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Abstract  -  In the present study, the thermal conductivities of ionic liquid + water in the concentrations 0.1-
0.6 %w/w and temperatures (302.5-337.9 K) are determined. The thermal conductivity of aqueous 1-butyl-
3-methylimidazolium bromide declined with increasing concentration and temperature. A quadratic model is 
developed for predicting the thermal conductivity of aqueous ionic liquid using response surface methodology 
with R2 = 0.99. A two-layered feed forward back propagation neural network 2-10-1 is also modeled with mean 
square error, root means square and absolute average error percentage of 0.005, 0.071 and 2.684, respectively. 
The thermal conductivity of nanofluid (γ-Al2O3/water) is estimated and compared with the ionic liquid solution at 
the same concentration and temperature range. Thermal conductivity enhancement ratios of aqueous ionic liquids 
are found to be more than nanoparticle suspensions.
Keywords: Thermal conductivity; Ionic liquid; Response surface methodology; Artificial neural network; 
Nanofluid.

INTRODUCTION

Ionic liquids have recently received considerable 
attention for their wide range of applications, which are 
inevitably possible due to the attractive chemical and 
physical properties of these chemicals (Amarasekara 
and Owereh, 2011). The ionic liquids are mainly used 
as catalysts, solvents, electrolytes, biosensors, heat 
transfer fluids, reaction media, thermal stabilizers 
and polymeric plasticizers (Chernikova et al., 2015; 
Hamidova et al., 2015; Sathyabhama and Hegde, 
2006; Soman et al., 2016). Ionic liquids are entirely 
composed of organic cations with different alkyl 
substituents or functional groups and inorganic anions. 
They are organic salts with a boiling point below 1000C 
(Ghandi, 2014; Hamidova et al., 2015; Soman et al., 
2016). The thermophysical properties of the ionic 
liquids are entirely dependent on the ions with which 
they are composed (Ghandi, 2014). A most interesting 
characteristic feature of ionic liquids is the potentiality 

of tuning their properties for a given task (Santos 
et al., 2015). This can be obtained by adjusting the 
chemical structure of the constituent ions. Some of the 
exceptional properties of ionic liquids are low vapor 
pressure, remarkable catalytic properties, high ionic 
conductivity, high thermal stability, nonflammability 
and excellent solubility with organic and inorganic 
compounds (Santos et al., 2015; Soman et al., 2016).

Nanofluids are a class of engineered fluids made 
of metallic particles of average size less than 100 nm 
suspended in a base fluid (Aybar et al., 2015). The 
base fluid may be industrial heat transfer fluids such as 
water, engine oil, ethylene glycol etc. The nanofluids 
are expected to exhibit superior properties compared 
to fluids that contain micrometer-sized particles and 
other conventional heat transfer fluids. The reason 
is that heat transfer takes place at the surface of the 
particle, so it is suitable to use particles with higher 
surface area. Nanoparticles have larger surface area 
and so have greater potential in a variety of applications 
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such as photocatalysts (Ma et al., 2017), mass transfer 
processes like the removal of H2S (Ma and Zou, 2018) 
and heat transfer applications (Kumar and Chakrabarti, 
2014). The thermophysical properties have to be 
assessed for their specific applications in heat transfer 
studies (Li et al., 2018, 2017; Li and Zou, 2018a). 
The large surface area of the nanopowder markedly 
improves the heat transfer capability and stability of 
the suspensions (Choi and Eastman, 1995).

High thermal conductivity metallic nanoparticles 
(copper, aluminium, silicon) enhance the thermal 
conductivity of the nanofluid. In most of the studies, 
metallic oxides of the nanoparticles are used by 
researchers. Metal oxides of nanoparticles have been 
broadly utilized as a part of numerous applications, for 
example in medical science, sensors, semiconductors, 
catalysis, batteries and capacitors (Kumar and 
Chakrabarti, 2014). As can be seen from the literature, 
extensive research has been carried out with alumina 
(Al2O3)/water systems. The main reason for this is 
due to the very interesting properties of Al2O3 such 
as high hardness, high stability, high insulation and 
transparency (Piriyawong et al., 2012). It is a white 
oxide which exists in several phases like alpha, gamma, 
delta, and theta. Alpha is the most thermodynamically 
stable phase (Piriyawong et al., 2012). However, the 
gamma phase possesses a higher specific surface 
area equal to 200 m2g-1 which is very advantageous 
especially for heat transfer applications (Vasheghani et 
al., 2011). Vasheghani et al. (2011) studied the effect of 
thermal conductivity enhancement of engine oils with 
gamma Al2O3 (γ-Al2O3) and alpha Al2O3 (α-Al2O3). 
They concluded that, by addition of 3 %w/w of γ-Al2O3 
and α-Al2O3 to engine oil the thermal conductivity was 
enhanced by 37% and 31%, respectively. Lee and 
Mudawar (2007) performed experiments with 1% and 
2% volume concentrations of Al2O3/water to explore 
the benefits of single and two-phase heat transfer in 
a microchannel. The Hamilton-Crosser model was 
employed for the thermal conductivity calculation in 
their study. Heris et al. (2007) investigated laminar 
flow forced heat transfer with 0.2%, 0.5%, 1%, 1.5%, 
2% and 2.5% volume concentration Al2O3/water 
inside a circular tube and the Yu and Choi correlation 
(Heris et al., 2007) was employed for calculating the 
thermal conductivity of the nanofluid in their study. 
Perarasu et al. (2013) examined heat transfer of Al2O3/
water nanofluid at 0.1%, 0.2% and 0.3% volume 
concentration in a coiled agitated vessel equipped with 
a propeller and the Maxwell equation was applied for 
determining the thermal conductivity of the nanofluid. 

From the industrial and scientific point of view, a 
basic understanding of the physicochemical properties 
of ionic liquids and nanofluids is required before their 
application in several processes. Many combinations 
of nanofluids in ionic liquids have been used in a wide 

range of applications (Li and Zou, 2018b). However, 
in the case of heat transfer applications, thermal 
conductivity is an essential property. Its understanding 
is a pre-requisite for evaluating the heat transfer 
coefficient, which is required for the design of heat 
transfer equipment and for selection of heat transfer 
fluid (Lazzús, 2015a). The experimental data of this 
property is available for only a limited number of ionic 
liquids. Various authors have proposed correlations 
and predictive models for estimation of thermal 
conductivity (Albert and Muller, 2014; Carrete et al., 
2012; Chen et al., 2014; Hezave et al., 2012; Hosseini 
et al., 2016; Lazzús, 2015a, 2015b; Lazzús and Pulgar-
Villarroel, 2015; Shojaee et al., 2013). 

