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Abstract  -  Identification of stagnant regions of viscoplastic fluid flows in production lines and equipment 
is of paramount importance owing to potential material degradation and process contamination. The present 
work introduces an assessment strategy to identify, classify and quantify unyielded regions with the objective 
of optimizing the flow conditions with the purpose of minimizing stagnant regions. Flow of Carbopol® 980 in 
a T-bifurcation channel is adopted to illustrate the procedure. The rheological behavior of Carbopol® 980 was 
simulated using the Herschel-Bulkley viscoplastic model regularized by Papanastasiou’s exponential approach. 
The analysis shows that three distinct types of stagnant unyielded regions take place in the bifurcation channel 
depending upon the Reynolds condition. Furthermore, the rheological characteristics of the fluid indicate the 
existence of an ideal Reynolds condition which allows the smallest flow stagnant area at the bifurcation zone.
Keywords: Viscoplastic flow; Herschel-Bulkley fluid; Papanastasiou regularization; T-bifurcation channel.

INTRODUCTION

Viscoplastic flows are found in distribution 
channels and equipment of a wide variety of production 
processes, such as in the cosmetic, pharmaceutical 
and food industries. Some examples of viscoplastic 
fluids commonly encountered are mayonnaise, 
ketchup, gelled products and toothpaste (Hammad, 
2017). The main characteristic of these materials 
is the existence of a yield stress, a critical value of 
stresses below which no flow takes place (Bird, et 
al., 1983), so that both yielded and unyielded regions 
exist in the flow. The ideal viscoplastic models, such 
as Bingham plastic, Herschel-Bulkey and Casson, are 
discontinuous and numerical solutions for complex 
geometries require regularized models, such as the bi-
viscosity equation (Tanner and Milthorpe, 1983) and 
models proposed by Bercovier and Engelman (1980) 
and Papanastasiou (1987). The latter was adopted in 
this study to investigate the hydrodynamic behavior 

of a Herschel-Bulkley fluid in a T-bifurcation. The 
Papanastasiou regularization uses an exponential 
modification now widely applied in numerical studies 
involving viscoplastic materials (Mitsoulis, 2007). 

In unyielded regions, the stress state falls below 
the yield stress threshold and the viscoplastic material 
behaves as a very high-viscosity liquid, known also 
as plug region, which is transported by the flow. The 
size of the unyielded regions is associated with the 
Bingham number (Abdali et al., 1992; Mitsoulis et al., 
1993). Papanastasiou and Boudouvis (1997) evaluated 
(a) the non-shear regions in square duct flows by 
verifying the unyielded plug region (UPR) inside the 
channel (which is transported by a yielded flowing film 
(YFF)), and (b) an apparent unyielded region (AUR) 
located in the corners of the channel section. In cases 
of abrupt expansions and other complex geometries, 
regions of stagnation and deposition of material may 
occur in the channel (Mendes et. al., 2007). Scott et al. 
(1998) also show that the existence of a yield stress 
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reduces the size and strength of recirculation zones in 
channels with axisymmetric abrupt expansions and in 
a 180º planar bifurcation.

It is noteworthy that most recent studies featuring 
the simulation of viscoplastic flows have focused 
either on development of new numerical solution 
strategies or improvement of existing viscoplastic 
models to better fit experimental data. Such studies 
are important to establish the robustness of the 
discretization scheme, numerical method and material 
description; however, in most cases, actual rheological 
parameters and/or flow settings are rarely discussed. 
Contrastingly, this work aims to discuss important flow 
features of Carbopol® 980 owing to its widespread 
use as a thickening and gelling agent in cosmetic and 
pharmaceutical industries.

Carbopol® 980 is based on carboxyvinylic acids 
and presents transparent characteristics, being 
harmless and easy to prepare (Piau, 2007). Carbopol® 
dispersions are found in many everyday products, from 
toothpastes to tile cleaners, and are also useful vehicles 
for functional ingredients (Roberts and Barnes, 2001). 
As a thickening solution used in the cosmetic industry, 
it has been largely applied in preparation of gels 
(Corrêa, 2005), with the purpose of emulsification, 
stabilization and rheological control (Kim, 2003).

The onset of unyielded regions is typical of 
viscoplastic fluids owing to the existence of an initial 
yield stress. Use of such fluids (e.g. Carbopol® 980) 
in cosmetic and pharmaceutical industries requires 
special care to avoid stagnant deposits inside the 
production lines and equipment. Stagnant regions can 
be formed at the solid walls and can cause material 
degradation and process contamination. The present 
work introduces an assessment strategy to identify, 
classify and quantify unyielded regions with the 
objective of optimizing the flow conditions in a 
T-bifurcation channel with the purpose of minimizing 
stagnant regions.

