

The PRO/IITM Database is the place where all data 
objects are stored. To access this information, the class of 
the object and its respective attribute need to be identified. 
For example, the class can be of type “Stream”, which 
identifies the creation of a stream object and the reading 
of, e.g. the “temperature” attribute of this stream results in 
the record of the temperature of the specified stream. All 
classes and attributes of a given simulation can be easily 
found in the Invensys’s COM Server Reference Guide 
(Invensys, 2011).

Figure 2. Architecture of COM server PRO/IITM (Adapted from 
Invensys (2011)).
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In order to establish an efficient communication between 
Microsoft Excel® and PRO/IITM, several subroutines 
needed to be created within VBA abiding to the logic and 
structure of the two pieces of software to provide the main 
commands used to create, access, read, write and close 
objects. Access to variables in such architecture and the 
way their values are retrieved is showed in Figure 3 where 
the basic required operations are also depicted.

Figure 3. Flow configuration using COM technology.

The required syntax to determine the connection 
between Microsoft Excel® and PRO/II can be found in the 
manuals COM Server Programmer’s Guides and Tutorial 
and COM Server Reference Guide (Invensys, 2011).

Implementation of the automatic tool

In Figure 4 we show the flow diagram of the main 
operations performed automatically to determined best sets 
of controlled variables using the proposed automatic tool.

Once the set of manipulated variables (ui) (each 
disturbances di is chosen among the set of manipulated 
variables), and the set of candidate controlled variables (ci) 
are defined by the user via the Graphical User Interface 
(GUI), the gain matrix G’ and the Hessian matrix Juu can be 
computed (in this version of the proposed automatic tool, 
G’ is computed with respect to the vector of manipulated 
variables). The left part of Figure 4 describes how Juu 
is computed, while the right part describes how G’ is 
computed. For each uj selected (j = 1, …, nu), the next 

uk’s (k = j, …, nu) are selected and added to an increment 
to compute a row in the upper triangular part of Juu. The 
resulting vectors containing the values of the vector 
of candidate controlled variables c for each uj and the 
corresponding values of the cost function Jjk are sent to the 
subroutine that computes the Akima cubic spline and first 
derivatives (Gij) as well as Juu. Then the branch-and-bound 
algorithm is applied to the singular value of the scaled 
problem using this information, and the resulting best 20 
sets of controlled variables are printed on the screen.

How numerically accurate G’ and Juu are obtained 
depends on how many points are used for interpolation; 
the more points available the more accurate they will be. 
However, too many points will increase substantially the 
computation time since for each point one pass of the flow 
diagram of Figure 3 is required, because that is the way 
PRO/IITM communicates with Microsoft Excel®. Therefore, 
it is convenient to fix the maximum number of points.

The process model in PRO/II is simulated several times 
in the inner loop to generate points to define the gain matrix 
G’. The resulting grid point is then processed by the Akima 
cubic routine used to generate the spline for each candidate 
controlled variable ci as a function of each manipulated 
variable ui. We here make use of the freely available 
package Alglib® (Alglib, 2013) to conduct all the algebraic 
computations to this end. Alglib® has a large set of numerical 
programming routines in, e.g., linear algebra, optimization, 
and differentiation methods, written in VB, VB.Net, C#, 
C++ and cPhyton that efficiently performs all the necessary 
calculations. The splines in this work are generated using 
the Alglib® functions: spline1dbuildakima(uj , cj, t, k), 
spline1ddiff(k, p, s, ds, d2s), spline2dbuildbicubic (u, u, J, 
M, N, C), spline2ddiff(C, ui, uj, J, Jui, Juj, Juiuj).

In the branch-and-bound block of the diagram of 
Figure 4, we first determine whether the rank of G’ is 
full, as discussed above. Otherwise, the best reduced set 
of manipulated variables with full rank is chosen. Here 
the tool also has the option to let the user decide upon 
a suitable set of manipulated variables that best suits a 
particular application. After defining the ultimate gain 
matrix G’, the branch-and-bound procedure is applied for 
the selection of best subsets of controlled variables based 
on the maximization of the minimum singular, as also 
described above.

