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Abstract  -  Model Predictive Control, MPC and NMPC, and real-time optimization, RTO and D-RTO, are known 
to help plant operability through the mitigation of impacts caused by external disturbances. However, the usage 
of these tools in industry requires overcoming some challenges, for instance: accurate models of the process, 
particularly in regard to nonlinearities; suitable computational time for obtaining the solution of large-scale 
problems and model mismatch between the RTO or D-RTO and NMPC. In this paper, we present a methodology 
to obtain analytical model predictions based on a Hammerstein structure to represent the process nonlinearities, 
reducing the computational effort in real-time applications. Unlike most common approaches that transform 
NMPC internal models, described by differential-algebraic equations (DAE), into an approximate system of 
nonlinear algebraic (NLA) equations using, for instance, orthogonal collocation, in the proposed approach, the 
obtained NLA is an exact description of the original DAEs system. The proposed algorithm was applied to a 
non-isothermal CSTR (continuous stirred tank reactor) integrated with an optimization layer. The results show 
that the proposed structure presented a significant reduction in computational time without performance loss, 
when compared with the NMPC using a rigorous model. Moreover, the proposed strategy demonstrated good 
performance in tracking the targets sent by the optimization layer, without model mismatches between layers.
Keywords: NMPC; RTO; D-RTO; CSTR.

INTRODUCTION

MPC is an optimization-based control strategy 
which is well suited for multivariable processes with 
constraints. Constraints satisfaction is a very important 
advantage of MPC algorithms because constraints 
usually determine product quality, environmental impact 
and process safety. When the process presents nonlinear 
behavior, the MPC algorithms using a linear model may 
not present an acceptable performance. In this case, 
NMPC algorithms based on nonlinear models should 
be investigated (Henson, 1998). As any MPC strategy, a 
dynamic model of the process is used for prediction, and 
the choice of the nonlinear model structure is extremely 
important for the success of the controller. 

In an NMPC algorithm, a nonlinear optimal control 
problem is solved at each sampling instant, spending 
a significant computational time. Therefore, the most 
difficult issue to implement NMPC algorithms in 
industrial applications is the computational time needed 
to robustly solve large-scale optimizations without 
feedback delays that can degrade the performance and 
possibly cause dangerous instabilities in the process. 
This challenge led to the development of efficient 
nonlinear programming (NLP) to solve complex 
control problems for industrial application. Li and 
Biegler (1989) were the first to represent a nonlinear 
dynamic model by successive linear models around a 
nominal trajectory, where a quadratic programming 
(QP) is solved at every sampling time. Diehl et al. 
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(2005) proposed a real-time iteration scheme, where 
only one Newton or QP iteration of the NLP is solved on-
line at each sampling time, demonstrating robustness 
and satisfactory real-time performance in a numerical 
experiment. In order to reduce the computational time, 
there are algorithms based on sensitivity analysis. 
Zavala and Biegler (2009) proposed an algorithm 
which exploits the parametric property of the Optimal 
Control Problem (OCP) and approximates the true 
optimal solution using NLP sensitivity concepts. 
Pirnay et al. (2012) presented a study showing a 
capability for sensitivity analysis that is coupled to the 
IPOPT algorithm, a barrier NLP solver with a filter-
based line search. Yang and Biegler (2013) solved 
the NLP problem offline one-step in advance, where 
the NLP sensitivity is used to get the manipulated 
variables online with the actual measurement, and 
Lopez-Negrete et al. (2013) applied this strategy to 
two large-scale processes. Recently, Biegler et al. 
(2015) showed an efficient NLP sensitivity tool that 
required 2-3 orders of magnitude less computation 
time than the traditional NLP solution.

Alangar et al. (2015a) proposed a nonlinear system 
identification technique to obtain well-conditioned 
polynomial nonlinear state-space (PNLSS) models. 
The PNLSS model can be correctly integrated with 
large time steps without significant performance 
loss, reducing the computational effort. The well-
conditioned nonlinear models enable the design of a 
Lyapunov-based Economic model Predictive control 
(LEMPC), demonstrating closed-loop stability in the 
presence of computational delay and process noise. 
There is a variety of papers on EMPC performance, 
such as stability, computation time reduction and 
improving the closed-loop economic performance 
compared to the economic performance at the 
economically optimal steady state (Alangar et al., 
2015b; Ellis and Christofides, 2015). The proposed 
LEMPC was applied in a continuously stirred tank 
reactor (CSTR), illustrating computational advantages 
without significant reduction in profit, when compared 
with models based on first-principles.

Fast update methods developed for direct solution 
approaches can be classified in the suboptimal update 
methods and in the sensitivity-based update methods. 
The choice of a fast NMPC strategy is not trivial 
because the methods have similar structures. Inga and 
Marquardt (2016) presented a review and assessed the 
common elements of the fast NMPC, including fast 
update methods and the control structure applied in 
these schemes.

Eaton et al. (2017) introduced a method for using 
high fidelity simulators in NMPC by implementing a 
switched control scheme. In this strategy, when the 
linear model prediction error exceed a tolerance, the 
algorithm started a re-identification using simulated 

data in the current operating conditions. While the 
model identification is calculated, the switched control 
calls a low order NMPC that uses a reduced order 
observer model (Stamnes et al., 2008) to keep the 
process in control.

Aiming to reduce the online computational 
demands, Khani and Haeri (2015) proposed an 
algorithm that represents nonlinear processes with 
uncertain linear models and thus the nonlinear control 
problem is converted into a robust MPC (RMPC) 
problem. However, while the RMPC reduces the 
computational effort, it leads to a suboptimal solution.