THEORETICAL FORMULATION

The physical model adopted in this work represents 
the steady state flow of a viscoplastic fluid through a 
plane channel with a T-bifurcation. Due to the yield 
stress of the rheological model, as the velocity field 
develops along the channel, a central region of small 
velocity variations (small shear rates) is formed, giving 
rise to a fluid behaviour known as plug flow. In regions 
close to the wall, the small shear rates lead to stagnant 
fluids. Therefore, the mathematical model, including 
the constitutive relation, must account for such flow 
features.

Governing equations: The general assumptions 
adopted to solve the problem are as follows: 
incompressible and laminar flow, steady state, 

negligible body forces, isothermal flow, and two-
dimensional geometry. The mass and momentum 
conservation equations in their conservative form are, 
respectively,
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where τij is the shear stress tensor, which, in the case of 
incompressible Newtonian fluids, is directly associated 
with the rate of strain tensor, Dij, or else by the shear 
strain rate tensor, γij, thus given by a constitutive 
equation,
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is the rate of strain tensor and η is the apparent viscosity. 
Noticeably, the generalized Newtonian fluid equation 
was used to represent the dependence of viscosity on 
the equivalent strain rate (Bird et al., 1987), so that:

( )ij ijt h g= g 

in which η(γ) is function of a scalar invariant of the 
strain rate tensor. For incompressible and shear flow 
cases (Bird et al., 1987): 
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is the equivalent shear rate.
Thus, the momentum equation for a viscoplastic 

fluid (based on the generalized Newton model) is
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Constitutive modelling: Rheological studies have 
shown that Carbopol® 980 has viscoplastic properties 
which can be described by the Herschel-Bulkley 
model (Rudert and Schwarze, 2009). The literature 
also shows that thixotropic characteristics of these gels 
can, in principle, be neglected (Coussot, 2014). The 
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general characteristic of ideal viscoplastic fluids is the 
existence of a yield stress threshold, τ0, below which 
stresses are null. For instance, due to the yield stress, 
as the velocity field develops along a channel, a central 
region of small velocity variations is formed (small 
shear rates), giving rise to a fluid behavior known 
as plug flow. Although ideal models for viscoplastic 
fluids (e.g., Bingham, Casson and Herschel-Bulkley) 
do not present limitations to analytical solutions of 
simple problems (Bird et al., 1983), some hindrances 
may arise for more complex geometries. Numerical 
approaches can overcome some problems; however, 
the nonlinearities of both governing equations and 
the constitutive relation impose significant difficulties 
even when numerical modeling is used. Burgos et al. 
(1999) highlight the fact that the discontinuity of the 
constitutive relation constitutes an inherent obstacle to 
numerical approximations. 

The difficulties arise from the necessity to map 
the transitional surface between the shear flow - no-
shear flow condition established by the magnitude 
of the local yield stress. In its classical form, the 
apparent viscosity becomes unbounded due to the 
presence of γ in the denominator of the viscoplastic 
equations. Furthermore, even though the velocity field 
is calculated, the shape and location of the transition 
region are unknown. The discontinuity of the 
constitutive relation associated with the yield stress 
leads to high values of the viscosity function for small 
shear rates, which causes in some cases η(γ)→∞, with 
consequent numerical instabilities (Min et al., 1997).

Papanastasiou (1987) proposed an exponential 
regularization for the ideal Bingham model by 
introducing a parameter “m” that controls an 
exponential increase of the stresses. If its value is 
sufficiently high, the regularized model approximates 
Bingham’s ideal fluid behavior. The regularized 
Bingham model can be expressed as:

production line in the cosmetic, pharmaceutical or food 
processing industries. Therefore, the numerical scheme 
chosen was classical and only a brief discussion is 
presented. The numerical simulations were performed 
using the ANSYS FLUENT® commercial software. 
The program uses the finite volume method (FVM) 
to discretize the conservation equations based on a 
cell-centered formulation and a second order scheme 
for discretization of the viscous terms. The SIMPLE 
method was adopted to approach the pressure-velocity 
coupling. The odd-even decoupling was resolved using 
the Rhie-Chow interpolation scheme. The viscosity 
function was determined using the regularized 
Herschel-Bulkey-Papanastasiou model implemented 
via UDF (User Defined Function). The solutions of 
the linear systems were considered converged when 
the normalized residue reached Rφ < 10-7.