In this context, Albert and Muller (2014) have 
developed a Quantitative Structure-Property 
Relationship (QSPR) model for the determination of 
the thermal conductivity. It uses the experimental data 
of 39 pure ionic liquids, covering a temperature range 
of 273.15 K to 390 K. The QSPR model is based on 
the information of ions constituting it as the only input 
parameter. Furthermore, in their method, contributions 
are assigned to each anion and cation, and these 
contributions are summed up to get the thermal 
conductivity. Hezave et al. (2012) have developed a 
perceptron neural network model for predicting the 
thermal conductivity. It uses 21 different pure ionic 
liquids with an overall absolute mean relative deviation 
percent of 0.5 % and mean square error of 1.2 ×10-

6. Lazzús (2015b) proposed a model, using a group 
contribution method, to predict thermal conductivity 
as a function of temperature (302.52-337.92 K) and 
pressure (100-20000 kPa). This model has an average 
relative absolute deviation less than 1.90 % for the 
correlation set. The experimental data of 41 pure ionic 
liquids were collected from literature for their studies.

In most of the reported methods, the prediction 
of thermal conductivities is possible for just those 
ionic liquids whose cations and anions fall among the 
functional groups selected. In addition, only limited 
literature is available on experimental studies of 
thermal conductivity of binary mixtures of ionic liquid 
and water. Response Surface Methodology (RSM) is a 
powerful tool to develop a mathematical model relating 
a dependent variable(s) with independent variable(s). 
Moreover, to the best of the author’s knowledge there 
is no application of RSM and a feed-forward back-
propagation neural network for modeling the thermal 
conductivity of the aqueous ionic liquid, as presented 
here, and certainly there is no publication on the 
thermal conductivity of a binary solution of 1-butyl-3-
methylimidazolium bromide (BMImBr) and water. As 
a consequence, we focus on determining the thermal 
conductivity of binary mixtures of BMImBr and 
water at different temperatures (302.52-337.92 K) and 
concentrations (0.1-0.6 %w/w) experimentally using a 
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guarded parallel plate instrument. A new mathematical 
model equation has been proposed using RSM to 
determine the thermal conductivity of BMImBr + 
water binary solution as a function of temperature 
and concentration. Additionally, a feed-forward back-
propagation neural network has also been developed 
for prediction of the thermal conductivity of BMImBr 
solution and compared with the RSM. Since, γ-Al2O3 
possess remarkable properties and has been effectively 
used as nanoparticles in heat transfer application 
studies, it is also used for a comparative study of the 
thermal conductivities of the BMImBr + water ionic 
liquid solution and the nanofluid (γ-Al2O3/water) with 
water as the base fluid. The thermal conductivity of 
nanofluid (γ-Al2O3/water) was calculated based on 
Maxwell’s equation (non-experimentally derived 
values at the same concentration and temperature 
range of ionic solution were used).

MATERIALS AND METHODS

Materials
BMImBr (Molecular formula: C8H15BrN2) ionic 

liquid procured from M/s. Alfa Aesar with 99% 
purity and spherical shaped 20-30 nm aluminium 
oxide (gamma) nanoparticle powder (γ-Al2O3) with 
99.97% purity purchased from M/s. Otto are used. 
The ionic liquid is in a solid state and is stored in a 
cool, dry place. The thermal conductivity apparatus 
purchased from M/s. Mass International, Haryana 
is used for the measurement of liquid state thermal 
conductivity of the chosen ionic liquid. The samples 
are weighed on a Shimadzu electronic weighing 
balance with a precision ±0.001g. Six resistance 
temperature detectors-platinum thermometers 
(RTD-PT 100) with 0.1 0C least count were used for 
measuring temperature. The X-ray diffraction (XRD) 
technique is used for the size determination of γ-Al2O3 
nanoparticles. XRD measurements are performed on 
an X-ray diffractometer (Ultima IV, Rigaku, Japan) 
operated at 40 kV and 30 mA, equipped with an 
X-ray source emitting CuKα radiation (λ = 0.15406 
nm). The XRD patterns from 200 to 800 are recorded 
at room temperature with the following measurement 
conditions: scan speed of 50 per minute and the step 
size of 0.050. 

Preparation of BMImBr aqueous solution
A sample solution of 0.5L is prepared by mixing 

the ionic liquid with water on a weight by weight basis 
to obtain different concentrations ranging from 0.1-0.6 
%w/w and this range is selected in accordance with the 
conventional values used in industry. Each sample is 
stirred well with a magnetic stirrer to assure that ionic 
liquid is completely dissolved in water. The samples 
are tightly closed while stirring. 

Thermal conductivity measurements of BMImBr 
aqueous solution

The apparatus works on the basis of the guarded 
hot plate method. It is a steady state absolute method 
used for the measurement of thermal conductivity of 
fluids, which can be fixed between two parallel plates. 
The schematic diagram of the thermal conductivity 
measurement apparatus for liquids is shown in Figure 
1. A cold plate, hot plate, RTD PT-100 sensors, a heater 
to heat the hot plate, cold water supply for the cold 
plate and the liquid specimen holder are the essential 
components of the set-up. In this set-up, a unidirectional 
heat flow takes place across the liquid whose two faces 
are maintained at different temperatures by the hot 
plate on one end and by the cold plate at the other end. 
The gap between the hot plate and cold plate forms 
the liquid cell, in which the liquid sample is filled. An 
electric heater heats the hot plate and voltage to the 
heater is varied with the help of a variac to conduct 
experiments at different voltages as well as at different 
heat inputs. The RTD PT-100 sensors attached at three 
different places on the hot plate and cold plate are 
used to measure the temperatures. The uncertainty in 
temperature measurement is 0.1 %.

These sensors are provided on the inner surface 
facing the liquid sample. An average temperature 
output of these sensors is recorded as Th and Tc at 
steady state conditions. The voltmeter and ammeter 
readings are noted after the steady state is attained. 
The temperature of the cold surface is maintained by 
circulating cold water at 1 LPM. The depth of the liquid 
in the direction of heat flow is kept small to ensure the 
absence of convection currents and a liquid sample 
with high viscosity and density can ensure the absence 
of convection and the heat transfer is assumed to take 
place by conduction alone. The thermal conductivity 
measurement apparatus specifications are given in 
Table 1. The apparatus is calibrated using glycerol as a 

Figure 1. Schematic diagram of the thermal 
conductivity measurement apparatus.
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sample fluid to test the reliability and accuracy of the 
thermal conductivity measurement.