Graphical Interface and Handling

As mentioned previously, the objective of the proposed 
automatic tool is to facilitate the appropriate selection of 
the best sets of controlled variables without much effort 
by the user. For this purpose, an efficient and easy-to-use 
graphical interface (Figure 5) was developed in Visual 
Basic for Application in Excel which accompanies the 
extensive programming required to carry out all the 
necessary computations.
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Figure 4. Flow diagram of main steps performed by the automatic tool.

The following bullets describe the main functionalities 
of the graphical interface of Figure 5:

1.	 Configuration tab.
2.	 Displays the name of the selected PRO/II (.prz 

extension) file.
3.	 Button used to load all the configured variables from 

the PRO/II model for selection using the graphical 

windows labeled Disturbance, Input Variables, and 
Output Variables.

4.	 Options for selecting the method for calculating the 
gain matrix.

5.	 Activation of the calculation of the Hessian matrix of 
the cost function. In this case, it is mandatory to insert 
a cost function in the PRO/II model.

6.	 Starts the procedure of calculating the gain matrix and 
the Hessian matrix if requested.
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7.	 Progress bars. The upper progress bar shows the 
progress of the steps being processed in each of the 
selected methods in parts 4 and 5 above. The lower bar 
shows the overall progress.

8.	 Button used to remove the last variable entered in the 
worksheet.

9.	 Opens or closes the PRO/II model interface previously 
defined in part 2.

10.	Button to cancel the execution of the procedure being 
performed by the tool.

11.	Message log. Displays the procedure being currently 
carried out by the tool.

12.	Button used to exit the tool. It stays disabled during 
computations.

13.	Button to select the PRO/II process model (.prz) file to 
be worked out by the tool.

14.	Button to clean up the worksheet. All data written by 
the tool in the worksheet labeled “BRPWC” is erased.

15.	Tab with the results of the possible sets of manipulated 
variables and the best sets of candidate controlled 
variables. Figure 6 shows in more detail the display 
lists for the sets of manipulated variables and controlled 
variables.

Figure 5. Features of the graphical interface used to configure a given case.
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After deciding on which independent manipulated 
variables and disturbance as well as candidate controlled 
variables are selected, these are written on a worksheet 
where the user can have an overview of the variable 
configuration. Figure 7 shows an instance of a worksheet 
with some selected variables.

The element 15 of Figure 5 displays the tab used to 
show the sets of variables (manipulated and controlled 
variables) obtained by applying the branch-and-bound 
technique. Figure 6 shows the main features available in 
this tab.

16.	Command to calculate the best sets of controlled 
variables.

17.	Button used to load available sets of manipulated 
variables and their respective minimum singular values 
in descending order as computed by the branch-and-

bound routine in the canvas below (see bullet 18).
18.	Displays the results of the minimum singular value for 

sets of manipulated variables used in the generation of 
the gain matrix. Upon selecting any given row, the gain 
matrix G’ is computed based on the corresponding set 
of manipulated variables.

19.	List of the best sets of controlled variables and their 
respective minimum singular values in descending 
order. The first column  shows the minimum singular 
value, and in the following columns the indexed set 
of controlled variables numbered according to their 
position in the worksheet depicted in Figure 7. For 
instance, in Figure 6 the highlighted row displays 
controlled variables 3 and 6, which in Figure 7 
correspond to the molar flow rate of stream B and the 
reflux rate of equipment T1, respectively.

Figure 6. Features of the graphical interface used to display the results of the calculations.
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20.	Button used to load the best sets of controlled variables 
and their respective minimum singular values in 
descending order in the canvas (see bullet 19).

21.	Command to calculate the RGA matrix for a given set 
of controlled variable selected in the canvas 19 by the 
user. This will be displayed in a separate worksheet.

