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Abstract – An efficient numerical method for solution of boundary value problems with additional condition is 
presented. The approach is based on the shooting method but the procedure of seeking “the proper shot” allows one to 
satisfy “additional” boundary conditions. General considerations are illustrated by a real example. The computational 
example concerns the “dead zone” regime for the non-linear diffusion-reaction equation in heterogeneous catalysis. 
Accuracy and efficiency of the presented method confirm results obtained for a wide range of changes of process 
parameters, including the vicinity of a critical point. Calculations were performed with the use of the Maple® program.
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INTRODUCTION

Shooting methods, finite difference methods, volume 
methods and orthogonal collocation methods are 
numerical approaches usually employed for solution of 
chemical engineering boundary-value problems. The 
methods are rather well-known and their descriptions 
and applicability in chemical engineering are widely 
reported in research articles and books, e.g., Davis (1984). 
However, there are cases in which applicability of the 
mentioned methods is limited and/or inconvenient. To 
my mind, the most recognizable problem of this type in 
chemical engineering is the Stefan problem in which a 
phase boundary can move with time. The Stefan problem 
is an example of a free boundary problem. One can find 
it in fluid mechanics, combustion, filtration and other 
fields of chemical engineering. It is worth noting that the 
most popular mathematical programs such as Matlab, 
Maple, Mathematica currently do not support this type of 
calculations. Nevertheless, these programs are very useful 

– many authors implement their own algorithms (e.g. 
recently published Matlab procedures given by Campo and 
Lacoa, 2014 or Johansson et al., 2014). Another problem 
demanding an additional condition is presented here, 
the problem of an ordinary differential equation with an 
unknown domain. A task is mathematically related to a 
nonlinear Stefan problem - it can be treated as its stationary 
version. A dead zone problem in heterogeneous catalysis is 
a practical application example. The dead zone regime in 
catalyst pellets will be presented in the next point.

The algorithm presented here is based on the shooting 
method. The shooting method converts the boundary 
value problem (BVP) into an initial value problem (IVP) 
with all the conditions specified at the initial point. The 
missing initial condition was assumed, and the resulting 
IVP is solved for numerous initial conditions (trial and 
error). The BVP problem can be reduced to work out an 
efficient method of finding the proper value of the missing 
initial condition. The procedure proposed here can be 
divided on two steps. First, one should find the range in 
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which the solution lies. Next, the size of the range found is 
gradually reduced to obtain satisfactory accuracy. Solving 
the IVP problem and inspection of results are necessary in 
each step. Any numerical method of IVP integration and 
any method of size reduction of the interval in which the 
initial condition must lie can be used. Calculations were 
performed with the use of the Maple® program. Author’s 
preferences will be presented.

FOUNDATIONS OF THE DEAD ZONE PROBLEM

The term “dead zone” was introduced by Temkin 
(1975), to describe the part of a pellet where the reaction 
does not occur. One of the reasons for the dead zone 
formation is lack of reagents in a porous catalyst center. 
The problem was mentioned and presented also by Aris 
(1975), and it has been recently discussed by York et al. 
(2011) and Andreev (2013). York has examined the case 
of a dead zone formation for catalyst pellets of different 
geometries in which a simple irreversible reaction A→R 
takes place while the kinetic equation is of a power-law 
type. He showed that the dead zone appears if -1<n<1 
and a Thiele modulus value is sufficiently large, i.e., for 
Φ>Φc, where Φc is the critical value of the Thiele modulus. 
For Φ<Φc the reactant concentration in the center of the 
pellet is positive and a dead zone is absent; for Φ=Φc 
concentration in the pellet center drops to zero value and 
a dead zone is also absent. These two cases are outside of 
our interest. ForΦ>Φc, the reactant concentration is equal 
to 0 within the range (0, x0); this range is the “dead zone” 
which appears in the pellet. x0 is an unknown coordinate of 
the end of the dead zone. 