The liquid cell of the apparatus is filled with the 
0.1 %w/w solution of BMImBr through the inlet 
port by closing the sample outlet port. To facilitate 
complete removal of air through the outlet port the 
liquid is filled very slowly until the sample comes out 
of the sample level port. The cold water is allowed to 
flow through the cold water inlet port. The heater is 
switched on for the supply of heat to the hot plate. The 
voltage of the hot plate heater is varied from 40 - 100 
V and the readings are recorded for every 10V rise. 
Once the steady state is attained, three sensor readings 
(T1,T2,T3 i.e., Th1,Th2,Th3) on the hot side and the three 
sensor readings (T4, T5, T6, i.e., Tc1, Tc2, Tc3) on the cold 
side along with the ammeter and voltmeter readings 
are noted and the thermal conductivity of the aqueous 
BMImBr is calculated using Eq.1. The same procedure 
is continued to collect data on temperature, voltage and 
current for all the other 0.2-0.6 %w/w concentration 
samples of aqueous BMImBr solution.

The principle of the guarded plate method is that, 
when a temperature gradient exists in a body, there is 
an energy transfer from the high-temperature region 
to the low-temperature region. The mode of energy 
transfer is conduction and the heat transfer rate per 
unit area is proportional to the normal temperature 
gradient. At steady state, the average face temperatures 
are recorded (Th and Tc) along with the rate of heat 
transfer. With the available data of heat transfer area 
and thickness of the sample, the thermal conductivity 
is calculated using Fourier’s Law of heat conduction 
(Eq.1).

where k is the thermal conductivity of the ionic liquid 
(Wm-1K-1), A is the area of heat transfer (m2) calculated 
using Eq.2, Th and Tc are the average temperatures of 
the recorded hot and cold plate temperatures (K), Q 
is the amount of heat transferred through the liquid at 
steady state (W) calculated using Eq.3 and ∆X is the 
depth of the sample (m). 

Table 1. Thermal Conductivity Measurement 
Apparatus Specification. h c kA (T T )

Q  
X
−

=
∆

2DA
4

π
=

where D is the diameter of the plate (m). 

Q EI=

where E is the voltage (V) and I is the current (A).

Response surface methodology for predicting 
thermal conductivity of BMImBr aqueous solution 

The RSM is a collection of statistical and 
mathematical methods that are established for the fit 
of empirical models to the experimental data. Central 
composite design (CCD) is the most popular RSM 
design that has three groups of design points, namely 
two-level factorial or fractional factorial design points, 
center points and axial points (Biniaz et al., 2016). 
Central composite face-centered design (CCFCD) 
with two independent variables coded at three levels 
between -1 and +1 is applied to model the thermal 
conductivity of aqueous solutions of BMImBr. 
Temperature and concentration of BMImBr solution 
are the two independent factors opted for modeling 
(Table 2). Design Expert 10.0.3.3 software is used to 
model the equation for thermal conductivity of the 
fluids. The generated runs for CCFCD in this work are 
13 with two factors.

The experimental data from the CCD model for 
thermal conductivity of the BMImBr ionic liquid 
solutions are fitted to a second order polynomial equation 
(Eq. 4) and the regression coefficients are obtained.

Table 2. Physical and coded values of independent 
process variables.

2 2
0 1 2 3 4 5Y A B A B AB e= β +β +β +β +β +β +

where Y is the response variable, A and B are the 
independent variables, β0 is the constant or offset term, 

(1)

(2)

(3)

(4)
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β1 and β2 are the slopes or linear coefficient of the 
input factors, β3 and β4 are the quadratic coefficients, 
β5 is the interaction coefficient and e is the statistical 
error (Biniaz et al., 2016). Temperature (T) and 
concentration (C) are the independent variables and 
thermal conductivity of the aqueous ionic liquid 
solution (kio

pre) is the response variable. The response 
data are obtained from the test work of 13 runs. When 
the p-value is higher than 0.05 at the 95% confidence 
level, the effects are considered to be not statistically 
significant. The quality of fit of the quadratic model 
equation is expressed by the value of the correlation 
coefficients (R2) and the significance is checked using 
the F-test (Abdullah et al., 2014). The main aim is to 
determine the second order polynomial equation for the 
thermal conductivity of aqueous solutions of the ionic 
liquid as functions of temperature and concentration.

Artificial neural networks for predicting thermal 
conductivity of BMImBr aqueous solution

The functioning of the artificial neural network 
(ANN) is developed from the behavior of biological 
neurons (Najafi-Marghmaleki et al., 2016). ANN is 
very productive for anticipating the information by 
learning through training. The ANN tool in Matlab 
Version 7.7.0.471 (R2008b) is employed for the study. 
In the current investigation, 60 experimental data 
are arbitrarily divided into three separate groups of 
training, testing and validation, respectively. 70% of 
the total number of experimental data are employed 
as training and validation sets; the remaining 30% 
(not used for training or validation) for testing. 
Concentration and temperature are the input variables; 
and densities of BMImBr solutions as the output 
variable. The minimum and maximum of the variables 
in ANN are listed in Table 3.

The thermal conductivities of the BMImBr 
solutions within the training set are used as target 
values. All the target and input variables are normalized 
independently in the range 0 to 1 using Eq.5.

with only one hidden layer is able to correlate any 
complexities (Lashkarbolooki et al., 2013). The 
Levenberg-Marquardt training algorithm is used for 
training the network. Mean square error (MSE) is used 
as the performance function. The log-sigmoid transfer 
function, which is an appropriate choice for nonlinear 
functions (Haghbakhsh et al., 2013), is utilized as the 
activation function for input-hidden layers and the 
hidden to output layer employed the Purelin transfer 
function. These functions can be defined as follows:

Log-sigmoid transfer function

Table 3. Ranges of the input and output variables in ANN.

( )
expn

exp exp

x min(x exp)
x

max x min(x )

−
=

−

where xn represents the normalized value of the 
variable, xexp is the actual experimental value of xn, 
min(xexp) is the minimum actual value of xexp, max(xexp) 
is the maximum actual value of xexp.

A feed forward back-propagation neural network 
with a single hidden layer is proposed since a network 

( )
qq q y

1z f y  for q 1 to r
1 e−

= = =
+

where zq is the output of the qth hidden neuron, yq is 
the input to the qth hidden neuron from the input layer 
given by Eq.7 and r is the total number of hidden 
neurons in a first hidden layer.

2

q p pq q
p 1

y x nu a
=

= +∑

where xp
n represents the normalized input to the pth 

input neuron, upq are the weights connecting pth input 
neuron to qth hidden neuron and aq is the bias to qth 
hidden neuron.

Purelin transfer function

( )H f Z  Z= =

where H is the output from the output neuron, Z 
represents inputs to the output layer given by Eq. 9. 

r

q q1
q 1

Z z v b
=

= +∑

where zq represents the output of the qth hidden neuron 
in the hidden layer, vq1 is the weight connecting the qth 
hidden neuron to the first output neuron and b is the 
bias to the output neuron.

