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Abstract - Baby Hamster Kidney cells (BHK-21) are commonly used in research and the biopharmaceutical 
industry. This work aimed to model the kinetic performance in batch operation mode of BHK-21 cells cultured 
in two stirred tank configurations using different dissolved oxygen concentrations and pH control strategies. 
Viable and dead cell concentrations, as well as glucose, glutamine, lactate and ammonium concentrations, were 
monitored. Statistical multiple linear regression, logistic equation and multiplicative Monod kinetic models were 
fitted. Statistical models for viable cells concentration as a function of nutrient and metabolite concentrations 
were significant (R2 >0.91). Logistic model parameters: intrinsic growth rate, cell density level in the medium 
and time for reaching maximum cell concentrations were within 0.061-0.083 h-1, 1.85-5.39 x 109 cell L-1 and 52-
90 h ranges, respectively. A Monod-type model was satisfactorily fitted to the experimental data. Relative errors 
were lower than 10% for six monitored state variables in most of the assessed experimental conditions. The three 
models developed in this work can be used in bioprocesses involving BHK-21 with good fitting.
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INTRODUCTION

Biologically derived drugs have become a major 
part of the current pharmaceutical industry. Among 
the industrial cell lines used for producing approved 
biologics, the mammalian cell lines encompass 51 % 
of them (Kantardjieff and Zhou, 2014). These hosts are 

utilized in products with extensive post-translational 
modifications in order to ensure drug safety and 
efficacy (Kantardjieff and Zhou, 2014; Pörtner, 2014). 
The list of the most used mammalian cell lines at large 
scale includes Chinese hamster ovary (CHO) cells, 
baby hamster kidney (BHK) cells, mouse myeloma 
cells comprising NS0 and SP2/0, hybridomas, and 
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developed by Verhlust provides a means to limit 
growth with time introducing an inhibition term in the 
original Malthus equation, which is cell concentration 
dependent. This model takes into account the finite 
resources for growth (Blanch and Clark, 1997). Two 
main parameters must be defined experimentally in the 
logistic model: the overall saturation constant (upper 
limit for cell concentration) and intrinsic growth 
rate constant. This modelling approach describes 
bioconversions with fewer or similar parameters than 
Monod-type models, but it does not have extrapolation 
capability. On the other hand, the statistical regression 
models allow estimating viable cell concentrations 
based on nutrient (glucose and glutamine) and 
metabolites (ammonium and lactate) in culture broth 
by multiple linear regression. In order to enhance 
fitting quality of the model, the original values of 
viable cells concentration are frequently transformed 
by a natural logarithm function (Craven et al., 2013). 
The build of cell growth statistical models from 
chemical substance concentrations in culture broth 
has a singular importance within the current Process 
Analytical Technology context, where on-line and at-
line monitoring systems for these parameters, through 
different spectroscopic techniques, are developed 
with relative ease (Leme et al., 2014). Nevertheless, 
the application of this model is limited to batch 
operation mode, and physical interpretations of model 
parameters are difficult to define (Craven et al., 2013).

On the other hand, the bioreactor configuration 
and process parameters, such as pH, temperature, 
dissolved oxygen concentration, inoculum quality 
and concentration, define the cell growth and yield 
in bioconversion vessels (Streefland et al., 2013; 
Núñez et al., 2013). Therefore, values for parameters 
associated with process models could change with 
modifications in both sources of cell environmental 
shifts. However, the real effect of critical process 
parameters on model kinetic parameter values for 
each mammalian cell host must be defined for specific 
industrial applications of them.

Thus, this work aimed to fit a Monod-type kinetic 
model, semi-empirical logistic equation models and 
empirical statistical regression models for BHK-21 
cell batch culture executed in different stirred tank 
configurations, dissolved oxygen concentrations and 
pH control strategies and determine the impact of 
these factors on parameters of process models for 
cell growth and its systemic relation with metabolism 
when possible.

human cell lines (HEK293, HT-1080) (Kantardjieff 
and Zhou, 2014; Zhu, 2012). Among these cell lines, 
BHK-21 has found applications at large scale in 
veterinarian viral vaccines against foot-and-mouth 
disease and rabies virus, as well as heterologous protein 
production (Factor VIII) (Auniņš, 2010; Palomares 
and Ramírez, 2009).

Mammalian cell cultures are expensive and 
complex as a rule (Kontoravdi et al., 2013). In this 
context, it is important to develop robust, controlled 
and optimized processes at large scale in order to 
diminish costs associated with process failures and 
maximize productivity. The use of model-based 
methodologies is one of the tools utilized for this 
purpose. The application of model-based techniques 
can also facilitate the decrease of experimental work 
by indicating the most informative experiments 
(Koutinas et al., 2013). In this direction, regulatory 
agencies stimulate model-based platforms for 
process development by means of quality by design 
(QbD) initiative (Kontoravdi et al., 2013; Nagashima 
et al., 2013; Tomba et al., 2013). According to QbD 
the quality must be “built into” the product and 
ensured since its design stage, through an extensive 
mechanistic understanding of the connection between 
product quality attributes and process parameters 
(Tomba et al., 2013).