The conditions for the formation of dead zones require 
detailed consideration. The first of the conditions, namely 
-1<n<1 is the necessary condition for a power-law kinetic 
equation. It must be satisfied, otherwise the concentration 
inside a catalyst pellet will always  be greater than zero 
and the dead zone will not appear. But this condition 
does not guarantee dead zone formation. It is insufficient. 
Only simultaneous fulfilling of the second condition 
(Φ>Φc) guarantees that a dead zone will appear. The large 
set of common types of kinetic equations and necessary 
conditions is presented by Andreev (2013). Unfortunately, 
there is not enough available information on sufficient 
conditions. They have been published only for power-
law type kinetics by York (2011) and much earlier by 
Garcia-Ochoa and Romero (1988) for the simplest reaction 
(A→R), and for more complex cases (e.g., consecutive 
parallel reaction) by Andreev (2013). One can conclude 
that, in many practical cases, sufficient conditions for dead 
zone formation are unavailable. It is an uncomfortable 
situation for investigators, it is not known in advance 
which model should be put in practice: whether the regular 
model (simple for solution, with two boundary conditions) 

or the dead zone model (free boundary problem, quite-hard 
for solution) especially as improper use can lead to serious 
errors. For this reason it is particularly important to have an 
opportunity to determine the critical value of the module 
Φc.

A mass-balance of steady-state diffusion with an 
irreversible isothermal chemical reaction A→R is 
described by (in dimensionless terms):
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where a=0 for slab, a=1 for cylindrical and a=2 for spherical 
geometry of the pellet.

When a dead zone appears in the pellet, the boundary 
conditions are described by:
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( ) 11 =c

Coordinate x0 is determined by an additional condition, 
namely:

( ) 00 =xc

To my best knowledge there is no  general analytical 
solution known for the problem of a dead zone. Numerical 
solution of that problem is quite difficult because there is 
not known a point in the middle of a pellet, when a dead 
zone begins. 

Equations (5) – (7) present the analytical solution for 
boundary value problem (1)-(4) for typical geometries (a = 
0, 1, 2) and a power-law kinetic function (York et al., 2011 
and Andreev, 2013).
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The solution presented  will be helpful in further parts 
of the paper. 

ALGORITHMS

A simple inspection of the “dead zone” problem (eqs. 
(1) – (4)) shows that the equations (1), (2) and (4) describe 
a typical IVP and the solution can be obtained by choice 
of the value of x0 (e.g., using a trial and error method). 
Unfortunately, if x0 is chosen as a starting point of 
integration, one can obtain only a trivial solution (c(x)=0). 
For this reason it is necessary to use more sophisticated 
procedure. It is purposeful to defi ne a new independent 
variable:

xz −=1
Consequently, it rearranges eqs. (1)-(4) into:

Let α denotes a value of the derivative of concentration 
with respect to z evaluated at the point z=0 (missing initial 
condition) and let the unknown  α0 be the value for which 
the conditions (10) and (12) are satisfi ed. Then:


0zdz

dc
 

It is easy to show that it corresponds to the original 
problem:

Thus, eq. (9) with initial conditions (11) and (13) and 
an assumed α-value is an IVP-problem to solve. Parameter 
α should be changed until the conditions (10) and (12) will 
be satisfi ed simultaneously (in contrast to the “normal” 
shooting method, where only one boundary condition must 
be satisfi ed). A simple inspection of eq. (6) shows that the 
value of α should be negative, that is α0-values are included 
in the interval (-∞,0). 

Main procedure of α0-value seeking (algorithm A)

Let us assume that a dead zone in the pellet exists and 
the problem has a single solution (the usual case). This 
condition is satisfi ed inter alia by the following data: 

( ) 4;0;2/1 =Φ== accf

According to (5)-(7), for this data one can obtain:
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Taking into account the above solution, the proper 
guess for the eq. (9) is:

0
0 3

38 
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The IVP should be integrated from point z=0 until 
the concentration or its derivative achieves zero; further 
integration has no sense - conditions (10) and (12) cannot 
be satisfi ed simultaneously. It results from the accepted 
assumption that a dead zone in the pellet exists; if 
concentration or its derivative do not achieve zero within 
the tested range, it can be concluded with high probability 
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that a dead zone does not appear for the tested data (e.g., 
the Thiele modulus value is too small).