The optimum network is obtained by amending the 
number of hidden neurons in the hidden layer on a trial 
and error basis. The network is trained for 1000 epochs 
and all the other parameters are set to defaults as in the 
ANN tool. During training, the network parameters are 
periodically adjusted based on the comparison between 
the output and target values; until the number of epochs 

(5)

(6)

(7)

(8)

(9)
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elapses or when the error reaches an acceptable level 
or when there is no improvement in the error generally. 
In this study, the training stops when the number of 
validation checks reaches six. Later, the network is 
tested with the testing set (data not used for training 
or validation) to check whether the trained network 
is able to reproduce the original data. The optimum 
ANN model is chosen by comparing the MSE (Eq.10), 
percentage average relative error (PARE) (Eq.11) and 
percentage average absolute error (PAAE) (Eq.12) of 
the testing data for different ANN models (Fatehi et 
al., 2014). 

thermophysical properties of γ-Al2O3 nanoparticles 
are: density rnp = 3700 kgm-3 and thermal conductivity 
knp = 46 Wm-1K-1 (Farajollahi et al., 2010). The 
thermal conductivity of the γ-Al2O3/water nanofluid is 
determined for different concentrations ranging from 
0.1-0.6 %w/w using the Maxwell equation (Perarasu 
et al., 2013) given by Eq.14.

( )
N 2exp pre

n n
n 1

1MSE k k
N

=

 = − 
 ∑

( )pre expN
n n

exp
nn 1

k k1PARE 100
N k=

− = × 
 ∑

( )pre expN
n n

exp
nn 1

k k1PAAE  100
N k=

− = × 
 ∑

In Eqs.10, 11, 12, N represents the total number of 
testing data, kn

exp and kn
pre are experimental and predicted 

thermal conductivity of the nth data in Wm-1K-1.

Nanoparticle size measurement
XRD is the measuring technique used to confirm the 

crystallite size of the γ-Al2O3 nanoparticles. The XRD 
pattern obtained for the sample is shown in Figure 2. 
Significant peak broadening is obtained at a 2θ0 value 
of 66.9260. This peak is utilized for the crystallite size 
determination. The crystallite size is calculated using 
the Scherrer formula (Uvarov and Popov, 2007) given 
in Eq.13.

Kd
cos
λ

=
β θ

where d is the crystallite size (nm), K is the Scherrer 
constant, β is the width of the peak or full width at 
half maximum (FWHM) in degrees, λ is the X-ray 
wavelength (0.15406 nm) and θ is the Bragg angle in 
degrees. The Scherrer constant usually varies from 0.8-
1.39 and for spherical particles K is nearly 1(Uvarov 
and Popov, 2007). With β = 0.78720, θ =33.4630 and K 
= 0.9, the crystallite size is determined as 21nm, which 
lies in 20-30 nm size range as mentioned by the supplier.

Nanofluid property determination
The nanofluid with γ-Al2O3 nanoparticles dispersed 

in water as the base fluid is used for the study. The 

Figure 2. X-ray diffraction pattern obtained for 
γ-Al2O3 nanoparticle.

( )
( )

np bf np bfnf

bf np bf np bf

k 2k 2  k kk
 

k k 2k k k

+ + ϕ −
=

+ −−ϕ

where knf, kbf and knp are the thermal conductivity 
of the nanofluid, basefluid and nanoparticle in Wm-

1k-1 and φ represents volume fraction. If the thermal 
conductivity of the nanoparticle is much higher 
than that of the base liquid then Eq.15 can be used 
for determining the nanofluid thermal conductivity 
(Perarasu et al., 2013).

where knf and kbf are the thermal conductivity of 
nanofluid and basefluid, and φ represents volume 
fraction. The nanofluid in weight concentration is 
converted into volume concentration using Eq.16. 

where ϕ is the volume concentration (ϕ = 100φ) in 
%v/v, mnp is the weight concentration in %w/w, rbf and 
rnp represent the density of basefluid and nanoparticle 
in kg m-3 (Azmi et al., 2013). 

(10)

(11)

(12)

(13)

(14)

(15)( )nf bfk k 1 3= + ϕ

(16)np bf

p p
bf np

m
m m

1  
100 100

r
∅ =

 
r + − r 
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RESULTS AND DISCUSSION

The experimental thermal conductivities estimated 
for varying concentrations of BMImBr solutions (0.1-
0.6 %w/w) at different temperatures (302.52 - 337.92 
K) under ambient pressure are analyzed. In addition, 
the thermal conductivities of the BMImBr solution are 
compared with those of γ-Al2O3/water nanofluid and 
the results are presented as follows.

Effects of Temperature and Concentration on 
thermal conductivity of BMImBr solution

The effect of temperature and concentration on the 
thermal conductivity of BMImBr solutions are plotted 
in Figure 3. The thermal conductivities vary from 1.5-
2.9 Wm-1K-1 for 0.1-0.6 %w/w solutions of BMImBr in 
the temperatures 302.5-337.9 K under ambient pressure. 
From Figure 3, it is evident that thermal conductivity 
of the aqueous BMImBr solutions decreases with the 
increase in concentration and temperature. As the 
temperature of the solution increases, the probability 
of collision between molecules increases. Hence, the 
mean free path of the molecules decreases, thereby 
reducing the thermal conductivity. The thermal 
conductivity of organic liquids like benzene, toluene, 
ethylene glycol etc., also decreases with an increase 
in temperature (Ge et al., 2007). Similar behavior is 
noted for other pure ionic liquids too (Castro et al., 
2010; Valkenburg et al., 2005). 

The thermal conductivity decreases with the 
increase in the concentration of BMImBr, irrespective 
of temperature. As the concentration increases, the 
solution viscosity increases whereby reducing the 
ion mobility. Additionally, the poor intermolecular 
interaction between ionic liquid and water reduces 
thermal conductivity. The incremental addition of pure 
ionic liquid to the solution (ionic liquid + water) reduces 
the thermal conductivity of the resultant solution 
(Valkenburg et al., 2005). 1-Ethyl-3-methylimidazol-

3-ium ethylsulphate ([EMIM][EtSO4]) + water 
mixtures also showed a similar trend of decrease in the 
thermal conductivity with increase in the mass fraction 
of [EMIM][EtSO4] (Chen et al., 2013). The thermal 
conductivity of the BMImBr + water binary solutions 
is much greater than the thermal conductivity of water, 
which means that BMImBr may be used as an additive 
with water for enhanced performance as a heat transfer 
fluid. 

RSM model analysis of the thermal conductivity of 
aqueous BMImBr solution 
Experimental design

The experimental results obtained are used 
to determine the model equation for the thermal 
conductivity of BMImBr solutions using the CCFCD 
under the RSM, with temperature and concentration as 
the independent variables.