Process models, used within the chemical 
engineering research area and extended to 
biopharmaceutical production, can be categorized 
as qualitative, mathematical, and statistical models. 
Mathematical models can be further subdivided into 
mechanistic and empirical models or classified by the 
level of structure and segregation considered. The 
simplest mechanistic models are unstructured and 
non-segregated. Such models treat the cell as a single 
homogeneous unit and describe the cell population as 
identical average cells. Monod-type kinetic models that 
are used in bioconversion processes belong to this type 
of model. They can explain correctly experimental data 
without high computational difficulties as required in 
structured and segregated models. The specific growth 
and death rates are usually modeled using this approach 
as a function of nutrient and metabolite concentrations 
(Craven et al., 2013).

Other alternatives to Monod-type kinetic models, 
with less mathematical complexity, have been 
developed such as semi-empirical logistic equations and 
empirical statistical regression models for mammalian 
cell cultures (Craven et al., 2013). The logistic equation 



Brazilian Journal of Chemical Engineering Vol. 35,  No. 02,  pp. 441 - 458, April - June,  2018

443Model comparison to describe BHK-21 cell growth and metabolism in stirred tank bioreactors operated in batch mode

MATERIALS AND METHODS

Cell line and culture medium

BHK-21 (C-13) cells (Sigma-Aldrich ECACC Cell 
Lines, Lyon, France) adapted to single cell suspension 
culture were kindly supplied by Dr. Renaud Wagner 
from Ecole Superieure Biotechnologie de Strasbourg, 
France. The detailed culture medium composition 
was previously defined (Núñez et al., 2013). Briefly, 
the culture medium was composed of the following 
ingredients (volume/volume percent): Iscove’s 
Modified Dulbecco Medium with glutamine and 
Phenol red 45.5%; High glucose Dulbecco’s Modified 
Eagle Medium 45.5%; heat inactivated fetal bovine 
serum 5.0%; 10% m/v Pluronic F-68 aqueous solution 
2%; and 4 mM glutamine aqueous solution 2 %.

Inoculum preparation

One milliliter of BHK-21 cells (2 x 106 cell/mL) 
was thawed and placed in a 75 cm2 tissue culture 
flask (vertical position) with 30 mL of culture 
medium for growing. Four days afterwards, the cell 
suspension was used to inoculate (0.12 x 106 cell/mL) 
consecutively other tissue culture flasks of 25 and 75 
cm2; enough culture medium was added to reach final 
cellular suspensions of 10 and 30 mL, respectively. 
Inoculum for bioreactors was generated from 100 and 
250 mL spinner flasks (Bellco Glass, Vineland, NJ), 
with working volumes of 50 and 100 mL, respectively; 
the stirring speed was maintained at 30 rpm (Sci-
Era quad drive stirrer system with a stirrer, Bellco 
Biotechnology, Vineland, NJ). Spinners were seeded 
(0.25 x 106 cell/mL) from 75 cm2 tissue culture flask 
in the exponential phase. After 72 h, the inoculums 
for bioreactors were ready; the cell concentration and 
viability in spinners were 4.27 ± 0.85 x 106 cell/mL 
and 100%, respectively. All the procedures described 
in this section were performed at 37 ºC and 5% of 
carbon dioxide atmosphere.

Bioreactor batch cultures

Eleven batch experiments in stirred tank bioreactors 
were carried out in a 5 L Celligen (New Brunswick 
Scientific, Edison, NJ) without aeration cage and 2 L 
Bioflo 110 (New Brunswick Scientific, Edison, NJ) at 
37ºC, agitation at 80 rpm. Bioreactors operated with 
2 and 1 L working volumes, respectively, with initial 
cell concentration of 0.25 x 106 cell/mL. The aeration 
in both bioreactors was performed by sparging. Both 
configurations were studied to define the impact of two 

different aeration- homogenization systems: classical 
(Bioflo 110) and rotating gas sparger (Celligen) in stirred 
tank bioreactors on kinetic parameters of culture.

Three experiments were performed in Celligen at 
different dissolved oxygen concentrations, 10, 30 and 
50% of air saturation with 400 mL/min volumetric 
gas flow (using a variable gas mixture composed of 
CO2, N2, O2 and air). The pH was controlled at 7.2 just 
with CO2 according to the buffering capacity of the 
NaHCO3-CO2 system. Similar operational conditions 
were explored including Bioflo 110; additionally, 70% 
(air saturation) dissolved oxygen concentration was 
studied; the volumetric gas flow used was 200 mL/min.

Further, two experiments were performed in 
duplicate in Bioflo 110 at 30 and 50% air saturation, 
controlling pH at 7.2 throughout the culture, adding 
gas CO2 or NaHCO3 solution (8% m/v) when required. 
The cultures in Celligen were not conducted under 
regulated pH conditions because of the absence of the 
pH control loop in this bioreactor by design.

Samples for monitoring of cell growth, nutrient 
consumptions, and metabolite productions were 
withdrawn twice a day.

Cell counting

Total cell concentrations were measured using the 
hemocytometer method (Neubauer improved counting 
chamber, Precicolor HBG, Germany) with proper 
sample dilution with Phosphate Buffered Saline. Viable 
and dead cell concentration was quantified using the 
trypan blue exclusion method (Freshney, 2010). The 
sample dilutions were adjusted to count a number of 
cells within the range of 30-50 per quadrant in the 
counting chamber (eight quadrants were counted to 
calculate the average cell concentration) and only one 
researcher measured cell concentration over the course 
of the entire experimental activities.