RESULTS AND DISCUSSION

Verification and validation of the numerical 
solution: This section presents the validation of 
the numerical method. The numerical solution of a 
viscoplastic fluid flow in a two-dimensional plane 
channel using ANSYS FLUENT® (based on the finite 
volume method) was compared against solutions (i) 
obtained using an in-house code developed by the 
authors based on finite differences (FDM) and (ii) 
reported by Boualit et al. (2011) determined using the 
finite element method. The flow conditions, geometry 
and rheological parameters follow the analysis 
performed by Boualit et al. (2011), who adopted 
the Bingham-Papanastasiou model to compute the 
apparent viscosity of the viscoplastic fluid. 

Figure 1 shows the geometry of the problem. 
The parameters and boundary conditions for the 
hydrodynamic analysis are: uniform axial velocity in 
the channel inlet (Γ1 : u

* = 1, v* = 0); non-slip condition 
at the channel walls (Γ2 : u

* = 0, v* = 0); fully-developed 
velocity at the channel outlet (Γ3 : du*/dx* = 0, v* = 0); 
symmetry condition at the center of the channel (Γ4 : 
du*/dy* = 0, v* = 0); null pressure at the channel outlet 
(Γ3), and null normal pressure gradient at the channel 
walls (Γ2).

In order to guarantee the fully-developed velocity 
distribution towards the exit, a channel length L = 80H 
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where η0 is a constant viscosity parameter and τ0 is the 
yield stress. The Papanastasiou regularization applied 
to the Herschel-Bulkley viscoplastic model provides:

( )n 1 0
ij ijK 1 exp m− t  t = g + − − g g  g 


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in which K and n are the consistency and power law 
indices, respectively.

Numerical methodology: The main focus of 
the present work is to study important aspects of 
the viscoplastic flow inside channels, i.e., possible 
formation of stagnant regions that may contaminate the 

Figure 1. Validation geometry - plane channel (Boualit 
et al., 2011).
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was considered. A mesh containing 300 x 30 elements 
was also used in the simulations. A comparative 
assessment of the axial velocities for fully-developed 
flow for different Bingham numbers, Bn, against the 
results reported by Boualit et al (2011) and those 
obtained using the FDM, as shown in Figure 2, 
indicates that the present numerical methodologies 
and implementation of the regularized viscosity 
function are able to recover the reference results with 
acceptable accuracy. Furthermore, it can be observed 
that higher values of the yield stress, τ0 (which is a 
rheological characteristic of the fluid and associated 
with Bn), cause an increase of a portion of the fluid 
moving with uniform velocity (UPR).

Table 1 shows the friction factor, fRe, for Bingham 
numbers ranging from Bn = 0 to Bn = 6.5. The results 
are compared with the numerical simulations from 
Boualit et al. (2011) and the analytical study carried 
out by Quaresma and Macêdo (1998). The maximum 
difference between the present finite volume 
approximation and the analytical results is 2.37%. 
The differences can be explained by the use of the 
Papanastasiou regularization model in comparison to 
the ideal Bingham model adopted by Quaresma and 
Macêdo (1998). 

The length necessary to reach the fully developed 
condition was evaluated considering higher 
Reynolds number conditions. Figure 3 illustrates the 
development of the axial velocity in the center of 

the channel for a Bingham number Bn = 1. The inlet 
length is proportional to the Reynolds number and the 
results agree with the values presented by Boualit et 
al. (2011).

Flow in a T-bifurcation channel - mesh refinement 
study: The distribution process of a viscoplastic 
material is simulated considering a T-bifurcation 
channel, as depicted in Figure 4. The Reynolds number 
(Re ≤ 50) and the channel length (L = 20H) used in 
the simulations prompt fully developed flow upstream 
from the bifurcation zone at the channel outlets. The 
half thickness of the inlet and outlet channels is H = 
0.015 m.

The boundary conditions (see Figure 4) are: uniform 
inlet velocity (Γ1: u = uc, v = 0);  fully-developed velocity 
distribution at the channel outlets (Γ2 and Γ3: u = 0, dv/
dy = 0); non-slip condition at the channel walls (Γ4: u = 
0, v = 0); null pressure at the channel exit (Γ2 and Γ3: p 
= 0). The simulations were performed considering the 
rheological properties of Carbopol® 980 according to 

Table 1. Friction factor for selected values of Bingham 
numbers.