The final quadratic model regression equation in 
terms of actual factors as obtained in RSM is given 
below:

Figure 3. Effect of temperature and concentration on 
thermal conductivity of BMImBr solutions

pre
io

2 2

k 64.280 0.3610T 0.5015C

0.0061TC 0.6170C 0.000525T

− + −

+

=

+−

where kio
pre is the predicted thermal conductivity of the 

BMImBr solution (Wm-1K-1), T is temperature (K) and 
C is the concentration of BMImBr solution (%w/w).

The ANOVA test (Table 4) is used to determine the 
significant effects of the operating variables such as 
temperature and concentration. An F value = 481.90 
for temperature indicated that it is the most significant 
variable affecting thermal conductivity of BMImBr 
followed by concentration (F = 153.37) and then T2 

(F = 15.85). The source terms with ‘p value=Prob>F’ 
less than 0.05 implies that the source terms (model, 
concentration, temperature and T2) are significant. The 
terms with ‘p-value’ more than 0.05 are also considered 
in the developed model equation (Eq.17) to minimize 
the error of the prediction model. The validity of the 
developed model is assured by comparison with the 
experimental values and Figure 4 shows that the values 
are close to the diagonal line, indicating that the errors 
between the experimental values and the predicted 
values are minimal. The quadratic regression model of 
thermal conductivity of BMImBr solution designates 
the coefficient of determination R2 and adjusted R2 as 
0.990 and 0.982, respectively, hence demonstrating the 
quality of the best fit of the determined quadratic model.

Combined effects of concentration and temperature 
on the thermal conductivity of aqueous ionic liquid 
solutions

The response surface curve for the thermal 
conductivity of BMImBr solutions is plotted using 

(17)
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Table 4. ANOVA table for the RSM quadratic model of thermal conductivity.

Figure 4. Comparison between predicted and 
experimental thermal conductivities of BMImBr 
solutions.

the generated Eq.17 to investigate the combined 
effects of temperature and concentration (Figure 5). 
The response surface shows good agreement with the 
experimental results. From Figure 5, it is evident that, 

Figure 5. Response surface plot showing the effects 
on thermal conductivity for BMImBr solutions

as the concentration and temperature of the BMImBr 
solution increases, the thermal conductivity decreases. 
For instance, from 2→4 thermal conductivity 
increases from 2.43 Wm-1K-1 to 2.91 Wm-1K-1 at a 
particular temperature (303.15 K) with a decrease in 
concentration (0.6→0.1 %w/w). As the temperature 
increases from 303.15-333.15 K (say, 2→1), thermal 
conductivity at a particular concentration (0.6 %w/w) 
decreases. 1→3 indicates the lowest values of 
thermal conductivity while 2→4 signals the highest 
values. Thus, the impacts of both temperature and 
concentration are broadly studied and can be quantified 
from the RSM plot.

ANN analysis of the thermal conductivity of 
aqueous BMImBr solution 

The performance of the investigated ANN models 
is shown in Figure 6. It is clear that the predicted 
responses of the network are affected by changing the 
number of neurons in the hidden layer. In this study, 
only a single hidden layer is considered for modeling, 
as a two-layered (input-output and one hidden layer) 
network itself is efficient for predicting data with 
greater accuracy (Lashkarbolooki et al., 2013). The 
ANN network 2-10-1 (two input neurons, one hidden 
layer with ten hidden neurons and one neuron in the 
output layer) with the least MSE = 0.005, PARE = 
-1.398 and PAAE = 2.685, compared to other networks, 
is chosen as the optimum network (Figure 7).

Figure 6. Comparison of MSE of test data for three 
layered architecture of ANN.
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The regression and performance plots are generated 
after training the ANN networks to check the 
regression coefficient and MSE of training, validation 
and testing sets. Training is stopped when fairly good 
regression coefficients are achieved for all training, 
testing and validation sets. From the regression plot 
(Figure 8), it is clear that the cluster line and the fit data 
line almost coincide with each other with R2 values 
of 0.9995, 0.9845 and 0.9589 for training, testing and 
validation sets, respectively. This indicates that the 
model predictions and the experimental data are in 
excellent agreement. The parameters associated with 
each neuron (weight and bias) in the input-hidden and 
hidden-output layers of the ANN network are updated 
automatically during iteration until the number 
of validation checks became equal to six. Table 5 
indicates the weights and biases of the optimized 
network (2-10-1).

Comparison of RSM and ANN thermal conductivity 
models of aqueous BMImBr solution

The thermal conductivity predicted by RSM and 
ANN are compared with the experimental thermal 
conductivities of BMImBr solutions (data included for 
its modeling is not considered) based on the statistical 
quality parameters MSE, Root Mean Square Error 
(RMSE) (as given in Eq.18) and PAAE (Table 6). 

where N represents the total number of test data, kn
exp 

and kn
pre are the actual value of the experimental and 

predicted thermal conductivity of the nth data. 
Based on the lower values of MSE = 0.005, RMSE 

= 0.071 and PAAE = 2.684, it is clear that the ANN 
model is more robust and accurate than the RSM 
model.

Comparison of the thermal conductivity of aqueous 
BMImBr/water and γ-Al2O3/water nanofluid

Research on nanofluids and ionic liquids has 
increased tremendously. This interest is mainly 
rooted in the unique properties of ionic liquids and 
nanofluids. The thermal conductivity of γ-Al2O3/water 
nanofluid (nanoparticle: γ-Al2O3, base fluid: water) 
in the concentrations ranging from 0.1-0.6 %w/w 

Figure 7. Optimized Neural Network model: 2-10-1.

Figure 8. Regression plots of optimized model 2-10-1.

Table 5. Weight and bias values of the neurons in the optimized 2-10-1 network.

( )
1 /2N 2exp pre

n n
n 1

1RMSE k k
N

=
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and temperature range 302.52 - 337.92 K calculated 
using Eq.16 is compared with BMImBr ionic liquid 
solution at the same concentration and temperature. 
The effect of temperature and concentration on the 
thermal conductivity of γ-Al2O3/water nanofluid is 
depicted in Figure 9. The aforementioned nanofluid 
thermal conductivity increases with an increase in the 
temperature and concentration of the nanoparticle. 
The same trend is also reported for other nanofluids 
(Li and Xuan, 2000; Perarasu et al., 2013). As 
nanofluids are suspensions of the nanoparticles 
in the base fluid, the enhancement in the thermal 
conductivity of the base fluid is due to the motion 
of the nanoparticles dispersed in the basefluid (Li 
and Xuan, 2000; Perarasu et al., 2013). However, the 
thermal conductivity of BMImBr/water ionic liquid 
solution decreases with an increase in temperature 
and concentration as shown in Figure 3. In the case 

of ionic liquid solutions, the reverse behavior may 
be due to the interactions between the ions of ionic 
liquid and water.