22.	Button to exit the tool.

After execution, a worksheet labeled “Report_Spl” 
stores the results of the computations for analysis. The 
gain matrix is further split into two parts, one due to 
manipulated variables and the other due to disturbances. 
They are written separately in two new worksheets labeled 
“Gmatrix_Spl” and “Gdmatrix_Spl”, respectively. The sets 
of controlled variables determined by the method, as well 
as their respective minimum singular values, are written in 
the worksheet “SetOfVariables_Slp”.

DEETHANIZER COLUMN CASE STUDY

In this section we explore an example application 
using the proposed automatic tool. The process consists 
of the separation of ethane from a mixture of propene 
and propane, and isomers of butane using a distillation 
column (Hori and Skogestad, 2007a). A schematic of the 
deethanizer column is shown in Figure 8.

Figure 8. Flowsheet of the deethanizer column.

A feed stream (stream ALIMENT) with average 
composition described in Table 2 feeds the distillation 
column where it splits into an overhead vapor distillate 
(stream DESTILADO) containing basically ethane and 
some propene, and a bottom product (stream BASE) 
comprised essentially of propane. The 37 stage column 
(including reboiler and condenser) operates under a top 
pressure of 19.2 kg/cm2, and is modeled in PRO/II as an 
equilibrium stage column. The thermodynamic model used 
for modeling was the SRK equation of state and liquid 
density was calculated by the API method.

Table 2. Feed stream data (stream ALIMENT).
Ethane mole fraction 0.021
Propane mole fraction 0.598
Iso-Butane mole fraction 0.125
n-Butane mole fraction 0.006
Propene mole fraction 0.25
Flow rate (ton/h) 150
Feed stage (from top) 11
Feed temperature (oC) 65

Degrees of freedom
We consider nominal operation with fixed throughput. 

Moreover, dynamic degrees of freedom, which include 
inventories, need to be controlled to ensure stable operation. 
Therefore, we are left with a certain number of steady-state 
degrees of freedom, some of which for optimization.

There are a total of 6 dynamic degrees of freedom 
for the deethanizer column system, which include the 
upstream feed flow, which is fixed at the nominal value 
(see Table 2); two liquid levels, i.e., bottom level and reflux 
drum level, that must be controlled for stable operation; 
column pressure, which here we consider fixed at the 
nominal value; and bottom and top compositions of some 
key components. Therefore, we are left with 2 steady-state 
degrees of freedom for optimization.

There are four variables that can be chosen as 
manipulated variables in the unconstrained case. These 
are u0 = [D, V, B, L], where D is the distillate flow rate, 
V is the boil-up rate, B is the bottom flow rate and L is 
the reflux flow rate. This gives 6 possible combinations of 
pairs of these manipulated variables. We can also consider 
nonlinear combinations of these and F, the feed flow rate, 
e.g. L/D, L/F, V/B, V/F, D/F, and B/F, as is sometimes done 
in industrial practice. As our objective here in this work is 
to present the capabilities of the proposed automatic tool 
and not to investigate the case study thoroughly, we choose 
the set u = [B, V] as manipulated variables corresponding 
to the 2 steady-state degrees of freedom. Note that B gives 
an indirect measure of energy requirements for the column, 
so it may be an advantage to keep it constant despite 
disturbances. As disturbances we consider the propane 
specification at the column overhead vapor and ethane 
specification at column bottom.
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Optimization

The objective is to ensure product specification, and we 
here consider deviation from nominal operation as given 
by the following cost function that needs to be minimized.

2 2

, ,

, ,

propane propane ethane ethane
top top nom bottom bottom nom

propane ethane
top nom bottom nom

x x x x
J

x x
   − −

= +        

In Equation 31, x is the component molar fraction and 
“nom” stands for nominal value, and top and bottom are the 
DESTILADO and BASE streams, respectively. We constrain 
the column operation to guarantee product specification 

such that 0.15 and 0.01propane ethane
top bottomx x≤ ≤ .