As can be seen in the results, the concentration decreases 
monotonically from unity, while the derivative increases 
monotonically from the initial value. As it was mentioned the  
α0-value seeking procedure is based on the inspection of 
results of integration of the IVP: eq.(9), with conditions 
eq.(11) and (13). First, three types of the IVP solutions 
depending on the α-value will be presented (see Fig. 1):

●● if the concentration derivative achieves zero while the 
concentration is still positive, too high a value of the 
guess has been assumed - see solid lines in Fig. 1; this 
type of solution will be called further T1

●● if the concentration and its derivative achieve zero 
for the same z-value, the proper value of the guess 
was assumed - see dashed lines in Fig. 1; this type of 
solution will be called further T2

●● if the concentration achieves zero while the derivative 
is still negative, too small a value of the guess was 
assumed - see dotted lines in Fig. 1; this type of solution 
will be called further T3.

To achieve satisfactory accuracy, the proposed 
method of determining the type of solution should 
be sensitive with respect to changes of the α-values. 
The lines presented in Fig. 2 confirm this fact: the 
profiles for two very close values of α: α=-4.6188 and  
α=-4.6189 (-4.6188>α0>-4.6189) are significantly differ. It 
shows that the considered method allows one to obtain the 
missing initial condition value with a high precision.

The algorithm of seeking  the proper value of the initial 
guess is presented as follows:

1.	 The initial value of α can be arbitrarily chosen. Equation 
(9) should be integrated and the obtained solution 
should be qualified as T1 or T3. It determines the upper 
(αH) or the lower limit (αL) of the interval in which α0 
must lie, respectively.

2.	 The next step

a) If the αH-value has been determined, the  T3 type 
of solution can be obtained by decreasing  α and 
integration of eq. (9). This determines the lower 
limit (αL) of the interval in which α0 must lie.

b) If the αL-value has been determined, the  T1 type 
of solution can be obtained by increasing α and 
integration of eq. (9). This determines the upper 
limit (αH) of the interval in which α0 must lie.

3.	 The next guess should satisfy condition αL<α<αH. 
Integration of eq. (9) allows one to determine the type 
of solution for the current value of α.

a) if the current value of αgives a solution of the T1 
type, we have found another new value of αH

b) if the current value of α gives a solution of the T3 
type, we have found another new value of αL.

As a result the size of the interval (αL; αH) is reduced. This 
procedure should be repeated until the difference αH-αL 
becomes satisfactorily small; it determines the value of 
α0within the required tolerance.

4.	 If, sporadically, in any of the above points the T2 type 
of solution was achieved, the value of α0 is determined; 
calculations are finished
The computation flowchart is presented in Fig. 3.

Multiple steady states (algorithm B)

If multiple steady states exist, more than one value of 
α0 can be found in the interval (-∞,0). Using different trials 

Figure 2. Concentration and its derivative vs. distance inside the 
pellet; sensitivity of the algorithm.

Figure 1. Concentration and its derivative vs. distance inside the pellet.
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Figure 3. Computation flowchart; INT=integration of IVP, TEST=examination of the solution type.

of initial values of α one can find all possible solutions. 
Remark: for a stable solution the proposed algorithm does 
not change, while for an unstable solution, the types T1 and 
T3 have the reversed meaning. 

A dead zone does not exist (algorithm C)

The algorithm presented in the previous points, after 
minor modifications, allows one to find a solution also 
in this case. The algorithm scheme (Fig. 3) remains 
unchanged, integration limits and the description of the 
types of solutions should be slightly modified:

●● the IVP should be integrated from z=0 until z=1; 
values of the concentration and its derivative for 
z=1 should be tested

●● if the derivative is positive (at z=1), too high a value 
of the guess has been assumed (it corresponds to 
T1)

●● if the concentration is positive or equal to zero and 
its derivative  is zero for z=1, the proper value of 
the guess has been assumed (it corresponds to T2)