The effect of concentration is greater for BMImBr/
water compared to γ-Al2O3/water nanofluid. From 
Figure 10, it can be clearly inferred that the thermal 
conductivity of the BMImBr/water solution (kio) 
is much higher than the thermal conductivity of the 
γ-Al2O3/water nanofluid (knf) in the concentration 
range (0.1-0.6 %w/w) studied. The enhancement ratio 
(knf/kbf or kio/kbf) is evaluated for both aqueous BMImBr 
solution and γ-Al2O3/water nanofluid at 302.52 K and 
plotted in Figure 11. The enhancement ratio values 
of the aqueous BMImBr solution are much higher 
than of γ-Al2O3/water nanofluid. For instance, for 0.1 
%w/w concentration, the values are knf/kbf = 1.00 and 
kio/kbf = 4.22 for γ-Al2O3/water nanofluid and aqueous 
BMImBr solution, respectively. 

Table 6. Comparison of RSM and ANN models.

Figure 9. Effect of temperature and concentration on 
γ-Al2O3/water nanofluid.

Figure 10. Comparison of thermal conductivity 
of γ-Al2O3/water nanofluid and aqueous BMImBr 
solution.
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CONCLUSION

The thermal conductivities of aqueous BMImBr 
solutions are determined at different temperatures 
ranging from 302.52-337.92 K and 0.1-0.6 %w/w 
concentrations under ambient pressure. The thermal 
conductivity is measured using the thermal conductivity 
apparatus that works based on the guarded hot plate 
method. The experimental thermal conductivity values 
of the ionic liquid vary in the range of 1.495-2.914 
Wm-1K-1 for the range of concentration and temperature 
studied. A second order quadratic equation with a 
coefficient of determination R2 of 0.990 is formulated 
to compute the thermal conductivity of BMImBr 
solution using RSM with MSE = 2.212, PARE = 
4.474 and PAAE = 4.474. From ANOVA analysis, it is 
found that temperature is a more significant operating 
variable influencing the thermal conductivity than the 
concentration.

A two-layered feed forward back-propagation neural 
network is also developed for predicting the thermal 
conductivity of aqueous BMImBr solutions. An ANN 
model with two input neurons, ten hidden neurons and 
one output neuron is the optimum architecture obtained 
with MSE = 0.005, PARE = -1.398 and PAAE = 2.684. 
The statistical methods specified that both the models 
are explicit in the prediction of experimental thermal 
conductivities of BMImBr solutions. However, 
the ANN model demonstrated better performance 
compared to the RSM model owing to lower values of 
MSE = 0.005, RMSE = 0.0714 and PAAE = 2.684. The 
proposed models are useful in predicting the thermal 
conductivities of BMImBr solutions at the required 
temperature and concentration without conducting any 
further experiments. However, the pertinence of the 
proposed models can further be enhanced by covering 

an extensive range of concentration and temperature 
values. 

The comparison studies of the thermal conductivity 
of BMImBr/water and γ-Al2O3/water nanofluid in the 
concentration range from 0.1-0.6 %w/w are conducted. 
The thermal conductivity of γ-Al2O3/water varied in 
the range of 0.622-0.665 Wm-1K-1 in the temperature 
ranges of 302.52-337.92 K and 0.1-0.6 %w/w 
concentrations under ambient pressure. The results of 
the study indicate that the thermal conductivity values 
of both the fluids, namely BMImBr/water and γ-Al2O3/
water, are higher than that of water. But the thermal 
conductivity values of the BMImBr/water solution is 
much higher compared to γ-Al2O3/water nanofluid. 
For instance, at 0.1 %w/w concentration and 302.52 K, 
thermal conductivity enhancement ratios equal to 1.00 
and 4.22 are obtained for γ-Al2O3/water nanofluid and 
BMImBr/water, respectively. Hence, this remarkable 
thermal conductivity enhancement suggests that these 
two liquids may be used effectively in heat transfer 
applications to improve the thermal conductivity of 
conventional water-based heat transfer fluids. 

NOMENCLATURE

Q	 Amount of heat transferred through the
	 liquid at steady state, W 
A	 Area of heat transfer, m2

Tc	 Average face temperature of the cold
	 plate, K
Th	 Average face temperature of the hot
	 plate, K
A	 Bias to the hidden layer
B	 Bias to the output neuron
C	 Concentration of BMImBr solution,
	 %w/w
D	 Crystalline size, nm
I	 Current, A
∆X	 Depth of the sample, m 
D	 Diameter of the plate, m 
xexp	 Experimental value of xn

A	 First Independent Variable
F	 Fisher value
Y	 Input to hidden neuron
Z	 Input to output layer
max(xexp) 	 Maximum value of xexp
min(xexp) 	 Minimum value of xexp
xn 	 Normalized value of the variable
H	 Output from output neuron
Z	 Output of hidden neuron
Y	 Response variable 
K	 Scherrer constant
B	 Second Independent Variable
T	 Temperature of BMImBr solution,
	 %w/w
k	 Thermal conductivity, Wm-1K-1

Figure 11. Enhancement ratio comparison of γ-Al2O3/
water nanofluid and aqueous BMImBr solution at 
302.52 K.
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R	 Total number of hidden neurons in the
	 first hidden layer
N	 Total number of test data
E	 Voltage, V
M	 Weight concentration of nanoparticle,
	 %w/w
V	 Weights connecting hidden to output
	 neuron
U	 Weights connecting input to hidden
	 neuron

Greek symbols
Θ	 Bragg angle, degrees
β0	 Constant
Ρ	 Density, kgm-3

β5	 Interaction coefficient 
β2	 Linear coefficient of B
β1	 Linear coefficient of A
β3	 Quadratic coefficient of A
β4	 Quadratic coefficient of B
Φ	 Volume concentration, %v/v
Φ	 Volume fraction
Β	 Width of peak, degrees
Λ	 X-Ray wavelength, nm

Subscripts
Bf	 Base fluid
C	 Cold plate
Q	 Hidden neuron
H	 Hot plate 
P	 Input neuron
Io	 Ionic liquid
Np	 Nanoparticle
N	 nth testing data

Superscripts
exp 	 Experimental value
N	 Normalized value
Pre	 Predicted value

Abbreviations
BMImBr	 1-Butyl-3-methylimidazolium
	 bromide 
ANN	 Artificial neural network
CCD	 Central composite design 
CCFCD	 Central composite face centered
	 design 
R2	 Coefficient of determination 
γ-Al2O3	 Gamma Aluminium Oxide 
MSE	 Mean square error 
PAAE	 Percentage average absolute error 
PARE	 Percentage average relative error 
RTD-PT 	 Resistance temperature detectors-
	 Platinum thermometers 
RSM	 Response Surface Methodology 
RMSE	 Root Mean Square Error 
XRD	 X-ray diffraction 