Clearly, optimal operation is achieved when there is 
no deviation from nominal operation, in which case J = 0 
and the two constraints are active. Thus, we would have no 
degrees of freedom for optimization since the problem is 
constrained. However, control of composition is known to 
be difficult due to measurement delay and sensor reliability. 
Therefore, we assume indirect control of composition using 
more accessible secondary variables such that the deviation 
as given by Equation 31 is minimized. In other words, we 
select sets of controlled variables to assure self-optimizing 
control of the process by applying the minimum singular 

value rule. To this end, we will use the proposed automatic 
tool for computations.

Selection of secondary controlled variables

We here follow Hori and Skogestad (2007a) and choose 
to select candidate controlled variables that are promptly 
measured. These are stage temperatures, flow rates, and 
flow rates ratios. We chose stages where temperature 
change is large, and found that stages 2 (T2), 7 (T7), 
10 (T10), 19 (T19), 25 (T25), and 34 (T34) are suitable 
for temperature measurements. We also consider the 
temperature of the bottom (TB) and distillate (TD). Bottom 
(B) and distillate (D) flow rates are included in the set of 
candidate controlled variables, as well as the following 
ratios: L/D (reflux ratio, LD), L/F (reflux rate to feed flow 
rate ratio, LF), V/B (boil-up rate to bottom flow rate ratio, 
VB), V/F (boil-up rate to feed flow rate ratio, VF), D/F 
(distillate flow rate to feed flow rate ratio, DF), and B/F 
(bottom flow rate to feed flow rate ratio, BF). We therefore 
end up with a set of 16 candidates given as c = [T2, T7, 
T10, T19, T25, T34, TB, TD, B, D, LD, LF, VB, VF, DF, 
BF].

In Figure 9 the problem set up as configured using the 
proposed automatic tool is depicted. Note that calculation 
of the Hessian matrix, Juu, is also required. So, we measure 
the loss as given by s(S1GJuu

-1/2).

Figure 9. Set up interface of the variable selection for the deethanizer case study.

In Table 3, the results obtained after running the 
automatic tool shows 16 sets of possible pairs of candidate 
controlled variables sorted by the minimum singular value, 

s(S1GJuu
-1/2). As seen from Table 3, “comfortable” operation 

can be achieved by keeping one of the manipulated 
variables constant, namely the bottom flow rate (B). This 

(31)
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is easy to implement in practice, and we here consider the 
first pair of controlled variables. Note that we could also 
have chosen the second (or third or fourth) pair in Table 
3, which would be equally easy to control and would give 
small loss.

Table 3. Resulting pairs of candidate controlled variables.

Controlled variables s(S1GJuu
-1/2)

B + T2 0.8919

D + T2 0.8919

TD + B 0.7546

D + TD 0.7546

B + L/D 0.3786

D + L/D 0.3786

TD + T2 0.1305

L/D + T2 0.0975

B + T7 0.5034

D + T7 0.5034

TB + T19 0.0322

TB + T25 0.0316

B + T19 0.2764

D + T19 0.2764

B + T25 0.0269

D + T25 0.0269

It took under 30 seconds to produce the results shown 
in Table 3, even when the Hessian matrix is also required 
to be calculated, which takes most of the computation 
time. The branch-and-bound routine is so efficient that 
it basically does not influence the total runtime. The 
important point is that all the tedious computations and 
the proper display of the results for analysis is done very 
efficiently by the proposed automatic tool, rending it an 
extremely viable asset for decision making. Moreover, its 
ease-of-use makes it unique in the plantwide control field.