Linear approximation of the nonlinear model used 
in NMPC algorithms is a common strategy to solve 
nonlinear optimization problem. Trierweiler and 
Secchi (2000) proposed an NMPC based on local linear 
model networks to represent nonlinear systems. This 
approach was used by Duraiski et al. (2001) to design 
an NMPC controller with a Local Linearization on the 
Trajectory (LLT) algorithm. The method minimizes 
the objective function using a nonlinear model through 
successive linearizations until convergence of the 
control movements. Different model structures can 
be used to represent the process, such as the identified 
input-output nonlinear model, first-principles model, 
and local model network. The algorithm showed 
high performance when applied to control nonlinear 
systems. In this context, Lawrynczuk (2013) proposed 
three linearizations strategies to solve the NLP problem, 
the first is simplified linearization around the current 
operation point (MPC-NPSL), the second consists in 
computing the prediction with a nonlinear model and 
apply a linearization along the trajectory once at each 
sampling instant (MPC-NPLT), and the last one is an 
algorithm with Nonlinear Prediction and Linearization 
along the Predicted Trajectory (MPC-NPLPT), the 
output trajectory calculation and linearization along 
the computed input trajectory being carried out in an 
iterative way. In all strategies the neural Wiener model 
is used to calculate the nonlinear predicted trajectory 
and the linear approximation allows one to solve the 
control problem as a quadratic programming problem. 
The disadvantage of MPC algorithms with successive 
linearization is the approximation accuracy that affects 
the control performance.

Rashid et al. (2016) proposed a data-driven multi-
model approach weighting scheme to represent the 
nonlinear nature of an electric arc furnace process. 
However, the strategy had difficulties to find a 
weighting function and to get data from identification. 

Other challenges for industrial implementation of 
NMPC strategies are the plant-model mismatch and 
unmeasured disturbances that can lead to performance 
loss or constraint violations. The multi-stage NMPC 
is a robust NMPC approach based on the assumption 
that uncertainty can be modeled by a scenario tree 
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and solved in an efficient way, both in terms of 
computational time and memory requirements (Marti 
et al., 2015). The challenge is to build the scenario 
tree, considering the uncertainty space, which can 
greatly increase the size of the optimization problem, 
especially for large prediction horizons.

In this work, a nonlinear approach to describe 
the process that makes NMPC less computationally 
demanding and suitable for real-time application 
was proposed. Moreover, the proposed NMPC 
was integrated with an optimization layer, without 
model mismatches between layers that could cause 
infeasibility problems to the controller to follow the 
optimal reference trajectory from the DRTO or to track 
an optimal steady state from the RTO.

In the next section, the methodology to obtain the 
analytical model to represent the nonlinear system is 
presented and the structure of the proposed algorithm. 
In Section 3, cases studies and analyses of the proposed 
nonlinear model predictive control (NMPC) together 
with the optimization algorithm are carried out.

PROPOSED METHOTOLOGY

In this section, we describe the proposed 
methodology to develop an NMPC with fast 
computational structure and integrated with the 
optimization layer.

Formulation of the control problem
The NMPC is based on the solution of a discrete 

nonlinear optimal control problem (NOCP), which is 
formulated as:

control move suppression factors, uSP and ySP are the 
manipulated and controlled target, respectively, from 
the optimization layer, u(tk) ∈ ℜnu and d(tk) ∈ ℜnd are 
control and disturbance signals, respectively, with 
u(tk) described by a piecewise constant functional. 
In this paper, all disturbances are considered to 
be measured, but sometimes in industrial plants 
important disturbances are unmeasured. In this case, 
the use of Kalman filtering techniques (Huang et al., 
2012) can estimate the effects of these disturbances 
in controlled variables, y(tk). The nonlinear model is 
described in the next section. 

Equations 1 to 4 describe the NMPC formulation, 
where Equation 2 is the main novelty, with an analytical 
internal model, formulated later as Equations 6 to 9, 
to describe the process dynamic behavior. In order to 
compare this proposed structure with the best possible 
performance, another NMPC with the internal model 
replaced by the DAEs system that describes the plant 
behavior, Equation 5, was solved too, providing a 
reference solution.

[ ]NL
k k k 0 k k 1 ky(t ) f (u(t ),d(t ), y(t ), t ),              t t , t= ∈

kmin maxu u(t ) u≤ ≤

kmin max
y y(t ) y≤ ≤

where HP is the prediction horizon, HC is the 
control horizon, Wy is the positive semi-definite 
diagonal matrix of controlled variable weighting 
factors, Ru is the positive semi-definite diagonal 
matrix of manipulated target weighting factors, R 
is the positive semi-definite diagonal matrix of the 

[ ]k k k k k 0 0 k 0 nF(x(t ), x(t ), y(t ), u(t ), t ) 0,      x(t ) x ;    t t , t= = ∈

where F(•) ∈ ℜnx + ny  is the DAE system, x(tk) ∈ ℜnx 
are the state variables, y(tk) ∈ ℜny are the controlled 
variables and u(tk) ∈ ℜnu are the manipulated variables. 
Both NLP problems were solved by the interior point 
method (Biegler, 2010), with an important difference 
between the proposed model and the reference solution, 
where the NMPC internal model described by the 
system is numerically integrated or transformed into 
NLA equations by discretization techniques, such as 
orthogonal collocation on finite elements, in the latter. In 
the proposed approach, the resulting NLA equations are 
an exact description of the original DAEs system, it being 
possible to analytically compute the exact gradient and 
Hessian, which makes it faster to solve the NLP problem.

Determination of the nonlinear model
The challenge in implementing NMPC techniques 

