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ABSTRACT: This study aimed to test probability density functions for the distribution of variables total height, transverse area and
individual volume, considering three different class intervals. Data were obtained from the measurement of diameter (DBH) and total
height and from estimation of the individual volume of 338 pine trees in a fragment of Mixed Ombrophylous Forest with an area of
15.24 ha, which is located in Jardim Botânico campus of UFPR, Curitiba-PR. Ten functions were fitted, including commonly used
models for diameter distribution as well as other recently developed models applied to forest science. Selection criteria included
Kolmogorov–Smirnov adherence test, standard error of estimate in percentage and adjusted coefficient of determination. Three class
intervals were used as obtained by Sturges, Dixon & Kronmal, and Velleman criteria. The Normal function for variable height, and the
Weber function for distribution of transverse area and individual volume, provided the best fit, considering the three class intervals
adopted. The models fitted better for larger size class intervals as obtained by Sturges rule.

Keywords: Probability functions, adherence test, class intervals, Brazilian pine.

DISTRIBUIÇÃO  DA  ALTURA  TOTAL,  DA  ÁREA  TRANSVERSAL  E  DO  VOLUME
INDIVIDUAL  DE  Araucaria  angustifolia  (Bert.)  O.  Kuntze.

RESUMO: Esta pesquisa teve como objetivo testar funções densidade de probabilidade para a distribuição das variáveis altura
total, área transversal e volume individual, para três diferentes intervalos de classe. Os dados provieram da medição dos diâmetros
(DAP), alturas totais e estimativas dos volumes individuais de 338 pinheiros de um fragmento de Floresta Ombrófila Mista, com
15,24 ha, situado no Campus Jardim Botânico da UFPR, Curitiba-PR. Foram ajustadas dez funções, incluindo modelos comumente
utilizados na distribuição diamétrica e outros desenvolvidos recentemente e aplicadas na ciência florestal. Os critérios de seleção
foram o teste de aderência de Kolmogorov – Smirnov, erro padrão da estimativa em porcentagem e o coeficiente de determinação
ajustado. Foram usados três intervalos de classe determinados pelas regras de Sturges, Dixon & Kronmal e Velleman. A função
Normal, para a variável altura, e Weber, para a distribuição da área transversal e volume individual, propiciaram os melhores
ajustes, considerando os três intervalos de classe adotados. Os modelos se ajustaram melhor para intervalos de classe de maior
tamanho, obtidos pela regra de Sturges.
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1  INTRODUCTION

Within the Mixed Ombrophylous Forest domain,
species Araucaria angustifolia has great prominence on
account of its singular appearance which stands in contrast
to other trees of the same biome and makes it typical and
exclusive of the above forest formation (CARVALHO 1994).
The abundance and quality of this Brazilian pine tree in
past landscapes, combined with its diversified wood use,
led to extensive exploration and consequently to rapid

disappearance of large areas of araucaria forest in primary
vegetation formations, originating many such fragments—
notably as a result of regeneration after the exploration
period.

Knowledge of diameter, height, transverse area and
volume distributions is a prime requirement to ensure good
forest management. Since the pioneering work of Barros et
al. (1979) in Brazil to test probability density functions in
order to fit diameter distribution in tropical forests, many
studies have followed to investigate diameter distribution
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using probability density functions (pdfs) for a variety of
forest typologies, particularly plantations.

However, works involving height, transverse area
and volume distributions are few and scarce and include
the works of Alves Júnior et al. (2007), Gomide (2009), Silva
et al. (2003) and Weber (2006). And no research has been
conducted on the distribution of these variables for
Araucaria angustifolia. This work additionally
investigated class intervals providing best adherence test
to fit the probability of density functions.

This work is thus mainly intended to test models that
will describe the probability distribution of variables total
height, transverse area and individual volume for species
Araucaria angustifolia, in a fragment of Mixed Ombrophylous
Forest, considering three different class intervals.

2  MATERIALS  AND  METHODS

2.1 Study site

This work was conducted in a fragment of Mixed
Ombrophylous Forest known as Capão da Engenharia
Florestal and situated in the Jardim Botânico campus of
UFPR. The Capão fragment covers an area of 15.24ha—
12.96ha of which consist of Mixed Ombrophylous Forest
while 2.28ha consist of sparse brush (capoeira rala)
extending along the streamlet which in turn is adjacent to
the entire south border of the Capão. Swamps and woody
grasses predominate in the capoeira area.