CONCLUSIONS

This work aimed at describing the development and 
application of an automatic tool for control structure 
selection based on the self-optimizing control technology 
as described by Skogestad (2000, 2004). The initiative 
was inspired by previous work (Araujo and Skogestad, 
2007a; Araujo and Skogestad, 2007b; Baldea, Araujo, and 
Skogestad, 2008; Araujo and Skogestad, 2008; Araujo 
and Shang, 2009a; Araujo and Shang, 2009b; Araujo and 
Shang, 2009c)  applying the self-optimizing control to 
chemical process systems, confirming the efficiency of 
the method. However, these studies used independent and 
unrelated pieces of software such as Matlab®, AspenPlus® 
and Microsoft Excel® in a decentralized fashion via 
extremely tedious computations and data manipulation, 

which of course is only permissible in an academic 
environment, never to be used by practitioner process 
engineers A friendly interface for problem configuration, 
storage of data, and display of results, along with very 
efficient routines to compute the gain matrix (first order 
information), second order information (Hessian of cost 
function), rank of matrices, and subsets of variables that 
maximize the minimum singular value of submatrices 
(bidirectional branch-and-bound), make this proposition 
unique and, to the authors’ knowledge, never attempted 
before in the plantwide control community. The main 
contribution is then clearly to spread the word among 
industrial personnel that a systematic procedure for 
selecting best sets of controlled variables that minimize 
the loss between real time optimal operation and operation 
under self-optimizing control disguised under the veil of 
an automatic tool is now a reality that can be employed by 
anyone who desires to increase profit while ensuring safe 
operation.

NOMENCLATURE

s		  Minimum singular value;
a		  Scalar value;
Dci,opt(d)		 Variation of ci due to variation in 
		  disturbances;
A		  Matrix m by n, Feed of process;
B		  Lower limit of Γ(X*

n), Bottom;
B/F or BF	 Bottom flow rate to feed flow rate ratio;
BAB		  Branch-and-Bound;
c		  Array of controlled variables;
C#		  C-sharp;
C++		  C-plus, plus
ci		  Controlled variable number “i”;
ci,opt		  Optimal value of the controlled variable 
		  ci;
COM		  Componente Object Model;
COMP		  Compressor;
CV		  Controled Variable
		  (ou Variável Controlada);
D		  Distillate;
d		  Disturbances;
D/F or DF	 Distillate flow rate to feed
		  flow rate ratio;
d2s		  Result of the second derivative
		  of the spline;
di		  Disturbance variable number “i”;
ds		  Value of the first derivative of the spline;
G		  Steady-state gain matrix;
G’		  Scaling gain matrix 
g’2		  Active constraints;
g1		  Model equation;
Gi,j		  Element of the gain matrix G;
GUI		  Graphical User Interface;
J		  Cost function;
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j		  Maximum number of points;
Juu		  Hessian of the cost function with
		  respect to u;
k		  Spline interpolator object
L		  Loss function;
L/D or LD	 Reflux ratio;
L/F or LF	 Reflux rate to feed flow rate ratio;
mi 		  Slope number “i”;
n		  Number of elements;
ni		  Implementation error of ci;
p		  Branching point;
pi		  Coefficient number “i” determined
		  by the boundary conditions;
prz		  Extension of PRO/II® simulation model;
S		  Number of elements;
s		  Result of the function at the point p;
S1		  Scaling matrix for ci;
Spl		  Spline;
SVD		  Singular Value Decomposition;
T		  Transpose;
TB		  Temperature of the bottom;
TD		  Temperature of the distillate;
u		  Array with the values of a
		  given manipulated,
		  unconstrained variables;
U		  Unitary matrix;
u’		  Constraint variable;
ui		  Manipulated variables number “i”;
ui,opt		  Nominal input;
uj		  New input value applied to the model g1;
V/B or VB	 Boil-up rate to bottom flow rate ratio;
V/F or VF	 Boil-up rate to feed flow rate ratio;
VB		  Visual Basic;
VB.Net		  Visual Basic dot Net;
x		  Internal variables (states);
X*

n		  Global optimal subset solution;
Xn		  Subset with n elements;
XS		  Set of S elements;
Y		  Polynomial for Akima method;
y1		  Primary variables for control;
y2		  Secondary variables for control;
Γ		  Criterion function;
Δuj		  Increment for input variable.
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