Figure 2. Fully-developed velocity profile in x = 40H 
for a viscoplastic flow and Re = 1.

Figure 3. Axial velocity at the channel center for Bn = 
1 and various Reynolds numbers.

Figure 4. T-bifurcation geometry.
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experimental data and curve fitting reported by Rudert 
and Schwarze (2009). Table 2 presents the parameters 
adopted in the Herschel-Bulkley-Papanastasiou model 
for the Carbopol® 980 viscoplastic fluid.

The value of the regularization parameter m 
was defined according to the works of Burgos and 
Alexandrou (1999), Burgos et al. (1999), Alexandrou 
et al. (2001) and Boualit et al. (2011). The Reynolds 
number for the Herschel-Bulkley viscoplastic fluid can 
be derived as:

Analysis of the flow in a channel with T-bifurcation: 
Identification of unyielded flows, especially stagnant 
regions, is of prime importance in both (a) production 
line / equipment design and (b) establishment of 
corresponding flow conditions. This section introduces 
an objective strategy to identify, classify and quantify 
apparent unyielded regions (AURs) aiming at 
optimization of the flow conditions for the target 
geometry. The study is performed for Carbopol® 980 
(Table 2) viscoplastic fluid flow in the T-bifurcation 
channel depicted in Figure 5, for Reynolds numbers 
ranging from 0.1 to 50 (i.e. inlet velocities uc = 0.02014  
to 1.269 m/s).

In order to identify unyielded regions, the local 
shear stress is compared to the yield stress. Initially, 
the shear strain rate field is determined from velocities, 
followed by computation of the local shear stress 
(Equation 12) based on a similar strategy adopted in 

Figure 5. Computational mesh for the T-bifurcation 
channel.

Table 2. Parameters of the Herschel-Bulkley-
Papanastasiou model for Carbopol® 980 (Rudert and 
Schwarze, 2009).

2 n n
cu H
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whereas the corresponding relationship between the 
Bingham and Reynolds numbers is 
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Assessment of mesh dependency was evaluated 
by the dimensionless pressure drop, Dp*, and fully-
developed dimensionless velocities u* (x = 15H) and v* 
(y = ±20H) at the center of the channel for a Bingham 
number Bn = 1. A structured mesh with refinement 
at the T junction, inlet and outlet regions was used, 
as illustrated in Figure 5. The mesh size used in this 
investigation comprised 850, 5400, 17100, 28125, 
37800 and 53350 elements.

The values of the pressure drop and maximum flow 
velocities in the inlet and exit predefined locations in 
relation to the number of elements are shown in Figure 
6. The simulations show that the mesh with 28,125 
elements presents a relative difference of the pressure 
drop smaller than 0.01% when compared to the more 
refined case. The corresponding relative differences 
for velocities u* (x = 15H) and v* (y = ±20H) in the 
center line of the channel are 0.07% and 0.12%, 
respectively. Figure 7 shows the evolution of the fully-
developed axial velocity across the inlet channel at x 
= 15H. Assessment of the effects of mesh refinement 
was also performed for other inlet velocities with 
similar results. Therefore, based upon the results of 
the relative errors for the pressure drop and velocities 
in the fully-developed regions, the mesh containing 
28,125 elements was selected for the study.

Figure 6. Assessment of mesh dependency: (a) 
maximum velocities at the channel center line at 
predefined locations and (b) pressure drop.

(10)
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the work of Zisis and Mitsoulis (2002). Therefore, by 
using Equations (5) and (6), the magnitude of the local 
shear stress is

Figure 7. Fully developed axial velocity in the inlet 
channel at x = 15H: effect of mesh refinement.

( )ij ij
1 :
2

gt = t t = h g 

so that, if t < t0, no shear flow takes place. Computation 
of the local yield stress was also implemented in the 
commercial code via UDF.

Identification of the type of unyielded regions 
is relevant when setting the flow conditions for a 
particular geometry. This work classifies the unyielded 
regions into four distinct types: (i) “AURs type A” are 
stagnant regions which arise due to flow split at solid 
walls; (ii) “AURs type B” are stagnant regions attached 
to solid walls which are formed in areas of low pressure 
caused by changes in flow direction; (iii) “AUR type 
C” are unyielded regions formed in recirculation zones 
close to solid walls; (iv) It is relevant to mention that 
plug flow takes place close to the channel centerline; 
notwithstanding, in this case, the unyielded material is 
carried by the flow and dissipated when the velocity 
gradient (strain rate) increases.