The study site sits between coordinates 25º26’50"–
25º27’33"S and 49º14’16"–49º14’33"W, and the terrain is
890 to 915 meters above sea level. The area has a humid
subtropical, mesothermal climate, with mild summers and
frequent frosts in the winter, the average temperature being
17°C and the annual precipitation being 1,500 mm,
corresponding to a Cfb climate according to Koppen
classification.

2.2 Data used

A total of 349 pine trees were counted within the
fragment, and measurements were taken of the
circumference 1.30 m above the ground (CBH) and total
height of all trees. A measuring tape was used for the CBH
measurement and a Vertex III hypsometer was used for the
height measurement. To estimate the total volume of the
araucaria trees, volume equations that had been previously
developed for a Brazilian pine inventory by the Paraná
Forest Research Foundation-FUPEF (1978) were used, the
reason being the close proximity and similar characteristics
of that area to the study area.

  2.3 Frequency distribution of data

According to Hoaglin et al. (1983), to actually select
the number of classes while organizing a data set, the
number of observations (N) and some common sense as
to how to arrange them should both be taken into account.
To determine the number of classes and the ‘ideal’ class
interval for the data set, three empirical mathematical rules
were used as mentioned by Hoaglin et al. (1983):

1  Sturges formula: NLogcn
10

.3.31 ;

2   Dixon & Kronmal formula: NLogcn
10

.10 ;

3   Velleman formula: Ncn .2 ;

4   Class range: 
cn

A
h .

Where: n
c 

= Number of classes; N = Number of
observations; A = Data range;   h = Class range.

As far as the forestry field is concerned, equation
1 above is the most commonly disseminated and one of
the best known formulas to establish the number of
classes of a data set (MACHADO & FIGUEIREDO FILHO
2006). According to Hoaglin et al. (1983), for samples with
a large number of data, N >100, this rule will determine a
much reduced number of classes, with larger class
intervals and high frequencies, being thus recommended
where N < 50.

Hoaglin et al. (1983) argued that Dixon &
Kronmal rule is perfectly effective and practical for
constructing histograms, being more suitable where N >
100. Velleman rule on the other hand is suggested for
average sized samples, 50 < N < 100, generating better
histograms for this interval in comparison to the Dixon
& Kronmal rule.

2.4 Probability density functions

Ten probability density functions were tested to
obtain distribution of estimated frequencies for variables
total height (h), transverse area (g) and volume (v) (Table 1).
Parameters were found for each function, for the different
class intervals found by the rules used.

To determine the parameters of the probability
density functions and estimate the number of trees, software
applications Table Curve 2D and MS EXCEL 2007 were
used.
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Table 1 – Probability density functions and their conditioning factors.

Tabela 1 – Funções densidade de probabilidade testadas e suas condicionantes.
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Parameters of the 2- and 3P-Weibull, Weber,
Péllico and Quadros distributions were estimated by
means of an interaction of initial parameter values, with
least square fitting using the Levenberg Marquardt
algorithm.

With an MS EXCEL 2007 spreadsheet, the
parameters and exponents of the two exponential
functions )(1 xg and )(3 xg forming the Quadros pdf
were determined by the SOLVER tool using a Simplex
algorithm.

The Maximum Likelihood method was used to
determine the coefficients for the Johnson SB function. To
estimate the parameters for Beta, Gamma, Normal and Log-
Normal functions, MS EXCEL 2007 spreadsheets were
created using the method of moments.

2.5 Best fit selection criteria

In order to compare and select the best model to
represent the distribution of the relevant variables,
calculations were made to obtain the adjusted coefficient
of determination, known as Schlaegel index (R2

aj
), the

standard error of estimate in percentage (Syx
%
) and the

Kolmogorov–Smirnov adherence test (D  = 0.05).
After fitting the tested functions, data were arranged

in rank order, score 1 being attributed to the function best
fitting each of the statistics, score 2 being attributed to the
second best fitting function, and so on. The function
aiming at the lowest sum of scores, considering all statistics
(D

calc
, Syx

%
 and R2

aj
), for all class intervals (Sturges, Dixon

& Kronmal and Velleman), was placed 1st in the overall
ranking. Ranking was done independently for height,
transverse area and volume.