Nutrient and metabolite analysis

Samples from culture broth were centrifuged at 
750 × g for 4 minutes. Subsequently, supernatants 
were filtered and frozen for later analysis of nutrients 
and metabolites (Núñez, et al., 2013). Glucose, lactate, 
glutamine and glutamate concentrations from supernant 
samples were measured using enzyme-coupled 
reactions and electrochemical detection in a YSI 
2700 Select Bioanalyzer (YSI Life Sciences, Yellow 
Springs, OH, USA). Ammonium quantification was 
performed by an enzymatic-colorimetric method at 340 
nm (EnzyChromTM Ammonia/Ammonium Assay Kit 
(ENH3-100), BioAssay Systems, Hayward, CA, USA).
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Statistical regression model

Linear models for predicting viable cell concentrations 
(Xv) from ammonium (A), glucose (G), glutamine (Q) 
and lactate (L) concentrations were calibrated using linear 
multiple regressions. The generalized linear models are of 
the form described by Eqn. 1:.

							          (1)

where b0 and bj represent the independent and partial 
regression coefficients of each nutrient or metabolite 
concentration, respectively, and ε is the residual 
difference between observed and predicted viable 
cell concentrations. Partial regression coefficients 
were estimated by means of the least squares method. 
Prediction capacities of statistical models were 
assessed with a significance level of 0.05 (α=0.05) and 
the coefficient of determination for each model was 
also defined. All statistical procedures and tests for this 
modeling approach were performed in Statgraphics 
Plus 5.0 software (Statistical Graphics Corporation, 
VA, USA).

Logistic model for growth

Verhulst’s model (logistic model), represented in 
Eqn 2 and its integrated form (Eqn. 3), was adjusted 
to describe the viable cell concentration over the 
time course of exponential growth, deceleration and 
stationary phases of a typical batch growth pattern 
(Liu, 2013) . In addition, the time (tm) for reaching 
maximum cell concentration (Xv,max) was defined by 
inspection of the experimental data.

							          (2)

							          (3)

The two parameters of this model, k (intrinsic 
growth rate constant, h-1) and Xv∞ (cell density level in 
the medium, cells L-1), were determined by curve fitting 
(nonlinear least squares method) of the integrated 
Verhulst’s model in Matlab R2012a (MathWorks Inc, 
Natick, MA, USA).

The starting values of k and Xv∞ necessary for the 
selected curve fitting method were defined by plotting 

X dt
dX1

y

yT Y vs Xv (graphical method derived from Eqn [2]); 
a linear trend line was fitted to the data in Microsoft 
Office Excel 2007 (Microsoft Corporation, Redmond, 
Wash, USA); Xv∞ and k starting values correspond to 

the intercepts at the x-axis and y-axis, respectively. 
The instantaneous growth rate 

dt
dXyT Y was determined 

by a geometrical approach (Leduy and Zajic, 1973).

Mechanistic mathematical model (Monod-Type 
Kinetics)

The mechanistic mathematical model for 
describing growth and metabolism in experiments 
performed using the batch operation mode consisted 
of six first-order ordinary differential equations, which 
represent the rate of change of viable and dead (XD) 
cell concentrations as well as nutrients and metabolites 
(Eqn. 4-9).
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							          (8)

							          (9)

The glucose depletion rate considered both the 
consumption of this nutrient for growth and the maintenance 
of viable cells (the Y /X G

n  and mG terms of Eqn 6) (Pirt 1982). 
The rate of glutamine consumption represented in Eqn 7 
was modeled similarly to glucose depletion, but chemical 
degradation of glutamine to ammonium under the culture 
conditions was equally considered by means of the first-
order coefficient, kd,Q (Ozturk & Palsson, 1990). All 
lactate produced was assumed to be due to consumption 
of glucose (Eqn 8). Ammonium production comprised 
glutamine consumption and chemical degradation of 
glutamine (Eqn 9).

The specific growth rate (µ) was described by 
considering a Monod multiplicative model, which 
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and glutamine) and inhibitory byproducts (lactate and 
ammonium) (Eqn 10). This Monod-type equation was 
successfully applied for modeling other mammalian cell 
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depends on the maximum death rate (kd.max), intrinsic 
death rate (ku) and specific growth rate (Eqn 11).

							        (10)

							        (11)

An analysis of degrees of freedom was performed 
in order to find a unique solution for this modelling 
approach. The sum of independent differential (6) and 
algebraic (2) equations, eight equations in total, was 
equal to the number of state and auxiliary algebraic 
variables (µ, kd). Consequently, the degree of freedom 
was 0. The number of model parameters was 15. Then, 
a unique solution was possible by the definition of 
these parameters (Hangos and Cameron, 2001).

To fit this mechanistic model the fifteen parameters 
were determined. As a rule, five of them (YX/G, YX/Q, 
YL/G, YA/Qµmax) were defined experimentally and the 
remaining parameters (kd,max, ku, KLYSIS, Kd,Q, KG, KQ, 
KL, KA, mG, mQ) were fitted using the genetic algorithm 
technique with constraints based on a literature survey. 
In experiments with significant death cell phase, kd,max 
was also calculated experimentally (Levenspiel, 1972).

The µmax was calculated by linear regression fitting 
in the exponential growth phase, plotting Ln (Xv) vs 
t; µmax is the slope of the line which represents the 
Malthus growth model (Liu, 2013). Yield ratios (YL/G, 
YX/Q, YX/G, YA/Q) were determined by performing linear 
regression on plots of Xv against G; Xv against Q; L 
against G and A against Q.