is the development of models that represent the process 
without spending a lot of computational time. This step 
is very important because the controller performance 
depends on how capable the model is in describing the 
plant behavior. There are many nonlinear models in the 
literature that can be used in NMPC algorithms, such 
as black-box models (Nonlinear Auto Regressive with 
external input (NARX) polynomial model (Sriniwas 
and Arkun, 1997)), fuzzy models (Tatjewski, 2007), 
Volterra models (Doyle et al., 1995), artificial neural 
network models (Akesson and Toivonen, 2006), etc.), 
first-principles models (Rodriguez and Perez, 2005) 
and gray-box models (Pearson and Pottmann, 2000). 
Hammerstein and Wiener models are well-known and 
widely-used nonlinear models in the literature (Janczak, 
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2004). These models have a block-oriented structure, 
composed of a linear block that represents the dynamic 
behavior and another block that maps the nonlinear 
steady states of the process. Therefore, they can be 
applied with different nonlinear control techniques, 
for instance, adaptive control (Knohl and Unbehauen, 
2000), model reference adaptive control (Pajunen, 
1992), Internal Model Control (IMC) (Norquay et al., 
1998, 1999), linearizing feedforward-feedback control 
(Kalafatis et al., 2005) and MPC. There is an important 
advantage in the MPC strategies, the steady-state part of 
the model can compensate the nonlinearity of the process 
(Bloemen et al., 2001; Cervantes et al., 2003a; Gómez 
et al., 2004; Lawrynczuk, 2010; Peng et al., 2011). An 
approach to solve a NMPC is to transform it into an 
adaptive MPC. This strategy consists in multiplying the 
linear dynamic part of the model by the current “gain” 
of the steady-state part which is computed online (Seyab 
and Cao, 2006), resulting in a linear model to be used in 
a classical linear MPC algorithm. 

In this work, a multi-parametric approach to 
represent the non-linearities of the process was 
proposed. However, many others structures can be 
used in Equation 2, such as a continuous piecewise 
linear function (Cervantes et al., 2003b), cubic 
spline (Norquay et al., 1999), wavelets (Aadaleesan 
et al., 2008), linear combinations of basis functions 
(Gomes et al., 2004) and artificial neural networks 
(Lawrynczuk, 2007). 

Equation 6 shows the proposed model used to 
represent the process, where Equation 7 is a multi-
parametric structure to represent the steady-state 
conditions, see Appendix A, and Equation 9 is an 
analytical structure to represent the dynamic behavior, 
see Appendix B. The NMPC algorithm based on the 
proposed analytical model to solve the NLP problem 
was also compared with the adaptive MPC approach 
described above.

where j = 1, ..., ny, Ci,k,j and αi,k,j,m,l are the parameters 
of the polynomial models of degrees n1 and n2, 
respectively, ⊗ is the Hadamard product (Appendix 
C), y(t) ∈ ℜny are the controlled variables, d0 ∈ ℜny 
are the initial values of the controlled variables, ySS : 
ℜu

n × ℜd
n → ℜy

n represents the steady-state mapping 
from inputs to outputs, while f(t) ∈ ℜny describes the 
dynamic behavior of the process. The structure of 
Equation 6 allows getting the gradient and the Hessian 
analytically, reducing the computational effort to 
obtain the NLP solution.

The methodology used to get the model described 
in Equations 6 to 9 was twofold: (1) Structure selection 
to find the more appropriate function that describes the 
dynamic behavior of the process through identification 
tests, using first and second order functions, with and 
without dead time, that minimizes the sum of square 
errors calculated by difference between the plant and 
the model in each instant, Equation 10. (2) A multi-
parametric function was proposed to represent the 
non-linearity of the steady states, where only steady-
state data were used to obtain the parameters, and a test 
procedure was applied to determine the input sequence 
to get data that describe the process non-linearities.

n
2

k
k 1

arg min (Error(t ))
θ =

∑

[ ]k k k k 1 nError(t ) y (t ) y(t ),      t t , t= − ∈

where θ are the model parameters, y ∈ ℜny are the 
model variables and yP ∈ ℜny are the plant variables.

Nonlinear model identification is a challenge, 
because of the possible non-convex optimization 
problem to be solved, imposing difficulties to find 
the globally optimal solution. Thus, to obtain a robust 
solution of the problem, the following three-step 
identification strategy was proposed: (1) Carry out 
an identification with linear models to get an initial 
estimate for the parameters of the linear dynamic 
model; (2) With only steady-state data, estimate the 
parameters of the steady-state nonlinear model; (3) 
Estimate the parameters of the dynamic linear model, 
(Appendix B), coupled with the nonlinear model 
obtained in the previous step, using as initial estimate 
the solution of the identification of the first step.

Integration of the NMPC with the optimization 
layer

Optimization techniques have many challenges, 
especially when applied in real time. For instance, one 
of the most important is the integration between the 
optimization and control layers, because the models, in 
general, are different; the first uses phenomenological 
models and the second usually uses empirical models. 

0 ss 0y(t) y y (u,d) y f (t) = + − ⊗  (6)

u 1n n
SS i
j i,k, j k

i 0k 1

y (u,d) C (d)(u )
==

= ∑∏ (7)

d 2n n
m

i,k, j i,k, j,m,l l
m 0l 1

C (d) (d )
==

= α∑∏ (8)

(10)

(11)

(9)
( ) ( )

j

j

j j

j d

d

2 2
j jj

d d2j jj

(t )
f (t) 1 exp

1 1
cosh t sinh t

1

 −ε − τ
 = − ×

τ  
    ε − ε −ε    × − τ + − τ    τ τε −     



A Methodology to Obtain Analytical Models that Reduce the Computational Complexity Faced in Real Time Implementation of NMPC Controllers

Brazilian Journal of Chemical Engineering, Vol. 36, No. 03,  pp. 1255 - 1277,  July - September,  2019

1259

This fact may lead to unreachable targets for the control 
layer. In this context, many authors have proposed an 
intermediate feasibility optimization layer, in which 
new targets are evaluated, using the static part of the 
empirical models of the controller (Zanin et al., 2000). 
In this intermediate optimization, the sum of the square 
of the deviations between the targets of this layer 
and the optimization layer is minimized. The targets 
calculated in the intermediate layer are reachable by the 
controller, because they were obtained using the same 
empirical model. Therefore, there is no guarantee that 
this optimal point is the same from the optimization 
layer with phenomenological models, resulting in sub-
optimal points. 

In the proposed approach, the static part of the 
nonlinear model of the controller can map the entire 
optimization region built-up with rigorous models of 
the process, avoiding the necessity of an intermediate 
layer to integrate the optimization and control layers. 
The mathematical formulation of optimization layer is 
illustrated in Equations 12 to 15.

where ϕ(tn) is the objective function, F(•) ∈ ℜnx + ny is 
the algebraic equation system, x(tn) ∈ ℜnx are the state 
variables, d(tn) ∈ ℜnd are the disturbance variables, 
y(tn) ∈ ℜny are the controlled variables and u(tn) ∈ ℜnu 
are the manipulated variables. The optimal solution of 
the optimization problem using the rigorous model is 
yR ∈ ℜny and uR ∈ ℜnu.	