Complementarily, the frequency curves resulting
from fitted functions were generated on the frequency
histograms for each of the variables being studied for the
best rule of class interval determination.

3  RESULTS  AND  DISCUSSION

3.1 Data dispersion

Basic statistics of data dispersion for total height
(h), transverse area (g) and individual volume (v), as well
as the respective class ranges obtained by the Sturges,
Dixon & Kronmal, and Velleman rules, are illustrated in
Table 2. Based on these values, it was possible to obtain
three different class intervals and frequency distributions
for each variable under analysis, and thus enable fitting
the probability density functions (pdfs).

The class intervals obtained by each of the rules
provided a basis for calculating the respective number of
classes by Sturges (9 classes), Dixon & Kronmal (25 classes)
and Velleman (37 classes).

According to Sokal & Rohlf (1969), to ensure a
smoother distribution with better adherence test fit, it is
necessary to condense the relevant data into a reduced
number of classes, a fact that has been confirmed in this
study. Figure 1 illustrates that the histograms generated
by the Dixon & Kronmal and Velleman rules have irregular
distribution, producing discrepancies and discontinuities
in the observed frequencies.

Those methods of data arrangement originate
worse-performing statistics for fit and accuracy, in
comparison to histogram fittings generated by the Sturges
rule. For this reason, the Sturges rule was selected for the
three relevant variables in order to best represent data
inventory and model fittings in the form of histograms.

While comparing descriptive models of diameter
distribution, Barros et al. (1979) observed that for a larger
class interval the tested equations provided greater
accuracy in frequency estimations. The findings in this
study align with the results of Barros et al. (1979) in that
increasing the class interval results in greater function fitting
accuracy.

Table 2 – Basic statistics of variables total height (h), transverse area (g), individual volume (v) and class ranges as obtained by
Sturges, Dixon & Kronmal and Velleman rules.

Tabela 2 – Estatísticas básicas das variáveis altura total (h), área transversal (g), volume individual (v) e amplitudes de classe
obtidas pelas regras de Sturges, Dixon & Kronmal e Velleman.

Class Range Basic Statistics 

 

Sturges Dixon & Kronmal 

 

Velleman Minimum Average Maximum Range 

h (m) 1.56 0.56 0.38 10.9 18.1 24.9 14 

g (m2) 0.0554156 0.0199496 0.013479 0.055883 0.233091 0.554623 0.498740 

v (m3) 0.8538573 0.3073886 0.207695 0.550184 3.010784 8.234900 7.684716 
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Figure 1 – Histograms of total height (h), transverse area (g) and individual volume (v) as obtained by Dixon & Kronmal and Velleman
rules.

Figura 1 – Histogramas para altura total (h), para área transversal (g) e para volume individual (v), obtidos pelas regras de
Dixon & Kronmal e Velleman

3.2 Distribution of total height

Statistical values of fit and accuracy and the
frequencies estimated by the 10 probability models for
distribution of total height, as determined by the three
rules, are illustrated in Table 3 in rank order according to
the predefined assessment method.

For all models, except for the Péllico function which
failed to show good fit for this distribution at the different
intervals, the D

calc 
value was lower than the D

tab 
value, for

a    of 0.05, demonstrating that in all models and at the
different class intervals the Kolmogorov–Smirnov test was
positive in relation to adherence test.

Table 3 shows that models behaved differently in
the estimation of frequency distributions. Considering the
three class intervals being used, the best function for the
frequency distribution of total height was the Normal

function, followed by 3P-Weibull and Johnson SB at 0.55
of minimum height found.

However, considering the class interval generated
by the Sturges rule alone, the best ranking function was
the Johnson SB function, followed by Quadros, 3P-Weibull,
Normal, Weber, Beta, Log-Normal, 2P-Weibull and Gamma
functions. It should be noted that ranking was based on
D

cal
, Syx

%
 and R2

aj
 statistics, as explained under Methods.