Figures 8, 9 and 10 show the development of the 
streamlines and AURs with respect to the Reynolds 
number. For visualization purposes, the range of the 
dimensionless shear stress field, t* = t/t0, is clipped at 
t* < 1, so that the white color represents regions with 
no apparent shear stress. For a Reynolds number Re = 
1 (Figure 8), the low velocities favor onset of the “AUR 
type A” at the stagnation point located at the root of the 
T-bifurcation. The simulations show that the size of 
the “AUR type A” decreases as the Reynolds number 
increases. Figure 9 indicates two “AURs type B” 
attached to the walls next to the corners for a Reynolds 
number Re = 30. For larger Reynolds numbers the 
“AURs type C” are formed at the recirculation zones 
close to the corner, as illustrated in Figure 10 for Re 
= 50.

Figure 8. Streamlines and shear stress field for Re = 
0.1: the AUR type A is located at the stagnation point.

Figure 9. Streamlines and shear stress field for Re = 
30: AUR type B is located next to the corners.

Figure 10. Streamlines and shear stress field for Re = 
50: AUR type C takes place in the recirculation zone.

It is clear by superimposing the streamlines on 
the dimensionless shear stress field, especially in 
the case of Re = 50, that there are recirculation 
regions where t* < 1. The apparent contradiction 
(prediction of simultaneous recirculation flows and 
unyielded regions) is due to the use of the regularized 
constitutive model for viscosity. The continuity of 
the viscoplastic Herschel-Bulkley-Papanastasiou 
equation (Equation 9) for any magnitude of shear rates 
allows the determination of velocity fields in regions 
where the shear stress magnitude is smaller than the 
yield stress. The regularization is also related to the 
decentralization between the vortices and the non-
shear region apparently in recirculation. These results 
agree with other works available in the literature, such 
as Alexandrou et al. (2001), who also found similar 
results by evaluating a Herschel-Bulkley fluid in 
abrupt expansions and pondered that, qualitatively, 
the observed physics of the recirculation regions is 
more consistent with those of generalized Newtonian 
fluids than with ideal Herschel-Bulkley fluids. The 
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parameters of regularized models simply adjust the 
magnitude of local stresses and strain rates to estimate 
ideal conditions, but can never predict absolute non-
shear regions. Notwithstanding, the results from 
regularized functions are well accepted for analysis 
of the hydrodynamic behavior of viscoplastic fluids, 
making it possible to determine process conditions 
which provide a minimum amount of stagnant fluid in 
the distribution line. 

Quantification of the AUR sizes for all different 
types is based on the dimensionless relative area, W(i)

AUR, where t* < 1, as:

Re constitutes also the transition between formation of 
stagnant regions at the root of the bifurcation channel 
and at the corner of the exit channels. Therefore, for the 
present geometrical configuration, the flow conditions 
for Carbopol® 980 corresponding to Re = 15 (inlet 
velocity uc = 0.568 m/s) are highly recommended in 
order to minimize the chance of material degradation 
and process contamination. 

CONCLUDING REMARKS

The flow characteristics of a viscoplastic fluid 
in a T-type bifurcation were evaluated by numerical 
solution. The finite volume method was applied using 
the ANSYS FLUENT® package associated with 
Papanastasiou’s regularization for Herschel-Bulkley 
fluids implemented via UDF. The numerical approach 
was verified by comparing hydrodynamic analytical 
and other numerical results for fluid flow between 
parallel plates. The rheological model implemented 
in the aforementioned commercial software was able 
to recover the expected hydrodynamic behavior with 
acceptable accuracy.

The numerical study of a viscoplastic flow was 
performed for the Carbopol® 980 fluid, which is 
a thickener agent widely used in cosmetic and 
pharmaceutical industries. The flow condition was 
assessed for Reynolds numbers 0.1 ≤ Re ≤ 50  based on 
streamlines, shear stress fields and apparent unyielded 
regions (AURs). 

This work also proposed an assessment strategy to 
identify, classify and quantify unyielded regions with 
the objective of optimizing the flow conditions with 
the purpose of minimizing stagnant regions. Based 
upon the procedure, the following conclusions can be 
ascertained: 

•	 In the inlet channel, upstream of the bifurcation 
zone, there is formation of an unyielded region (plug 
flow) where the fully developed condition is attained. 
In this region, the local shear stresses are smaller 
than the yield stress of the viscoplastic material. The 
unyielded material carried by the flow is dissipated 
when the velocity gradient increases at the bifurcation 
junction. 