A code was created in Matlab for solving the 
system of six first-order ordinary differential equations 
mentioned above, using an ordinary differential 
equation solver (ODE23s). The parameters to be 
fitted were calculated through a genetic algorithm 
(genetic algorithm toolbox of MATLAB), whose 
objective function for minimization was the pondered 
sum of the squares of errors (PSSE) for each of the 
six state variables (Eqn 12) (Nandasana and Kumar, 
2008). For the genetic algorithm the lower and upper 
bounds were defined for each variable (survey of the 
literature) (Craven et al., 2013), the maximum number 
of generation was 1000, population type and size 
were double vector and 20, respectively. The selection 
function was stochastic uniform. For reproduction, 
mutation, crossover, migration, constraint parameters 
were chosen according to default values proposed by 
the genetic algorithm toolbox (MATLAB).

							        (12)

where WXv, WXD, WG, WQ, WL, WA are the weighing 
factors, which were assumed to be the reciprocal of 
the maximum value of the respective state variable: Xv, 
XD, G, Q, L, A. The subscripted terms with “p” and “e” 
represent the predicted model and experimental values, 
respectively, for the corresponding state variable at 
the experimental point “i”. The number of samples 
taken for each assessed set of operational conditions is 
represented by “n”.

Determination of relative model errors and 
coefficient of variation for model parameters

The relative prediction errors of the three modeling 
approaches were determined by considering the 
maximum value of the state variable, being described 
as a reference value. The relative error for each 
point (eri) was calculated according to Eqn 13. The 
average (er) and standard deviation (s.d.) for all points 
corresponding to each state variable in a defined 
experiment were also calculated by Eqn 14 and Eqn 
15, respectively.

							        (13)

							        (14)

							        (15)

The coefficient of variation (CV) of the model 
parameters was calculated when repetitions of the 
same experimental conditions were performed. The 
equation for this statistical index is represented in 
Eqn 16.

							        (16)
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RESULTS

In general, the viable cell concentration was 
similarly predicted by the three modeling approaches, 
taking into account the relative error values (Tables 
1, 2, 3). Specifically, for statistical regression models, 
which describe this state variable, the coefficients 
of determination were higher than 91.84% and the 
average relative errors lower than 11.63% (Table 1 
and Figure 1). High values of the independent partial 
regression coefficients (b0) were associated with high 
maximum cell concentrations reached in each set of 
experiments, classified by bioreactor configuration and 
pH control mode (Figures 1, 2, 3, 4). In most cases, 
the effect of glutamine and ammonium concentrations 
were inversely correlated to ln (Xv), unlike glucose 
and lactate concentration effects, which were directly 
correlated (Table 1). Furthermore, significant 

differences were observed for partial regression 
coefficients corresponding to repetitions of the same 
experimental conditions (Table 1).

The parameters of the logistic model to describe 
cell growth were also influenced by the operational 
conditions under study. The cell density level in the 
medium (Xv∞), the intrinsic growth rate constant (k) and 
the time at which Xv,max occurs oscillated in the range 
of 1.85 - 5.39 x 109 cells L-1, 0.0611-0.0834 h-1 and 
52.75-89.93 h, respectively. The highest values of Xv∞ 
were reached in the Bioflo 110 at 30% air saturation 
with NaHCO3 solution addition for controlling pH. 
The optimal dissolved oxygen concentration for 
maximum cell concentration was not the same for 
the two bioreactor configurations without NaHCO3 
solution addition; 10 and 50 % air saturation were the 
best values for Celligen and Bioflo 110, in this order 
(Table 2).

Table 1. Partial regression coefficients, R2 and relative error corresponding to statistical regression models (Eq. 1) for each assessed experimental condition.

Bioreactor pH control mode 
(NaHCO3addition)

Dissolved oxygen 
concentration 

(% air saturation)
b0 bA bG bQ bL R2 Relative error (%) 

[er ± s.d.]*

Bioflo 110

No

10 9.386 -0.061 0.362 0.228 0.362 95.56 8.38±7.89

30 13.849 0.497 0.151 0.229 0.205 97.50 8.04±6.44

50 14.717 0.177 0.249 -0.571 0.230 99.03 4.46±4.93

70 11.408 0.425 0.409 -0.777 0.177 91.84 8.55±9.13

Yes

30(1) 22.151 -0.161 0.040 -1.174 0.013 97.00 8.54±5.11

30(2) 20.940 0.388 0.034 -0.777 0.021 99.76 2.85±2.89

50(1) 22.947 -0.162 0.001 -1.002 -0.017 93.81 11.63±9.77

50(2) 18.186 -0.116 0.157 -0.835 0.127 99.99 2.88±7.04

Celligen No

10 23.488 -0.212 -0.035 -0.929 -0.016 99.15 6.29±5.74

30 17.615 -0.301 0.276 -1.446 0.129 99.36 2.18±1.57

50 23.199 -0.241 -0.042 -0.861 -0.017 99.78 2.16±2.05
(1), (2)First and second repetition of the same experiment, respectively.
*er and s.d. represent average and standard deviation of the relative error.

Table 2. Logistic equation model parameters and relative error (considering from inoculation to stationary phase of the growth curve) for each assessed 
experimental condition.