●● if the concentration is positive while the derivative 
is negative (at z=1), too small a value of the guess 
has been assumed (it corresponds to T3)
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It was pointed out that the case without the dead zone in 
the pellet is out of our interest: x0=0 and then the problem 
reduces to a typical two-point boundary value problem. 
However, there is an important reason to present a suitable 
procedure here. It was mentioned that a dead zone can be 
formed only for particular types of kinetic equations, but 
the set of sufficient conditions for dead-zone formation has 
not been developed (with exceptions presented in point 
2). For this reason it is difficult to predict whether to use 
a model with a dead zone or not,while improper use can 
lead to serious errors. Thus, if the sufficient conditions 
are not available, I recommend to use a combination of 
the algorithms A and C to determine a regime of catalyst 
pellet work (dead zone exists or not). In other words, it is 
possible to determine the missing sufficient condition for 
dead zone existence, that is to calculate Φc. This is a rather 
simple task, due to the similarity of algorithms.

RESULTS AND DISCUSSION

The calculation procedure was implemented by the 
author in Maple®, using a stiff version of the Rosenbrock 
algorithm for IVP solution (internal procedure of Maple®) 
and the bisection method as a method of reduction of the 
size of interval (αL, αH). The final value of the difference 
(αH-αL) was not larger than 10-18.

The effectiveness factor was calculated as follows

1
2
1






xdx
dca  

First, the accuracy of the method was verified by 
comparing:

●● the values of the effectiveness factor; ηnum calculated 
numerically and ηan calculated analytically using eq. 
(5)-(7) and (18)

●● the values of the dead zone-end; x0,num calculated 
numerically and x0,an calculated analytically using eq. 
(5)-(7) and (18)

for a=0 and different values of parameters Φ and n. 
Coefficients were calculated up to 5 decimal places.

Results are presented in Table 1. The precision of the 
calculations is very high. The results agree up to the fifth 
decimal place, with the only exception for n=-1/2 and 
Φ=0.66667. The relative error is equal to 0.002 (0.2%). 
Explanation of this exception requires analysis of the 
equation considered. Thus, if n is negative then the point at 
Φ=Φc is singular and accuracy of numerical procedures in 
the vicinity of critical point decreases. 

The results show that the accuracy of the method 
considered is very high, and, most likely, only in the vicinity 
of critical points does the accuracy drop down. To confirm 
this observation, the next test was made, the calculation of 
critical values of the Thiele modulus for different values of 
the parameter n. For elementary pellet geometries (a=0, 1, 2), 
we compared:

●● the critical values of the Thiele modulus Φc,num 
calculated numerically and Φc,an calculated analytically 
using eq. (5)-(7) and (18)

●● the values of the effectiveness factor for the critical value 
of the Thiele modulus ηc,num calculated numerically and 
ηc,an calculated analytically using eq. (5)-(7) and (18)

This test also allows checking the proposed algorithm 
as an effective tool to calculate the critical Thiele modulus. 
Coefficients were calculated up to 5 decimal places.

Results are presented in Table 2. For n≥0 calculations 
are errorless, while for n<0 the computed values of Φc 
and ηc are not as accurate. This observation confirms the 
hypothesis presented above that the algorithm accuracy 
drops down only in the vicinity of critical points. The errors 
are not large for the specified tolerance– they are less than 
1%. Errors grow as n decreases. The results show that the 
algorithm presented allows one to determine the sufficient 
condition of dead zone existence with satisfactory accuracy.

Rather unexpectedly, the dead zone can appear in real 
processes relatively often. Methanol steam reforming over 
a commercial Cu/ZnO/Al2O3 catalyst will be considered 
as a practical example for application of the method 
proposed here. Hydrogen production from hydrocarbon 
steam reforming is a cost-effective method for providing 
hydrogen; methanol steam reforming is a simple and 
efficient way of producing hydrogen on a small scale:

kJHHCOOHOHCH K 57;3 4732223   

The kinetic equation, catalyst data and process data 
were reported by Lee et al. (2004). They proposed the 

following kinetic equation at atmospheric pressure and in a 
temperature range between 433 and 533K:

     















  

skg
molpkPap

RT
molkJr HMM ;6.11/103exp1019.2 647.0564.09  

(18)

(20)

(19)



Brazilian Journal of Chemical Engineering Vol. 34, No. 03, pp. 873 – 883, July – September, 2017

Efficient Numerical Method for Solution of Boundary Value Problems with Additional Conditions 879

Table 1. Comparison of results obtained numerically with the exact solution - effectiveness factor and dead zone-end.