Equations 20 to 23 show the intermediate 
optimization layer.

{ }
n n n

A A
n

y(t ),u(t ),d(t )
y , u (t )arg min= ϕ

s.t.

ss
n n ny(t ) y (u(t ),d(t ))=

L U
ny y(t ) y≤ ≤

L U
nu u(t ) u≤ ≤

where ϕ(tn) is the objective function, ySS (u(tn), d(tn)) 
∈ ℜny is the multi-parametric model to describe the 
steady state, d(tn) ∈ ℜnd are the disturbance variables, 
y(tn) ∈ ℜny are the controlled variables and u(tn) ∈ ℜnu 
are the manipulated variables. The optimal solution of 
the optimization problem is yA ∈ ℜny and uA ∈ ℜnu.

Equations 16 to 19 show the rigorous optimization 
layer using phenomenological models to represent 
the process. The formulation is similar to the above 
problem, but replacing the proposed model, Equation 
13, by rigorous model. 

{ }
n n n

R R
n

y(t ),u(t ),d(t )
y , u (t )arg min= ϕ

n n n nF(x(t ), y(t ), u(t ),d(t )) 0=

L Uy y(t ) y≤ ≤

L U
nu u(t ) u≤ ≤

{ }
n n n

RI I 2
n n

y(t ),u(t ),d(t )
y , u (y(t ) y (t ))arg min= −

s.t

ss
n n ny(t ) y (u(t ),d(t ))=

min n maxy y(t ) y≤ ≤

min n maxu u(t ) u≤ ≤

where ySS (u(tn), d(tn)) ∈ ℜny is the multi-parametric 
model to describe the steady state, d(tn) ∈ ℜnd are the 
disturbance variables, y(tn) ∈ ℜny are the controlled 
variables and u(tn) ∈ ℜnu are the manipulated variables. 
The optimal solution of the intermediate optimization 
layer is yI ∈ ℜny and uI ∈ ℜnu. Equation 24 illustrates 
the integration between the optimization and control 
layers when there is an intermediate optimization 
layer. On the other side, in the proposed approach the 
integration is represented by Equation 25 with yA(tn) 
sent directly to the control layer.

[ ]SP I
k n k 0 ny (t ) y (t ),        t t , t= ∈

[ ]SP A R
k n n k 0 ny (t ) y (t ) y (t ),        t t , t= ≅ ∈

The challenge to apply optimization techniques 
with static models is to ensure that the plant is in a 
steady state, as this condition is crucial to a successful 
optimization. In this context, there are several works 
questioning whether steady-state optimization is the 
best way. Since the control layer has no information 
about the dynamic economical performance of 
the plant, it may generate trajectories that simply 
track a suboptimal setpoint (Jaschke et al., 2014). 
Recent studies about dynamic optimization have 
reported significant performance improvements with 
economically-oriented NMPC formulations (Zavala 
and Biegler, 2009).

Wang et al. (2017) proposed a strategy to eliminate 
model mismatch between the dynamic RTO and 
the control layer. Elimination of model mismatch 
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between D-RTO and the control layer ensures that 
problems such as unreachability and infeasibility of 
the trajectories calculated by D-RTO do not appear. 
The strategy transforms the dynamic model equations 
into a nonlinear algebraic model by using a trapezoidal 
formula. This nonlinear model is applied in both 
layers, but also the same discretization method and the 
same intervals are used.

In this context, the proposed approach was 
integrated with a dynamic optimization layer, without 
the necessity of an intermediate layer. In this way, 
the optimal path obtained in D-RTO is sent to the 
control layer, which will be responsible to take the 
plant through the optimal trajectory. The mathematical 
formulation of the dynamic optimization layer is 
illustrated in Equations 26 to 27.

where sx (tk) are time-varying slacks by relaxing to 
constraints of state variables, sy (tk) are time-varying 
slacks by relaxing to constraints of controlled variables 
and su (tk) are time-varying slacks by relaxing to 
constraints of manipulated variables. The proposed 
approach allows direct integration between the dynamic 
optimization layer and control layer, Equation 30.{ }

k k k

DR DR
k k n

y(t ),u(t ),d(t )
y (t ), u (t ) (t )arg min= ϕ

s.t.

[ ]k k k k k 0 0 k 0 nF(x(t ), x(t ), y(t ), u(t ), p, t ) 0,           x(t ) x ;    t t , t  = = ∈

L U
kx x(t ) x≤ ≤

L U
ky y(t ) y≤ ≤

L U
ku u(t ) u≤ ≤

where ϕ(tn) is the objective function, F(•) ∈ ℜnx + ny 
is the differential algebraic equation system (DAE),  
x(tk) ∈ ℜnx are the state variables, y(tk) ∈ ℜny are the 
controlled variables, u(tk) ∈ ℜnu are the manipulated 
variables, and p ∈ ℜnp are the time independent 
parameters. 

The differential-algebraic optimization problem 
(DAOP) illustrated by Equations 26 and 27 was 
reformulated as a multi-objective optimization 
problem using time-varying constraint relaxation 
techniques. Equations 28 and 29 show the mathematical 
formulation of the multi-objective optimization 
problem by relaxing the constraints with time-varying 
slack variables, s(t) (Almeida and Secchi, 2012).