Bioreactor pH control mode 
(NaHCO3addition)

Dissolved oxygen 
concentration 

(% air saturation)
Xv∞ (cells L-1) k(h-1) tm(h) Relative error (%) 

[er ± s.d.]*

Bioflo 110

No

10 1.85 x 109 0.0834 53 7.56±3.90

30 3.74 x 109 0.0704 67 10.29±6.10

50 4.35 x 109 0.0778 68 5.08±3.71

70 2.28 x 109 0.0663 68 9.62±5.47

Yes

30(1) 5.39 x 109 0.0800 67 5.29±3.42

30(2) 5.01 x 109 0.0760 90 5.85±4.51

50(1) 4.17 x 109 0.0826 80 7.97±5.05

50(2) 4.64 x 109 0.0738 77 6.64±5.05

Celligen No

10 4.64 x 109 0.0827 71 9.10±5.48

30 3.42 x 109 0.0740 67 5.93±2.92

50 3.72 x 109 0.0611 64 7.98±3.79
*er and s.d. represent average and standard deviation of the relative error.
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Table 3. Prediction relative errors associated with the Monod-type kinetic model for the six monitored state variables, grouped according to the bioreactor 
configuration and pH control modes.

State variable
Relative errors for set of experiments (%) [er ± s.d.]

Bioflo 110 without NaHCO3addition Bioflo 110 with NaHCO3addition Celligen without NaHCO3addition

A 6.34±5.82 10.94±14.22 12.59±15.16

G 5.10±4.15 8.76±11.84 4.11±3.93

L 5.96±6.15 7.93±10.47 3.68±3.51

Q 4.58±5.55 6.04±8.96 5.79±8.93

Xd 3.81±6.38 5.21±6.76 5.13±7.03

Xv 7.99±8.06 11.24±10.92 8.26±8.55

The fifteen parameters of the Monod-type 
model, based on a multiplicative Monod-type 
model for specific growth rate, were determined 
using a genetic algorithm approach; most of them 
were also influenced by operational conditions 
(Table 4). In general, the six state variables were 
adequately modeled in most experimental assays 
(Figure 2-4).

As a rule, glutamine-to-cells and glucose-to-
cells yields were superior when relatively high cell 
concentrations were reached. Contrary effects for 
glutamine-to-ammonium and glucose-lactate yields 
were confirmed. The glucose maintenance coefficient 
was higher than the glutamine maintenance coefficient 
in most of the experimental conditions. The maximum 
growth and death rates were in the range of 0.049-
0.080 h-1 and 0.0022-0.0129 h-1, respectively (Table 4).

The ammonium saturation constant was lower 
than the lactate saturation constant for all assessed 
experimental combinations. However, a global pattern 
was not defined for the relations between glucose 
(KG) and glutamine (KQ) saturation constants. The 
experimental cell environment, defined by operational 
conditions, caused a glutamine chemical degradation, 
which could be measured by the degree of degradation 
of glutamine (a first-order kinetic coefficient). This 
parameter demonstrated the highest values for batch 
performed in the Celligen with 50% air saturation and 
the Bioflo 110 with 30% air saturation, controlling pH 
with addition of base solutions (Table 4).

With regard to the prediction of viable cell 
concentration, the average relative errors of the related 
model were higher when pH was strictly controlled 
over the course of bioconversion (Table 3). Specifically, 
this state variable was significantly underestimated 
for experiments performed in the Bioflo 110 at 30% 
air saturation (Figure 3 A, D). The remaining state 
variables were appropriately fitted to the experimental 
data with predicted average relative errors between 

3.68 and 12.59%. The worst values were those related 
to ammonium concentration (Table 3).

In general, high variability was observed in the 
model parameters when experiments were performed 
in similar conditions (Table 5). Among the assessed 
models, the logistic model showed less variation in its 
parameters (CV<21%).

DISCUSSION

The BHK-21 cell line has multiple applications and 
is considered to be an important host for high valuable 
biotherapeutics; however, few published works have 
focused in its growth and metabolism modelling 
(Teixeira et al., 2005; Linz et al., 1997). The impact 
of operational conditions on model parameters have 
been even less explored in the technical literature, 
not only for this mammalian cell line, but also for 
others. The present work aimed at increasing the 
mathematical characterization of bioprocesses with 
this cell line and to assess models commonly applied 
to other mammalian cell lines. These kinds of efforts 
are stimulated by regulatory agencies for better 
understanding of pharmaceutical processes by means 
of their initiative QbD. Moreover, they are useful from 
an industrial point of view because of the derived 
improvement in process control and optimization 
(Tomba et al., 2013).

The first of the three modelling approaches, the 
statistical regression models for describing viable 
cell concentration, have been recently utilized in 
different operational modes for CHO cells. This 
technique provides knowledge about the state of this 
variable based on nutrient (glucose and glutamine) and 
metabolites (ammonium and lactate) in culture broth 
by multiple linear regression. In order to enhance 
the fitting quality of the model, the original values of 
viable cells concentration are frequently transformed 
by a natural logarithm function (Craven et al., 2013). 
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Figure 1. Statistical regression model predictions for viable cell concentration in the Bioflo 110 without NaHCO3 addition at different dissolved oxygen 
concentrations: (A)10%, (B) 30%, (C) 50%, (D) 70% air saturation; in the Bioflo 110 with NaHCO3 addition at two dissolved oxygen concentration: (E) 30% 
air saturation, repetition 1, (F) 30% air saturation, repetition 2, (G) 50% air saturation, repetition 1, (H) 50% air saturation, repetition 2; in Celligen without 
NaHCO3 addition at different dissolved oxygen concentrations: (I) 10%, (J) 30%, (K) 50% air saturation.
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Figure 2. Monod-type kinetic model predictions for batch experiment performed in the Bioflo 110 without addition of NaHCO3 solution to control pH. A, B, 
C correspond to predictions for state variables in batch experiment carried out at 10% air saturation. D, E, F, correspond to predictions for state variables in 
batch experiment carried out at 30% air saturation. G, H, I, correspond to predictions for state variables in batch experiment carried out at 50% air saturation. 
J, K, L, correspond to predictions for state variables in batch experiment carried out at 70% air saturation.