While applying classic models for the height
distribution in natural regeneration of Ocotea odorifera,
Weber (2006) observed that Weibull, Gamma, Beta,
Exponential and Normal models failed to provide good fit,
Normal function being the worst of all methods. In this
study, the Normal function was the most satisfactory among
all tested functions, considering the three class intervals
adopted (rules).
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Table 3 – Statistical values of fit and accuracy for each function tested, for three different data arrangements.

Tabela 3 – Valores das estatísticas de ajuste e precisão, para as funções testadas para os três diferentes arranjos de dados.

Rules and statistics used 

Sturges Dixon & Kronmal Velleman 
General 
ranking 

 
pdfs 

Dcalc Syx% R2
aj Dcalc Syx% R2

aj Dcalc Syx% R2
aj 

1st Normal 0.0137 5.52 0.9925 0.0149 25.73 0.8880 0.0167 38.85 0.4355

 

2nd 3P-Weibull 0.0134 5.18 0.9934 0.0190 26.47 0.8815 0.0160 39.91 0.4043

 

3rd SB 0.55 0.0111 4.90 0.9933 0.0169 27.20 0.8749 0.0190 41.05 0.3697

 

4th Weber 0.0228 5.62 0.9922 0.0262 27.29 0.8741 0.0279 40.84 0.3761

 

5th Log-Normal 0.0293 8.60 0.9886 0.0383 28.49 0.8627 0.0387 41.06 0.3695

 

6th Quadros 0.0173 4.50 0.9950 0.0260 29.81 0.8497 0.0265 45.17 0.2368

 

7th 2P-Weibull 0.0336 7.83 0.9848 0.0431 27.82 0.8692 0.0338 41.20 0.3651

 

8th Beta 0.0227 8.28 0.9830 0.0297 28.73 0.8604 0.0324 42.49 0.3246

 

9th Gamma 0.0501 13.85 0.9530 0.0584 33.27 0.8051 0.0565 46.03 0.2073

  

Legend: D
tab

 = 0.0734, where = 0.05.

From Table 3 it can be seen that the statistics of
fitted functions are much better for the Sturges rule,
followed by Dixon & Kronmal and Velleman rules. This
fact clearly indicates that the class interval had a marked
effect on function fitting. In comparing Figure 1
histograms to those in Figure 2, 3 and 4, it was noted that
the smaller the class interval the more irregular the
frequencies by class.

From Figure 2 it is possible to observe how
function fit describe the observations for the frequency
distribution, according to Sturges rule, for the totality
of data. Considering the frequency distribution of total
height for larger class interval, as obtained by the
Sturges rule, the Johnson SB pdf proved superior to the
others both in fit and accuracy values and in the overlap
of frequency distribution curves fitted to the
observations (Figure 2). The figure illustrates that the
frequency distribution curves conformed well to the
frequencies histogram by the Sturges rule, except for
the Gamma pdf.

3.3 Distribution of transverse area

Table 4 presents statistics of 10 tested probability
density functions for the frequency distribution of
transverse area with class intervals obtained by Sturges,
Dixon & Kronmal and Velleman rules.

As can be noted from Table 4, all probability
functions fitted to the observed frequencies, except for
the Normal pdf which failed to show adherence by the

Kolmogorov–Smirnov test, with a D
calc

 value higher than
the D

tab 
value at all class intervals.
The Weber and Péllico models provided the best

fit, showing good performance for asymmetric
distributions when considering all three rules. Considering
model fit by the Sturges rule alone, it was noted that the
best performing function is Quadros function, followed
by 3P-Weibull and Weber. Still on transverse area, it was
also noted that the smaller the class interval, the worse
the pdf statistics.

Bartoszek et al. (2004), while evaluating diameter
distribution for Mimosa escabrella trees at different ages,
sites and densities, observed that for a positively skewed
distribution in plots of site I at age 3.9 years, the Johnson
SB function proved more efficient and flexible, being ideal
for virtually all site, age and density combinations.

The above finding of Bartoszeck et al. (2004) for
diameter distribution among native Mimosa escabrella
crops was not observed for distribution of transverse area
among araucaria in the fragment studied here. As has been
observed on analysis of Figure 1, the Sturges rule was
used for graphic representation of the data set. Figure 3
illustrates frequency distributions as estimated by various
functions fitted to the observed frequency histograms.