( ) ( ) ( )f f f

x y u
k k k k 0 0 0

t t t2 2 2x y u
n

u(t ),s (t ),s (t ),s (t ) t t t
min (t ), s (t) dt, s (t) dt, s (t) dt,

 
ϕ ∫ ∫ ∫

  

[ ]k k k k k 0 0 k 0 nF(x(t ), x(t ), y(t ), u(t ), p, t ) 0,           x(t ) x ;    t t , t  = = ∈

L x U
k kx x(t ) s (t ) x≤ + ≤

L y U
k ky y(t ) s (t ) y≤ + ≤

L u U
k ku u(t ) s (t ) u≤ + ≤

xx x x x n
k kL Us s (t ) s    where   s (t )≤ ≤ ∈ℜ

yny y y y
k kL Us s (t ) s    where   s (t )≤ ≤ ∈ℜ

uu u u u n
k kL Us s (t ) s    where   s (t )≤ ≤ ∈ℜ

[ ]SP DR
k k k 0 ny (t ) y (t ),        t t , t= ∈

The ability of the proposed model to describe plant 
behavior allows one to insert a contribution in the 
objective function of the control layer that represents 
the economical performance of the process, avoiding 
the necessity of an optimization layer. In this way, 
the economic optimization will be solved at the same 
frequency as the control problem. Therefore, the 
proposed model is promising for use in economic 
model predictive control strategies, EMPC.

RESULTS AND DISCUSSION

The benchmark CSTR (controlled stirred tank 
reactor) of Van de Vusse was chosen as the case 
study because of its well-known nonlinear behavior. 
The system is represented by the synthesis of 
cyclopentenol (component B) from cyclopentadiene 
(component A) by addition of acid water catalyst. Due 
to the strong reactivity of the reactants and products, 
dicyclopentadiene (component D) is produced as a 
secondary product of the Diels-Alder reaction, and 
cyclopentenodiol (component C) is produced by the 
consecutive addition of another water molecule (Klatt 
and Engell, 1998). The equations that describe the 
chemical reactions of the process are the following: 

2 2H O/H H O/H
5 6 5 7 5 8 2C H C H OH C H (OH)

+ +
→ →

5 6 10 122C H C H→

The mass and energy balances in the CSTR 
(continuous stirred tank reactor), with constant volume, 
and control system as shown in Figure 1, result in the 
following equations:

(26)

(27)

(28)

(29)

(30)

(31)

(32)
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where Ca and Cb are the molar concentrations of species 
A and B, respectively, Cain is the inlet concentration 
of species A, T is the reactor temperature, Tw is the 

Figure 1. The schematic of the reactor of Van de Vusse.

( )in
2a

a a 1 a 3 a
dC F C C K (T)C K (T)C
dt V

= − − −

b
b 1 a 2 b

dC F C K (T)C K (T)C
dt V

= + −

AB BC AD
2

1 a R 2 b R 3 a R
P

w R
in w

P

dT 1 K (T)C ( H ) K (T)C ( H ) K (T)C ( H )
dt C

K AF (T T) (T T)
V C V

 = − −∆ + −∆ + −∆ + ρ

− + −
ρ

i
i i0

E
K (T) K exp

RT
 = − 
 

Table 1. CSTR parameters for the case study 
(Trierweiler, 1997).

Figure 2. Steady state of Cb composition.

jacket temperature, Tin is the inlet temperature, F is the 
feed flow rate, V is the reactor volume, AR is the heat 
transfer area, Kw is the overall heat transfer coefficient. 
Table 1 shows the model parameters.

Figure 2 illustrates the nonlinear steady-state 
behavior of the composition Cb as function of the 
manipulated variables, F and Tw, of the Van de Vusse 
reactor. This case study is suitable to verify the 
controller performance, because there is nonlinearity 
of the controlled variable Cb with both manipulated 
variables, F and Tw. For instance, if we choose any 
curve in the figure, where Tw is constant, there is an 
inversion of the gain signal of the Cb composition with 
the feed flow rate. On the other hand, if we draw and 
walk up in a vertical line, where the feed flow rate is 
constant and close to the lower bound of the feed flow 
rate, the reaction rate increases when Tw is reduced, 
maximizing the Cb production. However, when we 
are on the other side, close to the upper bound of the 
feed flow rate, the reaction rate increases when Tw is (33)

(34)

(35)

(36)
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increased. Therefore, there is also an inversion of the 
gain signal in the relationship between the variables 
Tw and Cb. Besides that, the results are important 
because they show that the multi-parametric model 
can describe the steady-sate region very well.

Process Identification
The NMPC was configured with two manipulated 

variables, F and Tw, two controlled variables, Cb and T, 
and two disturbance variables, Cain and Tain. Equations 
6 to 9 are a representation of Equations 37 to 40 used 
to describe the behavior of the Van de Vusse reactor 
in the MPC algorithm. Tables 2 and 3 show the 
parameters obtained from the identification procedure.

Tw, and in the disturbance variables, Cain and Tain. The 
results show that the models for Cb(t) and T(t) describe 
well the plant behavior in all regions, allowing the use 
in NMPC and optimization strategies.

Application of the proposed NMPC in the case 
study

The formulation of the NMPC presented in Equation 
1 was employed with ySP(tk) = [Cb

SP(tk), T
SP(tk)], y(tk) = 

[Cb(tk), T(tk)] and u(tk) = [F(tk), Tw(tk)], where the tuning 
parameters are Δu(tk) = [ΔF(tk), ΔTw(tk)] = [100L/h, 
10K], Wy(tk) = [WCb(tk), WT(tk)] = [100, 10], [RΔF(Tk), 
RΔTw(Tk)] = [10, 10], Ru(tk) = [RF(tk), RTw(tk)] = [1, 1], 
tsampling = 5 min, HP = 50, HC = 10.

The objective of this study was to evaluate the 
NMPC performance using the proposed model in 
comparison with the NMPC using the rigorous 
model to follow the suggested setpoints for Cb and T. 
Furthermore, the capability of the proposed NMPC to 
reject disturbances was tested.

Figures 7 to 8 illustrate the good performance of the 
proposed controller to lead the plant smoothly to the 
setpoints. Both figures show a small bias in temperature 
at the first moment, before the Cb setpoint changed. It 
happened because, at this moment, the feed flow rate 
was at the minimum limit, leaving the controller with 
only one degree of freedom and two foci, since the 
Cb setpoint is more important than Temperature. The 
code was written in Matlab platform and the Interior 
Point algorithm (Byrd et al., 1999) was chosen to 
solve the nonlinear problem. The algorithm did not 
spend a lot of computational time, approximately 
0.66 seconds per cycle in a machine with 8GB RAM 
and an i7 processor, to solve the NLP problem with 
2 manipulated variables, 2 controlled variables and 2 
disturbance variables.