The absolute values for nutrient and metabolite 
regression coefficients of the present study for the 
BHK-21 cell line were similar to those reported for 
the CHO cell line, although discrepancies have been 
detected with respect to the corresponding signs of 
these regression coefficients in several cases (Craven 
et al., 2013). On the other hand, in this previous work, 
the maximum cell concentration in batch mode with 
rigorous control of pH during all the bioconversion, 
was inferior to 3 x 109 cells L-1, and the corresponding 
independent regression coefficient (16.652) in a 
statistical model was lower than those observed for 
experiments developed in similar conditions in the 
present work (Bioflo 110, pH control mode with 

NaHCO3 addition) (Table 1-2). Thus, this parameter 
could be associated with the magnitude of cell growth, 
but it is sensitive to the pH control mode (Table 1-2). 
On the other hand, the negative sign for regression 
coefficients related to glutamine and ammonium 
concentrations, in relatively high cell concentrations, 
are reflecting the positive effect of this amino acid 
consumption and its associated metabolite generation, 
respectively, on cell growth. The capability to predict 
viable cell concentrations was satisfactory, taking into 
consideration that the expected error for cell counting 
by hemocytometer (method chosen for cell counting) is 
around 15% (Hoffman, 2006). Thus, this kind of model 
could be used for monitoring BHK-21 cell cultures 
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Figure 3. Monod-type kinetic model predictions for batch experiment performed in the Bioflo 110 with addition of NaHCO3 to control pH. A, B, C 
correspond to predictions for state variables in batch experiment carried out at 30% air saturation, repetition 1. D, E, F, correspond to predictions for state 
variables in batch experiment carried out at 30% air saturation, repetition 2. G, H, I, correspond to predictions for state variables in batch experiment carried 
out at 50% air saturation, repetition 1. J, K, L, correspond to predictions for state variables in batch experiment carried out at 50% air saturation, repetition 2.

by a combination of spectroscopy and chemometric 
methods. These techniques allow for determining on-
line or at-line (sample withdrawn is analyzed quickly 
close to the bioreactor) chemical substances and, as a 
result, the viable cell concentration could be defined 
using statistical regression models (Leme et al., 2014).

The logistic model was the second model 
considered in this work. Original and modified logistic 
models have been used for modeling mammalian cell 
growth and metabolism (Craven et al., 2013; Goudar 
et al., 2005). The simple Verhulst’s model for BHK-
21 growth was not extensively studied in different 
dissolved oxygen concentrations and bioreactor 
configurations. Analyzing the present results, it is 

possible to suggest 30% air saturation, with sharp 
pH control at 7.2 over the course of bioconversion 
for obtaining high BHK-21 cell concentrations in 
a classical stirred tank bioreactor. This statement is 
justified by the highest carrying capacity observed for 
the BHK-21 cells in the medium, among the different 
operational conditions considered. The intrinsic 
growth rate and the time at which the maximum 
viable cell concentration is reached were independent 
of operational conditions. This implies that proper 
environmental conditions in the bioreactor for cell 
growth and metabolism are established when the pH 
is well controlled around 7.2, and the growth phase 
is intensive or relatively prolonged. Moreover, these 
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Figure 4. Monod-type kinetic model predictions for batch experiment performed in the Celligen without addition of NaHCO3 solution to control pH. A, B, 
C correspond to predictions for state variables in batch experiment carried out at 10% air saturation. D, E, F, correspond to predictions for state variables in 
batch experiment carried out at 30% air saturation. G, H, I, correspond to predictions for state variables in batch experiment carried out at 50% air saturation.

two latter parameters for BHK-21 cells were higher 
and lower, respectively, with respect to the observed 
values for these parameters in CHO cells (Craven et 
al., 2013). It is worthy to note that the culture media 
were different in both studies. The ability for viable 
cell concentration prediction using this modelling 
approach was also suitable.

With regard to the third assessed model, Monod-
type kinetic models, similar values were detected for 
the respective parameters in a previous study with 
CHO cells (Craven et al., 2013). This finding could 
be interesting for bioprocess simulation of mammalian 
cell cultures. However, an underestimation of the 
viable cell concentration was observed in experiments 
with the highest cell concentrations, which could be 
explained by the need to assess other models that 
consider further growth after depletion of one of the 
limiting substrates. This fact is a limitation of the 
evaluated multiplicative Monod-model. An alternative 
could be the modified Monod-model proposed by 
Mankad and Bungay, which considers conventional 
Monod formulations and weighs the contribution of 
potentially limiting nutrients according to their half-
saturation constants (Mankad & Bungay, 1988).

It is worth noting that several discrepancies in 
parameters associated with the three assessed models 
were detected for experiments performed in similar 
operational conditions with rigorous pH control over 
the course of bioconversion (Table 1-3, 5). This fact 
might be explained by the influence of inoculum 
quality on metabolism in cell culture carried out in 
bioreactors. It is an evidence of high batch to batch 
variability of the bioprocess in comparison to classical 
pharmaceutical process for small molecules.