Φ ηnum ηan x0,num x0,an

n=0.5, Φc= 

3.46411 0.33333 0.33333 0.00000 0.00000
4.0 0.28868 0.28868 0.13397 0.13397
5.0 0.23094 0.23094 0.30718 0.30718
6.0 0.19245 0.19245 0.42252 0.42265
8.0 0.14434 0.14434 0.56699 0.56699

10.0 0.11547 0.11547 0.65359 0.65359
15.0 0.07698 0.07698 0.76906 0.76906

n=0.25, Φc=

2.10819 0.60000 0.60000 0.00000 0.00000
2.5 0.50596 0.50596 0.15673 0.15673
4.0 0.31623 0.31623 0.47295 0.47295
6.0 0.21082 0.21082 0.64864 0.64864
8.0 0.15811 0.15811 0.73648 0.73648
10.0 0.12649 0.12649 0.78918 0.78918
15.0 0.08433 0.08433 0.85945 0.85945

n=-0.5, Φc=

0.66667 2.99401 3.00000 0.00000 0.00000
0.7320 2.73224 2.73224 0.08925 0.08925
0.7870 2.54130 2.54130 0.15290 0.15290
0.8320 2.40385 2.40385 0.19872 0.19872
0.8870 2.25479 2.25479 0.24840 0.24840
0.9400 2.12766 2.12766 0.29078 0.29078

1.0 2.00000 2.00000 0.33333 0.33333
2.0 1.00000 1.00000 0.66667 0.66667
5.0 0.40000 0.40000 0.86667 0.86667

Table 2. Comparison of a critical value of the Thiele modulus and effectiveness factor obtained numerically with the exact solution.

n Φc,num Φc,an relative error ηc,num ηc,an relative error
a=0

0.75 7.48331 7.48331 0.000 0.14286 0.14286 0.000
0.50 3.46410 3.46410 0.000 0.33333 0.33333 0.000
0.25 2.10819 2.10819 0.000 0.60000 0.60000 0.000
0.00 1.41421 1.41421 0.000 1.00000 1.00000 0.000
-0.25 0.98080 0.97980 -0.001 1.66487 1.66667 0.001
-0.50 0.66767 0.66667 -0.001 2.99401 3.00000 0.002
-0.75 0.40506 0.40406 -0.002 6.97042 7.00000 0.004

a=1
0.75 8.00000 8.00000 0.000 0.24999 0.25000 0.000
0.50 4.00000 4.00000 0.000 0.50000 0.50000 0.000
0.25 2.66667 2.66667 0.000 0.75000 0.75000 0.000
0.00 2.00000 2.00000 0.000 1.00000 1.00000 0.000
-0.25 1.60400 1.60000 -0.003 1.24908 1.25000 0.001
-0.50 1.33833 1.33333 -0.004 1.50312 1.50000 -0.002
-0.75 1.14986 1.14286 -0.006 1.76327 1.75000 -0.008

a=2
0.75 8.48528 8.48528 0.000 0.33333 0.33333 0.000
0.50 4.47214 4.47214 0.000 0.60000 0.60000 0.000
0.25 3.12694 3.12694 0.000 0.81818 0.81818 0.000
0.00 2.44949 2.44949 0.000 1.00000 1.00000 0.000
-0.25 2.04161 2.03961 -0.001 1.15216 1.15385 0.001
-0.50 1.76983 1.76383 -0.003 1.28488 1.28571 0.001
-0.75 1.57192 1.56492 -0.004 1.40236 1.40000 -0.002

3.4641132 ≈

2.108193/102 ≈

0.666673/2 ≈

10
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The concentration profile of methanol and the hydrogen 
inside a catalyst particle depend upon each other by the 
following mutual relation:

 MMs
He

Me
HsH yy

D
D

yy 
,

,3
 

so that pH can be removed from eq. (20). As a result, the 
methanol concentration profile and effectiveness factor 
can be determined from a single mass balance equation 
(1) with appropriate boundary conditions (either (2)-(4), 
if a dead zone exists, or (2)-(3) and x0=0, if a dead zone 
does not exist). Catalyst properties, gas compositions and 
effective diffusivity of methanol and hydrogen are taken 
from the article mentioned.