The Quadros, 2- and 3P-Weibull and Weber models
behaved very similarly when plotted on the histogram
originated by the Sturges rule. These models were noted to
have fitted well to the observed frequencies, although their
fit statistics are somewhat different, according to Table 4.
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Figure 3 – Behavior of distribution curves fitted to the frequency histogram using the Sturges rule for variable transverse area.

Figura 3 – Comportamento das curvas de distribuição ajustadas sobre o histograma de frequência observada empregando-se a
regra de Sturges para a variável área transversal.

Figure 2 – Behavior of frequency distribution curves fitted to the frequency histograms using the Sturges rule.

Figura 2 – Comportamento das curvas de distribuição de frequência ajustadas sobre os histogramas de frequência observados
utilizando a regra de Sturges.
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Figure 4 – Fit curves of 10 probability models tested on the frequencies distribution observed for variable individual volume.

Figura 4 – Curvas de ajuste dos 10 modelos probabilísticos testados sobre a distribuição de frequências observadas para a
variável volume individual.

Table 4 – Statistical values of fit and accuracy for functions tested at different class intervals.

Tabela 4 – Valores das estatísticas de ajuste e precisão para as funções testadas nos diferentes intervalos de classes adotados.

Rules and statistics used 

Sturges Dixon & Kronmal Velleman 
General 
ranking 

 

pdfs 

Dcalc Syx% R2
aj Dcalc Syx% R2

aj Dcalc Syx% R2
aj 

1st Weber 0.0137 4.63 0.9950 0.0322 30.94 0.8666 0.0292 38.74 0.6081

 

2nd Péllico 0.0328 8.01 0.9852 0.0207 29.96 0.8749 0.0207 38.10 0.6210

 

3rd 2P-Weibull 0.0153 5.07 0.9941 0.0377 30.90 0.8669 0.0359 38.11 0.6207

 

4th 3P-Weibull 0.0113 3.62 0.9970 0.0263 31.38 0.8628 0.0269 39.08 0.6011

 

5th Quadros 0.0059 3.52 0.9971 0.0351 34.98 0.8295 0.0355 43.20 0.5127

 

6th Gamma 0.0418 12.14 0.9659 0.0402 33.50 0.8436 0.0418 42.03 0.5386

 

7th Log-Normal

 

0.0302 11.29 0.9705 0.0397 34.02 0.8387 0.0417 42.86 0.5203

 

8th  Beta 0.0204 6.01 0.9917 0.0469 34.02 0.8387 0.0470 42.28 0.5332

 

9th SB 0.55 0.0242 6.79 0.9893 0.0440 35.59 0.8234 0.0445 44.14 0.4913

 

10th  Normal 0.0793 12.31 0.9650 0.0965 35.73 0.8221 0.0789 43.19 0.5130

  

Legend: D
tab

 = 0.0734, where  = 0.05.
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Table 5 – Statistics of the tested functions for the three rules used, with overall ranking.

Tabela 5 – Estatísticas das funções testadas para as três regras utilizadas, bem como o respectivo ranking geral.

Rules and statistics used 

Sturges Dixon & Kronmal Velleman 
General 
ranking 

 

pdfs 

Dcalc Syx% R2
aj Dcalc Syx% R2

aj Dcalc Syx% R2
aj 

1st Weber 0.0064 3.41 0.9975 0.0203 24.71 0.9331 0.0240 44.26 0.6724

 

2nd 3P-Weibull 0.0314 5.02 0.9946 0.0330 25.97 0.9261 0.0303 44.79 0.6644

 

3rd 2P-Weibull 0.0313 7.45 0.9882 0.0399 26.33 0.9241 0.0367 44.52 0.6685

 

4th Gamma 0.0255 7.96 0.9865 0.0303 27.06 0.9198 0.0283 45.14 0.6593

 

5th Quadros 0.0092 3.07 0.9980 0.0221 27.46 0.9174 0.0320 49.12 0.5964

 

6th Péllico 0.0353 11.02 0.9742 0.0537 25.19 0.9305 0.0515 44.04 0.6756

 

7th Log-Normal

 

0.0238 9.56 0.9806 0.0367 29.04 0.9076 0.0408 46.99 0.6307

 

8th Beta 0.0306 9.94 0.9790 0.0474 31.03 0.8945 0.0478 49.07 0.5973

 

9th SB 0.55 0.0386 9.91 0.9792 0.0607 32.97 0.8809 0.0619 51.61 0.5546

 

10th Normal 0.1039 17.72 0.9333 0.1041 37.01 0.8500 0.1143 54.91 0.4957

  

Legend: D
tab

 = 0.0734, where  = 0.05.