It should be emphasized that the saturation 
constants (KG, KQ, KL, KA included in the Monod-
type model have no physical meaning, as has been 
previously confirmed. These parameters were chosen 
arbitrarily to give the best fit for all state variables 
contained within this modelling approach (Shirsat 
et al., 2015). Moreover, the poor fit of the model 
for ammonium in the Monod-type strategy could be 
justified by the presence of amino acids and other 
proteins in the culture medium, which may have been 
metabolized or degraded chemically, generating toxic 
chemical compounds (Schneider et al., 1996). The 
incorporation of other differential equations describing 
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Table 5. Coefficients of variation for parameters associated with each assessed model, in experiments carried out in duplicate using the bioreactor Bioflo 110.

Model Parameter

Coefficient of variation [%]

Dissolved oxygen concentration (% air saturation)

30 50

Statistical regression

b0 3.97 16.37

bA 342.0 23.40

bG 11.47 139.6

bQ 28.78 12.86

bL 33.28 185.15

Logistic equation

Xv ∞ 5.17 7.54

k 3.63 7.96

tm 20.84 2.83

Monod- Type

µmax 1.13 5.81

KA 10.48 19.46

kd.max 30.74 9.59

kd.Q 0.00 0.00

KG 117.0 35.95

KL 25.13 39.68

KLYSIS 84.85 115.7

KQ 23.33 18.61

ku 94.28 0.00

mG 47.14 4.56

mQ 47.14 0.00

YA/Q 34.14 20.14

YL/G 5.91 7.49

YX/G 0.75 14.63

YX/Q 3.38 13.28

these biochemical events could improve the prediction 
for this state variable.

The differences in the parameters of the Monod-
type model for different operational conditions are 
probably the main consequence of environmental 
parameter changes such as dissolved oxygen and 
pH. These variations could have an influence on cell 
metabolism inside the bioreactor. Monod-models, 
which include these effects, have been developed for 
microorganisms (Bhandari and Xia, 2005). They are 
complex and scarcely used in mammalian cell cultures.

The lack of an adaptation phase in the Monod models 
was not a problem and the experimental data could be 
fit by the Monod models assessed. This is probably 
a consequence of an insignificant adaptation phase 
(lag phase), guaranteed by the inoculum properties 
used, namely similar culture medium composition 
and moment of cell transfer within the growth curve 
(exponential phase) between scales (Figures 2-4).

The relatively high values of yield of cells from 
nutrients (YX/G, YX/Q) were a numerical evidence in the 
Monod-type modelling strategy of the more suitable 

environmental conditions for cell growth. Moreover, 
yields of ammonium from glutamine were lower 
when relatively high maximum cell concentrations 
were reached, which is caused by the ammonium 
accumulation in culture broth. This metabolite is toxic 
for mammalian cells. However, the yield of lactate 
from glucose was independent of the operational 
conditions (Table 3, Figures 2-4). The higher glucose 
maintenance coefficients with respect to those for 
glutamine in most of the assessed conditions mean 
that the cells need higher quantities of glucose for cell 
maintenance (Craven et al., 2013; Núñez et al., 2013).

The glutamine degradation was favored at 30% 
air saturation of dissolved oxygen when the pH was 
strictly controlled. The highest value of kd,Q was 
observed in this experimental condition. No patterns 
were observed for the maximum and intrinsic 
death rates as well as rate of cell lysis among the 
assessed experimental conditions. Nevertheless, 
the maximum specific growth rates were lower in 
experimental conditions that showed relatively low 
maximum cell concentrations (Bioflo-110, 10 and 
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70 % air saturation without base addition for pH 
controlling).

In general, the conditions more favorable 
for BHK-21 growth were 30% air saturation 
with NaHCO3 solution addition for pH control, 
when bioconversion was performed in a classic 
stirred tank bioreactor (Bioflo 110). The criterion 
was maximum cell concentration, which was 
selected on the basis that this cell line is often 
used as a host for veterinarian viral vaccine, in 
which a high viable cell concentration in a short 
time is required. For all assessed experimental 
conditions, the time corresponding to maximum 
cell concentrations was around 72 hours. In the 
statistical regression model, the highest average 
independent regression coefficient was detected 
for these experimental conditions. In addition, the 
highest carrying capacity (5.01-5.39 × 109 cells L-1, 
Table 2) of the cells in the medium for the logistic 
model was identified. On the other hand, for the 
Monod-type kinetic model, the values for yield 
of cells from glutamine were the highest in this 
experimental arrange. Glutamine has been defined 
as the limiting substrate for the BHK-21 cell line 
(Núñez, et al., 2013).

Another important kinetic parameter to 
characterize cell growth, the maximum specific 
growth rate, was in the range of 0.06-0.08 h-1 in most 
of the assessed conditions for the BHK-21 cell line 
according to the Monod-type and logistic models 
(intrinsic growth rate constant is equivalent). The 
variability could be justified by the utilization 
of different dissolved oxygen concentrations, 
experimental noises or the dissimilar hydrodynamics 
of the assessed bioreactors.