The Thiele modulus Φ is defined by:
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Let us consider the following case. Andreev (2013) 
showed that, for a power-law kinetic equation, a dead 
zone can exist in a catalyst pellet. A necessary but 
insufficient condition is 1<n<1, where n is an exponent in 
the kinetic equation. A sufficient condition for eq. (20) is 
unavailable, additionally due to the atypical form of the 
equation (the hydrogen partial pressure term in the power-

law expression is corrected by a constant); it cannot be 
determined whether the necessary condition is satisfied or 
not. However a presumption that a dead zone appears in 
the catalyst pellet is very likely – absolute values of the 
exponents in eq. (20) are less than 1. The presumption will 
be confirmed computationally. The algorithm described 
will be very useful – one can examine the validity of 
boundary conditions and next calculate the critical value of 
the Thiele modulus without a trial and error method.

Calculations were performed for catalyst diameters 
of 0.3mm and 0.425mm (extreme diameters of 
commercial catalysts reported by the manufacturer), 
average values of effective diffusivities and three feed 
compositions 30M45W125N (yMs=15 mol%, yHs=0), 
30M60W100N10H (yMs=15 mol%, yHs=5 mol%) and 
30M60W110H (yMs=15 mol%, yHs=55 mol%). Results 
are presented in Fig. 4 and Fig.5. In Fig. 4 are presented 
the effectiveness factors vs. temperature for different gas 
compositions and catalyst diameters. In Fig.5 the same 
results (only for d=0.425mm) are presented in a more 
convenient form, i.e., effectiveness factor vs. Thiele 
modulus. Regardless of gas composition the curves are 
similar. The methanol concentration decreases towards the 
center of the pellet  more rapidly the faster the reaction 
runs, i.e., for higher temperature. For a certain temperature, 
the methanol concentration in the center  drops to zero and 
for higher temperatures a dead zone is formedin the pellet 
center. This fact is illustrated in Figures 4 and 5: solid lines 
for a regular solution change into dash lines for a dead 
zone solution. For this region the free boundary problem 
(equations (1)-(4)) has to be used. 

Figure 4. Effectiveness factor vs. temperature for various feed compositions and catalyst diameters.

(21)

(22)
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Figure 5. Effectiveness factor vs. Thiele modulus for various feed compositions

It is clear that, for the considered process, a dead 
zone appears in each case. A dead zone is observed 
for temperatures higher than 513K. This temperature 
range corresponds to high methanol conversion and, for 
this reason, to improve productivity of the process, the 
possibility of formation of a dead zone should be taken 
into account. For further analysis more detailed results 
are presented in Table 3. The Thiele modulus values and 
the corresponding temperatures, effectiveness factors 
and coordinate of the zone-end (the greater the value of 
coordinate the larger the dead zone) are presented there. 
Critical values of the Thiele modulus are underlined. The 
presented results show that a higher temperature and larger 
catalyst pellets are conducive to the appearance of a dead 
zone. This is understandable because diffusion resistance 
grows in the catalyst. From a practical point of view, the 
following observations are: 

●● the estimated critical values of the Thiele modulus on 
the basis of experimental results are practically the 
same for the same gas compositions; it means that 
the Φc-value is characteristic for the kinetic equation, 
because for different catalyst diameters the critical 
value of the Thiele modulus is approximately constant; 
this fact confirms the hypothesis previously presented 
by Temkin (1975) and Aris (1975).