Figures 9 and 10 show the good performance of the 
proposed controller also to reject disturbances in the 
feed, Cain and Tain, keeping the controlled variables, Cb 
and T, at the setpoints. Similarly to previous results, 
there is a bias to the temperature caused by the loss of one 
degree of freedom when the feed flow rate hit the lower 
bound, leaving the controller with just one manipulated 
variable to control two controlled variables.

Figures 11 and 12 shows the performance of the 
proposed NMPC and the QDMC (Garcia and Morshedi, 
1986) using the linear model obtained in the first step of 
the identification procedure. The results with the NMPC 
show offsets in two setpoint changes. In the first, both 
manipulated variables are at the lower bounds. In the 
second, there is an offset only in the Cb composition, 
because the jacket temperature is at the upper bound 
and the controller has only one manipulated variable 
to control two controlled variables. Therefore, in all 
situations the proposed NMPC did the best that it can 
do with the chosen boundary constraints. The results 

0 0 ss
j j j j w ain in jy (t) y y y (F,T ,C ,T ) f (t) = + − 

( )

( )

j
j

j

j

2
j d j

j d
d j

2
jj

d2 jj

(t ) 1
f (t) 1 exp cosh t

1
sinh t

1

   −ε − τ ε −   = − − τ +  τ τ     
 ε −ε  − τ  τε −  

[ ]ss ss ss
j b j by C ,T          and      y (t) C (t),T(t)    = = 

ss
j w ain in j,1 j,2 ain in j,3 ain in w j,4 ain in w

2 2
j,5 ain in j,6 ain in w

y (F,T ,C ,T ) C C (C ,T )F C (C ,T )T C (C ,T )FT

C (C ,T )F C (C ,T )T

= + + + +

+

2 2
j,l ain in j,l,1 j,l,2 ain j,l,3 in j,l,4 ain in j,l,5 ain j,l,6 inC (C ,T ) k k C k T k C T k C k T= + + + + +

Table 2. Parameters of the steady-state model.

Table 3. Parameters of the dynamic model.

Figures 3 to 6 illustrate a comparison between 
the proposed model and the plant for the steady and 
dynamic behaviors of the controlled variables, Cb and 
T, for step changes in the manipulated variables, F and 

(37)

(38)

(39)

(40)
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Figure 3. Identification of the dynamic model for Cb.

Figure 4. Identification of the dynamic model for temperature
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Figure 5. Identification of the steady-state model for Cb.

Figure 6. Identification of the steady-state model for temperature.

Figure 7. Result of the proposed NMPC to keep the plant on the Cb setpoint. The controller turned on at time equal 
to 15 min and the Cb setpoint changed at time equal to 150 min.
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Figure 8. Result of the proposed NMPC to keep the plant on the temperature setpoint. The controller turned on at 
time equal to 15 min and the setpoint changed at time equal to 150 min.

Figure 10. Result of the proposed NMPC to reject disturbances in the feed temperature. The controller turned on at 
time equal to 15 min and the disturbance happened at time equal to 150 min.

Figure 9. Result of the proposed NMPC to reject disturbances in the feed composition; The controller turned on at 
time equal to 15 min and the disturbance happened at time equal to 150 min.
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Figure 11. Comparison between the controlled variables obtained from the proposed NMPC and the traditional 
QDMC.

Figure 12. Comparison between the manipulated variables obtained from the proposed NMPC and the traditional 
QDMC.

obtained with the QDMC algorithm were oscillatory, 
showing the difficulty to represent the process behavior 
with linear models.

Figures 13 and 14 illustrate a comparison between 
the NMPC algorithm using rigorous models with the 
proposed NMPC. There are offsets in three situations. 
In the first, the Cb target is unreachable with the Fi limits 
used in the control problem, as we can see in Figure 
2. In the second, when the targets change again, there 
is an offset just of the Cb composition. This happens 
because, in this condition, the controller has only one 
manipulated variable, Fi, which is at the lower limit, to 
control two controlled variables. In the last suggested 
targets, both manipulated variables hit the lower limits, 
leaving an offset between plant and target for both 
controlled variables. Therefore, in all situations the 

proposed NMPC did the best that is possible to do with 
the chosen limits to manipulation. The results show that 
there is no performance loss when the controller uses 
the proposed model. However, the proposed NMPC 
reduced significantly the computational time to solve 
the NLP problem. In other words, the time spent in 
each cycle using the NMPC with the proposed model 
was approximately 15 times shorter than the algorithm 
using the rigorous model. This is a very important 
result, showing the potential of the algorithm to solve 
large-scale problems.

Comparison between the NMPC control using the 
proposed model and the Adaptive MPC algorithm

Figure 15 illustrates a comparison between the 
NMPC algorithm using the proposed model to solve 
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the NLP problem and the adaptive MPC strategy. In 
the adaptive MPC, the static gain is updated at the 
beginning of each cycle of the controller using the 
nonlinear function that represents the steady-state in 
the proposed model. The main difference between 
the approaches is that, in the NMPC algorithm, the 
steady-state is considered to be nonlinear during the 
solution of the control problem, resulting in a NLP 
problem, while in the adaptive approach, the nonlinear 
behavior is described for an adaptive linear model that 
is updated with the current condition read from the 
plant at the beginning of each control cycle. In other 
words, the linear model assumes an adaptive feature 
because the approach changes the steady-state gain 
according to the operating condition of the plant, being 
able to describe an inverse gain signal, for instance. 

The adaptive MPC disadvantage is that the model is 
not updated along the prediction trajectory, staying 
the same during the solution of the control problem. 
The results show that both approaches spent similar 
computational time to solve the control problem, but 
the NMPC with the proposed analytical model had 
a better performance than adaptive MPC to keep the 
controlled variable at the setpoints.