As a rule, the three approaches under 
consideration demonstrated similar prediction 
quality with respect to the state variable, viable 
cell concentration (Table 1, 2, 4). However, the 
Monod-type kinetic modeling approach provides 
additional information about nutrients consumption 
and metabolite generation over the course of 
bioconversion. Thus, the Monod-type kinetic model 
is the only modelling approach under consideration 
in the present work, which allows systemically to 
describe elements of the cell metabolism and its 
relation with growth. In that sense, it is worth 
mentioning that the associated yield coefficients 
were defined as single values throughout the batch 

culture (this is accepted, though it can vary during 
cell growth curve). The statistical regression 
model could be used to model cell growth based 
on chemometric sensors, in which nutrient 
and metabolite concentrations can be defined. 
Nevertheless, the influence of bioconversion time 
is not considered in this model, which limits the 
mechanistic understanding of cellular metabolism. 
On the other hand, the fitted logistic models 
predicted the viable cell concentration up to the 
stationary phase, in terms of bioconversion time. 
The estimation of substrates and metabolites by 
logistic equations were not considered herein 
because these substrate and metabolite models 
would not be related simultaneously to cell growth. 
Thus, the relationship between cell metabolism 
and growth would not be described systemically. 
For the three models, the conditions of operation 
influenced the model parameters.

CONCLUSIONS

The present work defined the parameters associated 
with three modelling approaches for the kinetics of 
BHK-21 under different operational conditions and 
bioreactor configurations. These models find a wide 
application in biopharmaceutical processes using 
BHK-21 cells as host both from a regulatory and 
engineering point of view.

The fitted logistic and statistical models 
properly described viable cell concentrations in 
batch operation mode, but without characterizing 
the chemical and biological phenomena inside the 
bioreactor. Both modelling approaches could be 
applied at large scale to bioreactor culture in batch 
mode, with small adjustment of parameters, if 
scale-up criteria are properly chosen. On the other 
hand, the multiplicative Monod-type model was 
adequate for depicting the growth and metabolism 
dynamics and it can be used at large scale in 
bioreactors, even when operating in different 
operation modes.

ACKNOWLEDGEMENTS

The authors would like to thank the Fundação de 
Amparo à Pesquisa do Estado de São Paulo (FAPESP) 
for a postdoctoral fellowship (2010/52521-6) and 
Conselho Nacional de Desenvolvimento Científico 



Brazilian Journal of Chemical Engineering Vol. 35,  No. 02,  pp. 441 - 458, April - June,  2018

455Model comparison to describe BHK-21 cell growth and metabolism in stirred tank bioreactors operated in batch mode

NOMENCLATURE
A ammonium concentration (mM)

Api
predicted ammonium concentra-
tion by the model at point i (mM)

Aei
experimental ammonium con-
centration at point i (mM)

bA
ammonium partial regression 
coefficients (–)

bG
glucose partial regression coeffi-
cients (–)

bL
lactate partial regression coeffi-
cients (–)

bQ
glutamine partial regression coe-
fficients (–)

b0
independent partial regression 
coefficients (–)

CV coefficient of variation of model 
parameters (%)

eri

relative error for each point of 
state variable under considera-
tion

ēr relative error average
G glucose concentration (mM)

Gpi
predicted glucose concentration 
by model at point i (mM)

Gei
experimental glucose concentra-
tion at point i (mM)

i sample identifier within sample 
set of each experiment (–)

k intrinsic growth rate constant 
(h-1)

kd.Q degree of degradation of gluta-
mine (h-1)

KL lactate saturation constant (mM)

KA
ammonium saturation constant 
(mM)

KG
glucose saturation constant 
(mM)

KQ
glutamine saturation constant 
(mM)

kd death rate (h-1)
kd.max maximum death rate (h-1)
ku intrinsic death rate (h-1)
KLYSIS rate of cell lysis (h-1)
L lactate concentration (mM)

Lpi
predicted lactate concentration 
by the model at point i (mM)

Lei
experimental lactate concentra-
tion at point i (mM)

mG
glucose maintenance coefficient 
(mmol cell-1h-1)

mQ
glutamine maintenance coeffi-
cient (mmol cell-1h-1)

n number of samples for specific 
experiment (–)

p average of model parameters

PSSE pondered sum of the squares of 
the error (–)

Q glutamine concentration (      )

Qpi
predicted glutamine concentra-
tion by the model at point i (mM)

Qei
experimental glutamine concen-
tration at point i (mM)

s.d. standard deviation of relative er-
ror

s.d.p
standard deviation of model pa-
rameters
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tm time at which Xv.max occurs (h)

xe

experimental value for a state 
variable within a kinetic experi-
ment

xe max

maximum experimental value for 
a state variable within a kinetic ex-
periment

xm

predicted value by a model for 
a state variable within a kinetic 
experiment

XD dead cell density (cells L-1)

XD pi

predicted dead cell concentra-
tion by the model at point i (cells 
L-1)

XD ei
experimental dead cell concen-
tration at point i (cells L-1)

Xv
viable cell density (cells L densi-
ty (cells L-1)

Xv pi

predicted viable cell concentra-
tion by the model at point i (cells 
L-1) 

Xv ei
experimental viable cell concen-
tration at point i (cells L-1)

Xv ∞
cell density level in the medium 
(cells L-1)

YA⁄Q
yield of ammonium from gluta-
mine (–)

YL⁄G yield of lactate from glucose (–)

YX⁄G
yield of cells from glucose (cells 
mmol-1)

YX⁄Q
yield of cells from glutamine 
(cells mmol-1)

WA
y ammonium weighing factor 

(mM -1)
WG

y glucose weighing factor (mM -1)

WL
y lactate weighing factor (mM -1)

WQ
y glutamine weighing factor 

(mM -1)
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