●● The dependence of the critical modulus on the 
composition of the mixture is significant

●● it may be observed that some pellets in the catalyst 
bed can work in the normal regime (diffusional), while 
a dead zone appears in others, e.g., if T≈530K, the 
catalyst works normally at a high content of hydrogen 
(it corresponds to the reactor outlet conditions), while 
a dead zone fills 10-40% of the catalyst pellets at low 
content of hydrogen (it corresponds to the reactor inlet 
conditions);

Detailed analysis could help to improve productivity of 
the process, but it is not the aim of the present study.

The discussed case of methanol steam reforming 
shows that the method presented is useful and effective 
for analysis of a real, complex process. It helps to improve 
understanding of the process and to adjust process 
conclusions to common knowledge.

The tests made show that the algorithm proposed here 
is simple and precise both for theoretical considerations 
and practical purposes. High efficiency and high accuracy 
of the calculations is ensured by correct selection of the 
numerical method, while the ability to use any methods 
makes  the algorithm “flexible” and it can be easily 
implemented in, e.g., CAS-type programs. 
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Table 3. Dead zone formation in the catalyst pellets for methanol steam reforming.

Φ T, K η- xdz-

comp. 30M45W125N    d=0.3mm

6.2
6.9
8.6

528
533
543

0.42
0.38
0.32

0.00
0.16
0.36

comp. 30M45W125N     d=0.425mm

6.1
7.7
9.7
12.2

513
523
533
543

0.42
0.34
0.28
0.24

0.00
0.28
0.45
0.57

comp. 30M60W100N10H     d=0.3mm

5.9
6.1
7.6

531.5
533
543

0.44
0.43
0.36

0.00
0.07
0.31

comp. 30M60W100N10H     d=0.425mm

5.9
6.8
8.6
10.8

516.5
523
533
543

0.44
0.39
0.32
0.26

0.00
0.21
0.40
0.53

comp. 30M60W110H     d=0.3mm

A dead zone is not observed for the examined temperature range 
extrapolated value of the critical Thiele modulus: Φc=5.3 for 547.5K

comp. 30M60W110H     d=0.425mm

5.2
5.5
6.8

531
533
543

0.51
0.50
0.41

0.00
0.06
0.30

CONCLUSIONS

On the basis of the results presented the following 
conclusions can be drawn:

the algorithm is simple – it relies on a shooting 
method; an iterative approach to finding  the missing initial 
condition was presented;

the algorithm is “flexible” and effective - it enables one 
to take advantages of numerous numerical methods; for 
this reason, it makes it possible to obtain results of high 
precision in a wide range of model parameter values, also 
in the vicinity of critical points;

the algorithm is also useful  in the multiplicity region 
for computation of both stable and unstable solutions

the algorithm can be easily implemented for real tasks 
with an “additional boundary condition”; e.g. the presented 
dead zone problem in heterogeneous catalysis, but also for 
other problems inter alia grain hydration or a characteristic 

task in mechanics: the normal reaction in the plane of the 
curve for  particle motion
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NOMENCLATURE

C [-]		  –concentration
cM [mol/m3]	 –methanol concentration on the surface
De [m2/s]	 –effective diffusivity
n [-]		  –exponent
p [kPa]		  –partial pressure
R [J/(mol K)]	 –gas constant
rM [mol/(kg s)]	 –reaction rate
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T [K]		  – temperature
x [-]		  – spatial coordinate
x0 [-]		  – dead zone-end coordinate
y [-]		  – mole fraction
z [-]		  – spatial coordinate
Greek
Φ [-]		  – Thiele modulus
η [-]		  – effectiveness factor
ε [-]		  – void fraction
α [-]		  – value of derivative of concentration 
		  with respect to z evaluated 
		  at the point z=0
ρ [kg/m3]	 – catalyst density
α0 [-]		  – proper value of the missing
		  initial condition
Φc [-]		  – critical Thiele modulus
αH [-]		  – upper limit of α0
αL [-]		  – lower limit of α0
Superscripts
an		  – analytical solution
H		  – hydrogen
M		  – methanol
num		  – numerical solution
s		  – pellet surface
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