3.4 Distribution of individual volume

Table 5 presents statistics of adherence test, fit and
accuracy, and ranks each of the tested functions, at
different frequency distributions, for variable individual
volume, according to the three rules used.

According to the Kolmogorov–Smirnov adherence
test, it was noted that, except for the Normal distribution,
all models fitted to the frequencies histogram generated
by the Sturges rule. The Normal pdf failed to show
adherence, with a D

calc
 value of 0.1039 and a mean error of

estimate of N/ha of 17.72% in the distribution generated
by the Sturges rule (Table 5).

The Quadros and Weber models provided the best
fits by the Kolmogorov–Smirnov test using the Sturges rule,
both values being rather low in comparison to the other models
(Table 5). The 3- and 2P-Weibull functions had satisfactory
results, appearing in 2nd and 3rd positions in Table 5.

From Figure 4 it is possible to observe the behavior
of estimated frequency distribution curves for the 10 pdfs
fitted on the histogram, generated by the Sturges rule, for
variable volume.

The Weibull function presented excellent adherence
of diameter frequency data per hectare in tropical forest,
according to the work of Barros et al. (1979). The 2P- Weibull
function presented excellent fit statistics to estimate
diameter distributions for clones of Populus deltoids,
according to the work of Arce (2004). These results from

other studies agree with the findings in this study in that
the Weibull function also provided good results here. 

Figure 4 shows that the Quadros, Weber, and 2- and
3P-Weibull models generated graphs where the frequency
distribution curves estimated for each function behaved
very similarly to the data arrangement obtained by the Sturges
rule, showing great affinity with the histogram.

3.5 Skewness and kurtosis of the distributions

From Figure 2 it can be seen that the histograms
generated by the three rules are close to a symmetrical
distribution with normal kurtosis. Table 6 values indicate that
the frequency distribution of variable total height is very close
to a normal distribution with zero skewness, with a value very
close to 3 for the moment of kurtosis—which defines a normal
distribution—, and a value very close to 0 for skewness—
which defines how symmetrical the distribution is.

Visualizing the histograms clearly shows that the
distributions of transverse area (Figure 3) and individual
volume (Figure 4) are positively skewed. The mean values
of their moment coefficients of skewness are 0.61698 and
0.83854 respectively.

According to Marques (2003), it only makes sense
to calculate the moment coefficient of kurtosis for
symmetrical or approximately symmetrical distributions, as
is the case with the total height. Table 6 presents values of
moment coefficients of skewness and kurtosis for the
frequency distribution of total height.
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Table 6 – Skewness and kurtosis for the distribution of total height, according to the different distribution rules.

Tabela 6 – Assimetria e curtose para a distribuição da variável altura total analisadas nas diferentes regras de distribuições utilizadas.

                      Sturges              Dixon & Kronmal                      Velleman 

Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis Total Height 

0.0368 2.9511 0.0296 2.8099 0.026 2.8053 

 

4  CONCLUSIONS

The Sturges rule provided more accurate fits.
Overall, increasing the number of classes and consequently
decreasing the class interval led to reduced accuracy in
the estimation of the number of trees per hectare, despite
little affecting the Kolmogorov–Smirnov test values;

Considering the Sturges rule alone, the probability
density functions providing the best fit for total height
were the Johnson SB at 0.55 of minimum height and the 3P-
Weibull functions; while for transverse area the Quadros
and 3P-Weibull functions provided the best fit; and for
individual volume the Quadros and Weber functions
provided the best fit, followed by the 3P-Weibull function;

Analysis of the moment coefficients of skewness
showed that the distribution of total height was very close
to the Normal, while for variables transverse area and
volume it was noted that the curves are positively skewed
in all three class intervals.
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