Sensitivity analysis of error in parameters of the 
NMPC reduced model

Figure 16 shows the steady-state predictions 
obtained at the end time of each control cycle for three 
case studies: (1) No model mismatches - The model used 
by NMPC is the proposed model with all parameters 
obtained from the process identification; (2) Case 1 - 

Figure 13. Comparison between the controlled variables obtained from the NMPC algorithm using the proposed 
model and the rigorous model.

Figure 14. Comparison between the manipulated variables obtained from the NMPC algorithm using the proposed 
model and the rigorous model.



Leonardo D. Ribeiro and Argimiro R. Secchi

Brazilian Journal of Chemical Engineering

1268

Random Model mismatch with a range of variability 
of 5% ; (3) Case 2 - Random Model mismatch with a 
range of variability of 40%. The results illustrate that 
there is a poor steady-state prediction only for large 
steady-state model mismatches.

Figure 17 shows the controller performance for 
steady-state model mismatches. The controller could 
not drive the plant to the suggested setpoints in case 2, 
when the range of variability of the model mismatch 
is 40%. This happens because the controller lost a 
degree of freedom when the cold fluid Temperature, 
Tw, hit the upper bound, leaving the controller 
with just one manipulated variable to control two 
controlled variables. Therefore, it is important to 
obtain accurate models to describe the steady-state 
nonlinear behavior.

Figures 18 and 19 show the controller performance 
when there are dynamic model mismatches. The case 
studies are the same described for steady-state model 
mismatches, but the parameters with errors are τp and 
ε, respectively. Unlike steady-state model mismatches, 
where the errors can cause bad control performance 
and large variability, when the errors are in the dynamic 
model parameters, there are no performance losses.

Figure 20 shows the NMPC performance with 
steady-state model mismatches to reject feed 
composition disturbances. The controller could not 
drive the plant to the proposed setpoints in case 2. It 
happens because the controller lost a degree of freedom 
when the feed flow rate hit the lower bound, leaving 
the controller with just one manipulated variable to 
control two controlled variables. Therefore, the results 

Figure 15. Comparison between the NMPC with the proposed model and an Adaptive MPC.

Figure 16. Result of the proposed NMPC with steady-state model mismatches to keep the plant on Cb and the 
temperature setpoint. The controller turned on at time equal to 15 min and the Cb setpoint changed at time equal to 
150 min.
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Figure 17. Result of the proposed NMPC with steady-state model mismatches to keep the plant on Cb and the 
temperature setpoint. The controller turned on at time equal to 15 min and the Cb setpoint changed at time equal to 
150 min.

Figure 18. Result of the proposed NMPC with dynamic model mismatches in τp to keep the plant on Cb and the 
temperature setpoint. The controller turned on at time equal to 15 min and the Cb setpoint changed at time equal to 
150 min.

illustrate that the proposed NMPC with large steady-
state model mismatches cannot carry and keep the 
controlled variables at setpoints.

Figures 21 and 22 show the proposed NMPC 
performance to reject the feed composition disturbance 
when there are dynamic model mismatches in τp and 
ε, respectively. The results illustrate that the model 
mismatches in the parameters of the dynamic model do 
not cause performance losses to reject the disturbance.

The proposed NMPC performance to reject an 
unmeasured disturbance in the cold fluid flow rate

Figure 23 shows the NMPC performance to control 
Cb and the temperature, rejecting an unmeasured 

disturbance in the cold fluid flow rate. The case studies 
were done with two kinds of unmeasured disturbance, 
random and constant, applied at an equal time of 200 
min. The results illustrate that the controller rejects the 
constant disturbance. It happens because the feedback 
action can eliminate the model mismatches. But, 
when there is a random unmeasured disturbance in the 
cold fluid feed flow rate, the controller does not keep 
the controlled variables at the suggested setpoints, 
showing bad performance.

NMPC integrated with an optimization layer
Equations 41 to 47 show the formulation of the 

optimization problem. The focus is maximizing Cb at 
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Figure 19. Result of the proposed NMPC with dynamic model mismatches in ε to keep the plant on Cb and the 
temperature setpoint. The controller turned on at time equal to 15 min and the Cb setpoint changed at time equal to 
150 min.

Figure 20. Result of the proposed NMPC with steady-state model mismatches to reject disturbances in feed 
composition. The controller turned on at time equal to 15 min and the disturbance happened at time equal to 150 
min.

the steady state, sending this setpoint for the control 
layer represented by Equation 1.

bu
Max C
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a a 1 a 3 a
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Figure 21. Result of the proposed NMPC with dynamic model mismatches in τp to reject disturbances in the feed 
composition. The controller turned on at time equal to 15 min and the disturbance happened at time equal to 150 
min.

Figure 22. Result of the proposed NMPC with dynamic model mismatches in ε to reject disturbances in the feed 
composition. The controller turned on at time equal to 15 min and the disturbance happened at time equal to 150 
min.

where Equations 42 to 44 represent the steady state of 
the process, while upon replacing these equations by 
Equations 33 to 35, the problem is reformulated as a 
dynamic optimization problem.

The optimization consists of maximizing the Cb 
subject to constraints on the manipulated and controlled 
variables. Figure 24 shows the good performance of 
the proposed NMPC to track the setpoint sent by the 
optimization layer, presenting no offset between them. 
Moreover, it is important to say that only the first 
control action is implemented, reducing impacts caused 
by model mismatches and unmeasured disturbances.

Figures 25 and 26 illustrate a comparison 
between the optimization using the rigorous model 

and the proposed model. The optimization with the 
proposed model shows a reduction of 2.5-fold in the 
computational time to solve the nonlinear problem 
without any performance loss, showing that the 
proposed model can be used for the steady-state 
optimization.

Figure 27 illustrates the performance of the proposed 
algorithm integrated with a dynamic optimization 
layer, where Cb is maximized along all paths. The 
result was compared with the optimization strategy 
using the steady-state model and with the dynamic 
optimization without the NMPC layer. According to 
Table 4, all solutions were close, with the maximum 
Cb obtained by the DRTO+NMPC strategy. The DRTO 
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Figure 24. Results of the proposed NMPC with the optimizing layer.