REFERENCES

Abdullah, S.B., Man, Z., Bustam, M. An Optimization 
Study via Response Surface Methodology in 
Extracting of Benzothiophene and Xylene from 
n-C12 using 1-Hexyl-3-Methylimidazolium 
Tetrafluoroborate Ionic liquid. J. Appl. Sci., 
14, 1008-1015 (2014). https://doi.org/10.3923/
jas.2014.1008.1015

Albert, J., Muller, K. Thermal conductivity of Ionic 
Liquids: An estimation approach, Chem. Eng. Sci. 
119, 109-113 (2014). https://doi.org/10.1016/j.
ces.2014.08.023

Amarasekara, A.S., Owereh, O.S. Thermal properties 
of sulfonic acid group functionalized Bronsted 
acidic ionic liquids. J. Therm. Anal. Calorim., 103, 
1027-1030 (2011). https://doi.org/10.1007/s10973-
010-1101-5

Aybar, H., Sharifpur, M., Azizian, M.R., Mehrabi, 
M., Meyer, J.P. A review of thermal conductivity 
models for nanofluids. Heat Transf. Eng., 36, 1085-
1110 (2015). https://doi.org/10.1080/01457632.20
15.987586

Azmi, W.H., Sharma, K. V., Sarma, P.K., Mamat, R., 
Anuar, S., Rao, V.D. Experimental determination 
of turbulent forced convection heat transfer and 
friction factor with SiO2 nanofluid. Exp. Therm. 
Fluid Sci., 51, 103-111 (2013). https://doi.
org/10.1016/j.expthermflusci.2013.07.006

Biniaz, P., Farsi, M., Rahimpour, M.R. Demulsification 
of water in oil emulsion using ionic liquids: 
Statistical modeling and optimization. Fuel 
184, 325-333 (2016). https://doi.org/10.1016/j.
fuel.2016.06.093

Carrete, J., Mendez-Morales, T., Garcia, M., Vila, J., 
Cabeza, O., Gallego, L.J., Varela, L.M. Thermal 
Conductivity of Ionic Liquids : A Pseudolattice 
Approach. J. Phys. Chem., 116, 1265-1273 (2012). 
https://doi.org/10.1021/jp208972t

Castro, C.A.N., Lourenco, A.P., Ribeiro, A.P.C., 
Langa, E., Vieira, S.I.C., Goodrich, P., Hardacre, C. 
Thermal properties of ionic liquids and ionanofluids 
of imidazolium and pyrrolidinium liquids. J. 
Chem. Eng. Data, 55, 653-661 (2010). https://doi.
org/10.1021/je900648p

Chen, Q.-L., Wu, K.-J., He, C.-H., Thermal 
Conductivity of Ionic Liquids at Atmospheric 
Pressure: Database, Analysis, and Prediction Using 
a Topological Index Method. Ind. Eng. Chem. Res., 
53, 7224-7232 (2014). https://doi.org/10.1021/
ie403500w

Chen, Q.-L., Wu, K.-J., He, C.-H., Thermal 
Conductivities of [EMIM][EtSO4], [EMIM][EtSO4] 
+C2H5OH + H2O at T = (283.15 TO 343.15) K. J. 
Chem. Eng. Data, 58, 2058-2064 (2013). https://
doi.org/10.1021/je400268t



Thermal Conductivity Enhancement of Aqueous Ionic Liquid and Nanoparticle Suspension

Brazilian Journal of Chemical Engineering, Vol. 36, No. 02,  pp. 855 - 868,  April - June,  2019

867

Chernikova, E.A., Glukhov, L.M., Krasovskiy, V.G., 
Kustov, L.M., Vorobyeva, M.G., Koroteev, A.A. 
Ionic liquids as heat transfer fluids: Comparison 
with known systems, possible applications, 
advantages and disadvantages. Russ. Chem. Rev., 
84, 875-890 (2015). https://doi.org/10.1070/
RCR4510

Choi, S.U.S., Eastman, J.A. Enhancing thermal 
conductivity of fluids with nanoparticles, in: ASME 
International Mechanical Engineering Congress & 
Exposition (1995).

Farajollahi, B., Etemad, S.G., Hojjat, M. Heat transfer 
of nanofluids in a shell and tube heat exchanger. 
Int. J. Heat Mass Transf., 53, 12-17 (2010). https://
doi.org/10.1016/j.ijheatmasstransfer.2009.10.019

Fatehi, M.R., Raeissi, S., Mowla, D. An artificial 
neural network to calculate pure ionic liquid 
densities without the need for any experimental 
data. J. Supercrit. Fluids, 95, 60-67 (2014). https://
doi.org/10.1016/j.supflu.2014.07.024

Ge, R., Hardacre, C., Nancarrow, P., Rooney, D.W. 
Thermal conductivities of ionic liquids over the 
temperature range from 293 K to 353 K. J. Chem. 
Eng. Data, 52, 1819-1823 (2007). https://doi.
org/10.1021/je700176d

Ghandi, K. A Review of Ionic Liquids , Their Limits 
and Applications. Green Sustain. Chem., 4, 44-53 
(2014). https://doi.org/10.4236/gsc.2014.41008

Haghbakhsh, R., Adib, H., Keshavarz, P., Koolivand, 
M., Keshtkari, S. Development of an artificial neural 
network model for the prediction of hydrocarbon 
density at high-pressure, high temperature 
conditions. Thermochim. Acta, 551, 124-130 
(2013). https://doi.org/10.1016/j.tca.2012.10.022

Hamidova, R., Kul, I., Safarov, J., Shahverdiyev, A., 
Hassel, E. Thermophysical properties of 1-butyl-
3-methylimidazolium bis(trifluoromethylsulfonyl)
imide at High Temperatures and Pressures. Brazilian 
J. Chem. Eng., 32, 303-316 (2015). https://doi.
org/10.1590/0104-6632.20150321s00003120

Heris, S.Z., Esfahany, M.N., Etemad, S.G. 
Experimental investigation of convective heat 
transfer of Al2O3/water nanofluid in circular tube. 
Int. J. Heat Fluid Flow, 28, 203-210 (2007). https://
doi.org/10.1016/j.ijheatfluidflow.2006.05.001

Hezave, A.Z., Raeissi, S., Lashkarbolooki, M. 
Estimation of Thermal Conductivity of Ionic 
Liquids Using a Perceptron Neural Network. Ind. 
Eng. Chem. Res., 51, 9886-9893 (2012). https://
doi.org/10.1021/ie202681b

Hosseini, S.M., Alavianmehr, M.M., Moghadasi, J. 
Transport properties of pure and mixture of ionic 
liquids from new rough hard-sphere-based model. 
Fluid Phase Equilib., 429, 266-274 (2016). https://
doi.org/10.1016/j.fluid.2016.09.004

Kumar, S., Chakrabarti, S. A Review: Enhancement 
of Heat Transfer with Nanofluids. Int. J. Eng. Res. 
Technol., 3, 549-557 (2014).