•	 Stagnant regions are found at the root of the 
bifurcation where the flow splits between the exit 
channels. The total area of this type of unyielded 
material decreases when the Reynolds number (i.e. 
inlet velocities) increases. 

•	 Stagnant fluid attached to the exit walls and 
at recirculation regions near the bifurcation corner is 
found only for higher Reynolds numbers. 

•	 A Reynolds number Re = 15 prompted the 
recommended condition for Carbopol® 980 flow in 
the T-bifurcation channel addressed in this work by 
providing the smallest fraction of all types of unyielded 
stagnant regions.

( )
( )

[ ] ( ) ( )
*

i
i i iAUR

AUR AUR2 1

A
100 %    where   A dA

H t <
W = × = ∫

where i = A, B, C indicates the corresponding AUR 
type and respective areas A(i)

AUR.
Figure 11 shows the composition of the apparent 

unyielded regions type A, B and C, quantified by 
the dimensionless area, WAUR, for flow conditions 
represented by the Reynolds number. The simulations 
indicate that small Reynolds numbers (low velocities 
or narrow channels for Carbopol® 980) are associated 
with larger regions of stagnant fluid at the root of the 
bifurcation channel (AUR type A). As the Reynolds 
number increases, velocity gradients also increase 
in such regions, causing the AUR type A to decrease 
and, eventually, vanish. On the other hand, higher 
Reynolds numbers cause the regions of low pressure 
near the corners to increase, leading to formation of 
AUR type B. This is the only type of stagnant region 
for Reynolds numbers within the interval 20 ≤ Re ≤ 
40. It is interesting to note that, for Reynolds numbers  
Re > 40, the flow dynamics give rise to a detached 
unyielded region near each corner (AUR type C), 
causing the stagnant regions at the solid walls (AUR 
type B) to decrease (see also Figures 9 and 10). 

The ideal flow condition was determined for a 
Reynolds number Re = 15, which provides the smallest 
stagnant area for the present T-bifurcation channel. This  

Figure 11. Apparent unyielded regions (AURs) for the 
T-bifurcation channel.

(13)
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NOMENCLATURE

AUR 	 Apparent unyielded region
AAUR 	 Apparent unyielded area [m2]
Bn	 Bingham number: Bn = (t02H)/(huc)
Dij	 Rate of strain tensor [1/s]
fRe	 Dimensionless friction factor
H	 Characteristic inlet channel width [m]
HE1	 Exit channel width 1 [m]
HE2	 Exit channel width 2 [m]
K	 Consistency index [Pa . sn]
L	 Channel length [m]
m 	 Papanastasiou’s regularization parameter [1/s]
n	 Behavior (or power-law) index
p	 Static pressure [Pa]
p*	 Dimensionless static pressure:  p* = (pHn)/(Kuc

n)
Dp*	 Dimensionless static average pressure
Re	 Reynolds number: Re = (ruc

2-nHn)/K
Rj 	 Normalized residue
t	 Time [s]
u	 Horizontal component of the velocity [m/s]
u*	 Dimensionless horizontal component
	 of the velocity: u* = u/uc
uij	 Characteristic velocity [m/s]
ui; uj	 Cartesian components of the velocity [m/s]
UDF	 User Defined Function
UPR 	 Unyielded plug region
v	 Vertical component of the velocity [m/s]
v*	 Dimensionless vertical component
	 of the velocity: v* = v/uc
x	 Horizontal coordinate [m]
x*	 Dimensionless horizontal coordinate: x* = x/H
xi; xj 	 Cartesian components [m]
y	 Vertical coordinate [m]
y*	 Dimensionless vertical coordinate: y* = y/H
YFF 	 Yielded flowing film

Greek letters
h	 Aapparent viscosity [Pa . s]
g	 Equivalent shear strain rate [1/s]
gij	 Shear strain rate tensor [1/s]
r	 Specific mass [kg/m3]	
t	 Local shear stress magnitude [Pa]
t*	 Dimensionless local shear stress: t* = t/t0
t0	 Yield stress [Pa]
tij	 Shear (viscous) stress tensor [Pa] 
Gi	 Perimeter of the physical domain
	 [i = 1, 2, 3, 4]
WAUR	 Dimensionless unyielded area:
	 WAUR = AAUR/H2
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