Figure 25. Comparison between the steady-state optimization using the multi-parametric model and the rigorous 
model.

Figure 23. Results of the proposed NMPC to reject unmeasured disturbance in cold fluid flow rate that happened at 
time equal to 200 min.
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Figure 27. Comparison between the result obtained by dynamic and steady-state optimization.

Figure 26. Comparison between the optimizer target using the multi-parametric model and the rigorous model.

Table 4. Comparison between the optimization 
structures.

computational time spent in each control cycle allows 
a reasonable frequency for industrial applications.

In this context, a methodology to obtain analytical 
models for NMPC algorithms was proposed, avoiding 
loss of accuracy caused by numerical approximations. 
The analytical model reduces the computational 
complexity faced in real time implementation of 
NMPC controllers, with great potential to be applied 
to large-scale problems.

The comparison between the NMPC based on the 
proposed model and an adaptive NMPC algorithm, 
where the current steady-state gain is computed 
online, showed that the proposed NMPC had a better 
performance to drive the plant to the setpoints, without 
causing additional computational effort.

There were no model mismatches between the 
proposed model used in the control layer and the 
rigorous model present in the optimization layer, 
ensuring that the optimal trajectory computed in 

strategy led the plant to the setpoints faster than the 
others, but presented a larger overshoot. The results 
show that the NMPC layer followed the trajectories 
computed by D-RTO, demonstrating that the D-RTO 
trajectories are reachable and feasible for the proposed 
model.

CONCLUSION

The challenge to apply NMPC strategies is to obtain 
models that describe the process behavior and whose 
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the D-RTO layer is reachable and feasible for the 
controller. The results show that the proposed NMPC 
was capable of following the optimal trajectories 
computed in the D-RTO layer, driving the plant to the 
optimal solution.
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APPENDIX A. DEVELOPMENT OF THE 
STEADY-STATE MODEL

Figure A.28 shows the relationship between the 
manipulated and disturbance variables with the 
controlled variables, illustrating how the multi-
parametric model was built to represent the steady-
state conditions. The procedure used to obtain the 
multi-parametric model was: (1) All disturbances are 
kept constant and steps in the manipulated variables 

are done. Therewith, it is possible to get a polynomial 
function that describes the relationship of manipulated 
variables with the controlled variables; (2) After 
that, each disturbance changes at a time, and again 
the polynomials are gotten; (3) So, the parameters 
of polynomial functions, gotten in step one, can be 
described as functions of the disturbance variables.

APPENDIX B. DEVELOPMENT OF THE 
DYNAMIC MODEL

Considering that a linear model can describe the 
process dynamic behavior and a nonlinear model can 
represent the steady state, it is possible to describe the 
process by a structure based on Hammerstein models, 
as shown in Figure B.29 and illustrated in Equations 6 
to 9 in Section 2.

In this context, a second order model was chosen as 
the dynamic model because this structure can describe 
the dynamic behavior of the case study, as illustrated 
in Figures 3 and 4, and many other dynamic systems in 
chemical processes. In Equation B.1, the steady state 
nonlinearity is represented by v(u) inputs.

Equation B.1 shows a linear dynamic system 
represented by a second order model:

Figure A.28. The multi-parametric model representation to describe the steady-state conditions.

Figure B.29. Hammerstein Model.

2
2 d y dy2 y

dt dt
τ + ετ + = ν (B.1)
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where
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Applying the Laplace transform in Equation B.1, 
for a constant u:

and in the time domain:

where

Substituting Equations B.3 and B.4 in Equation B.2 
and assuming that there is a dead time, τd, we have:

where

Equation B.6 can describe a first order system when 
ε → 1, τ >> 1 and τd = 0. Replacing these parameter 
values and rewriting Equation B.6 results in Equation 
B.9.

Equation B.7 shows a linear dynamic system 
represented by a first-order model (ODE - Ordinary 
Differential Equation): 

where

Applying the Laplace transform to Equation B.7, 
for a constant u:

and in the time domain:

where the time-varying function for a dynamic 
behavior described by a first-order model is given by:

Therefore, it is possible to describe many chemical 
processes with the structure illustrated by Equation 
6 in Section 2, where ySS represents the steady-state 
and f(t) describes the dynamics. These functions can 
be obtained from system responses to step changes 
applied in manipulated variables. For the case study 
presented in this paper, Equations 7 and 8 in Section 
2 represent the steady-state condition and Equation 9 
in the same section describes the dynamic behavior.

Figure B.30 shows dynamics that the proposed 
model can describe. For instance, second-order 
systems with and without dead time, underdamped 
or overdamped, and first-order systems. Therefore, it 
is possible to describe the dynamic behavior of the 
case study or another system that has similar dynamic 
behavior. The parameter estimation of the proposed 
dynamic model was done by minimization of the sum 
of differences between the responses of the plant and 
the proposed model, Equation B.10. The performance 
of the proposed model with the estimated parameters 
from the minimization of Equation B.10 was successful 
and is illustrated in Figures 3 and 4.

where ŷ ∈ ℜny represents the process behavior, y ∈ ℜny 
represents the proposed model, u(tk) ∈ ℜnu and d(tk) ∈ 
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as the operands, with elements given by Equation 
C.1.

Figure B.30. Dynamics that can be described by the proposed dynamic model.

ℜnd are controlled and disturbance signals, respectively, 
and θ = [ς, τ, τd] are the estimated parameters of the 
dynamic model.

APPENDIX C. HADAMART PRODUCT 
DEFINITION (Horn, 1994)

Let A and B be n × m matrices, the Hadamard 
product, A ⊗ B, is a matrix of the same dimension 

( ) ( )i, j i, j i, j(A B) A B ,    for all  1 i m   and   1 j n⊗ = ≤ ≤ ≤ ≤ (C.1)

If A is a n × m matrix and B is a p × q matrix, where 
m ≠ p or n ≠ q, the Hadamard product does not exist.