Lashkarbolooki, M., Hezave, A.Z., Babapoor, A. 
Correlation of density for binary mixtures of 
methanol+ionic liquids using back propagation 
artificial neural network. Korean J. Chem. Eng., 30, 
213-220 (2013). https://doi.org/10.1007/s11814-
012-0112-2

Lazzús, J.A. Estimation of the thermal conductivity 
λ(T,P) of ionic liquids using a neural network 
optimized with genetic algorithms. Comptes 
Rendus Chim., 19, 333-341 (2015a). https://doi.
org/10.1016/j.crci.2015.09.010

Lazzús, J.A. A group contribution method to predict 
the thermal conductivity λ(T,P) of ionic liquids. 
Fluid Phase Equilib., 405, 141-149 (2015b). https://
doi.org/10.1016/j.fluid.2015.07.015

Lazzús, J.A., Pulgar-Villarroel, G. Estimation of 
thermal conductivity of ionic liquids using 
quantitative structure-property relationship 
calculations. J. Mol. Liq., 211, 981-985 (2015). 
https://doi.org/10.1016/j.molliq.2015.08.037

Lee, J., Mudawar, I. Assessment of the effectiveness 
of nanofluids for single-phase and two-phase heat 
transfer in micro-channels. Int. J. Heat Mass Transf., 
50, 452-463 (2007). https://doi.org/10.1016/j.
ijheatmasstransfer.2006.08.001

Li, Q., Xuan, Y. Heat Transfer Enhancement of 
Nanofluids. Int. J. Heat Mass Transf., 21, 58-
64 (2000). https://doi.org/10.1016/S0142-
727X(99)00067-3

Li, W., Zou, C. Experimental investigation of stability 
and thermo-physical properties of functionalized 
β-CD-TiO2-Ag nanofluids for antifreeze. Powder 
Technol., 340, 290-298 (2018a). https://doi.
org/10.1016/j.powtec.2018.09.005

Li, W., Zou, C. Deep desulfurization of gasoline by 
synergistic effect of functionalized β-CD-TiO2-Ag 
nanoparticles with ionic liquid. Fuel, 227, 141-149 
(2018b). https://doi.org/10.1016/j.fuel.2018.04.083

Li, W., Zou, C., Li, X. Thermo-physical properties of 
cooling water-based nanofluids containing TiO2 
nanoparticles modified by Ag elementary substance 
for crystallizer cooling system. Powder Technol., 
329, 434-444 (2018). https://doi.org/10.1016/j.
powtec.2018.01.089

Li, W., Zou, C., Li, X. Thermo-physical properties 
of waste cooking oil-based nanofluids. Appl. 
Therm. Eng., 112, 784-792 (2017). https://doi.
org/10.1016/j.applthermaleng.2016.10.136

Ma, M., Zou, C. Effect of nanoparticles on the mass 
transfer process of removal of hydrogen sulfide 
in biogas by MDEA. Int. J. Heat Mass Transf., 
127, 385-392 (2018). https://doi.org/10.1016/j.
ijheatmasstransfer.2018.06.091



Divya P. Soman et al.

Brazilian Journal of Chemical Engineering

868

Ma, Q., Zhang, H., Guo, R., Cui, Y., Deng, X., Cheng, 
X., Xie, M., Cheng, Q., Li, B. A novel strategy to 
fabricate plasmonic Ag/AgBr nano-particle and 
its enhanced visible photocatalytic performance 
and mechanism for degradation of acetaminophen. 
J. Taiwan Inst. Chem. Eng., 80, 176-183 (2017). 
https://doi.org/10.1016/j.jtice.2017.06.033

Najafi-Marghmaleki, A., Khosravi-Nikou, M.R., 
Barati-Harooni, A. A new model for prediction 
of binary mixture of ionic liquids+water density 
using artificial neural network. J. Mol. Liq., 
220, 232-237 (2016). https://doi.org/10.1016/j.
molliq.2016.04.085

Perarasu, T., Arivazhagan, M., Sivashanmugam, P. 
Experimental and CFD heat transfer studies of 
Al2O3-water nanofluid in a coiled agitated vessel 
equipped with propeller. Chinese J. Chem. Eng., 
21, 1232-1243 (2013). https://doi.org/10.1016/
S1004-9541(13)60579-0

Piriyawong, V., Thongpool, V., Asanithi, P., 
Limsuwan, P. Preparation and characterization of 
alumina nanoparticles in deionized water using 
laser ablation technique. J. Nanomater., 2012, 1-6 
(2012). https://doi.org/10.1155/2012/819403

Santos, D., Góes, M., Franceschi, E., Santos, A., 
Dariva, C., Fortuny, M., Mattedi, S. Phase equilibria 
for binary systems containing ionic liquid with 
water or hydrocarbons. Braz. J. Chem. Eng., 32, 
967-974 (2015). https://doi.org/10.1590/0104-
6632.20150324s00003609

Sathyabhama, A. and Hegde, R.N., Thermal 
Applications of Ionic Liquids - A Review, in: 
Trends and Advances in Mechanical Engineering, 
1-7 (2006).

Shojaee, S.A., Farzam, S., Hezave, A.Z., 
Lashkarbolooki, M., Ayatollahi, S., A new 
correlation for estimating thermal conductivity 
of pure ionic liquids. Fluid Phase Equilib., 
354, 199-206 (2013). https://doi.org/10.1016/j.
fluid.2013.06.004

Soman, D.P., Kalaichelvi, P., Radhakrishnan, T.K. 
Review on Suitability of Ionic Liquids for Heat 
Transfer Applications. Emerg. Trends Chem. Eng., 
3, 40-51 (2016).

Uvarov, V., Popov, I. Metrological characterization 
of X-ray diffraction methods for determination 
of crystallite size in nano-scale materials. 
Mater. Charact., 58, 883-891 (2007). https://doi.
org/10.1016/j.matchar.2006.09.002

Valkenburg, M.E.V., Vaughn, R.L., Williams, M., 
Wilkes, J.S. Thermochemistry of ionic liquid heat-
transfer fluids. Thermochim. Acta, 425, 181-188 
(2005). https://doi.org/10.1016/j.tca.2004.11.013

Vasheghani, M., Marzbanrad, E., Zamani, C., Aminy, 
M., Raissi, B., Ebadzadeh, T., Barzegar-Bafrooei, 
H. Effect of Al2O3 phases on the enhancement of 
thermal conductivity and viscosity of nanofluids 
in engine oil, Heat Mass Transf., 47, 1401-1405 
(2011). https://doi.org/10.1007/s00231-011-
0806-8


