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HIGHLIGHTS

Comparative study of four recent methods developed for detecting trees from Airborne 
Laser Scanning data in the Amazon forest.

Automated tree detection algorithms detected 65% of field-referenced trees from LiDAR 
point cloud.

Current raster-based methods are ineffective to detect trees in lower strata.

The complexity and heterogeneity of forest formations in the Amazon is certainly a challenge 
for current tree detection algorithms. Addressing these challenges is essential to improve 
detection and precision rates of individual tree detection in tropical forest.

ABSTRACT

Light Detection and Ranging (LiDAR) derived individual tree crown attributes can potentially 
serve as a tool for ecology and forest dynamics studies and reduce field inventory costs. In 
this study, four methods of individual tree detection (ITD), Watershed, Silva et al. (2016), 
Dalponte and Coomes (2016), and Coomes et al. (2017), were evaluated in a tropical 
forest under sustainable forest management, situated in the State of Rondônia, Brazil. 
An automated tree matching procedure was developed in order to minimize the error 
when matching individual tree count from LiDAR and field data. In order to compare 
the four methods, results were expressed in recall, precision, and F score. Silva et al. 
(2016) outperformed the other methods, detecting 48% of trees with 46% of precision. 
Omission of trees was the leading source of error, caused primarily by overlapped trees 
in lower vegetation. However, errors of over-segmentation were relevant, caused by 
large and heterogeneous crowns that had multiple detections. Current canopy height 
model-based methods are ineffective to tropical forests, due to its complexity, which 
present a challenge for ITD algorithms. We believe that future studies that use complete 
3D information from the point cloud, and multi-layer approaches should help to improve 
the accuracy of individual tree detection.

v.25 n.3 2019



AUTOMATED INDIVIDUAL TREE DETECTION IN AMAZON TROPICAL FOREST FROM AIRBORNE LASER SCANNING DATA

274

CERNE

MILLIKAN et al.

INTRODUCTION

The Amazon forest is the world’s largest tropical 
forest covering 342 millions of hectares in the Brazilian 
territory, from which 73.6 millions are under sustainable 
use (Brazilian Forest Service, 2017). The description of 
forest structure, quantification of wood and biomass, 
combined with accurate topography, are necessary for 
development and execution of forest management plans 
and for monitoring programs in the Brazilian Amazon 
biome (D’Oliveira et al., 2012). It is expected that in 
the future, the strategy of forestry development in the 
Brazilian Amazon will adopt XXI century innovative 
technologies, which impact less on the environment and 
incorporate the knowledge of local populations (Becker, 
2001). In this context, remote sensing has the potential 
to provide the information required to advance scientific 
understanding of the environment and to facilitate the 
sustainable resource use (Foody, 2003).

Light Detection and Ranging (LiDAR) is an active 
remote sensing technology that provides detailed 
information, in three dimensions, of forest structure 
(Dubayah and Drake, 2000). LiDAR sensors measure the 
distance between objects, determined by the elapsed 
time between emission and return of laser pulses (Lefsky 
et al., 2002). Airborne Laser Scanning (ALS) is a LiDAR 
based method mounted on an aircraft, which position 
and rotation of the sensor is recorded using a differential 
global positioning system (GPS) and inertia measurement 
units (IMU) (Hyyppä et al., 2008). ALS data has shown 
to be an alternative for costly and labor-intensive field 
inventories in Brazilian Amazon for estimating carbon, 
biomass and to monitor structural changes caused by 
selective logging, besides an efficient tool for REDD 
carbon monitoring systems (Asner et al., 2004; D’Oliveira 
et al., 2012; Asner et al., 2014; Andersen et al., 2014).

Among the many uses of LiDAR technology, 
airborne systems have become the dominant remote 
sensing technology for individual tree detection (ITD), 
providing highly accurate information of large areas of 
forests in a considerably short time. However, individual 
level approaches have not been studied as widely as the 
traditional plot-level methodology (Silva et al., 2012; Silva 
et al., 2014), although in the past 10 years the number 
of studies exploring individual tree detection and crown 
delineation, with development of novel high performance 
algorithms have emerged considerably  (Zhen et al., 
2016). Individual tree detection may be used to measure 
height, crown diameter (Popescu et al., 2003), basal area 
and volume (Silva et al., 2016). Isolating individual trees 
and extracting measurements at individual level allows 

for studies of habitat and behavior of wildlife (Zhao et al., 
2012), monitor forest regeneration, reduce fieldwork of 
forest inventory and decrease uncertainties in estimations 
of aboveground biomass (Dalponte et al., 2016).

 Over the past years, algorithms using different 
principles of tree detection have been developed, such as 
raster-based, point cloud and tree shape reconstruction 
(Zhen et al., 2016). Raster-based methods were first 
developed, and have longer been studied on passive 
remote sensing data, such as aerial and satellite imagery, 
and are divided into three groups: crown delineation, 
tree top detection and geographic object-based Image 
analysis (GEOBIA) (Zhen et al., 2016). Chen et al. (2006) 
successfully applied crown delineation using watershed 
segmentation on deciduous forests and Kwak et al. 
(2007) estimated height from individually delineated tree 
crowns in a mixed forest in South Korea. Local maxima 
filtering (Popescu et al., 2003; Falkowski et al., 2008) and 
other derived methods are the most common among 
tree top detection methods, and are still being improved, 
for example, Silva et al. (2016) used local maxima and 
pit-free canopy height models to enhance ITD accuracy 
in longleaf pine (Pinus palustris L.) forest in Southern 
United States. Region Growing algorithm detection was 
considered an efficient approach of ITD by Hyyppä et 
al. (2009), and more recently has been used to delineate 
crowns from local maxima tree top detection (Silva et al., 
2016; Dalponte and Coomes, 2016). Novel Geographic 
Object-Based Image Analysis (GEOBIA) methods have 
been receiving special attention in the improvement of 
raster-based approaches, as an effective algorithm for 
both passive and active remote sensing data sources 
(Zhen et al., 2016), as Jakubowski et al. (2013) found 
more precise delineation of crowns of intermediate 
and suppressed trees, as well as more accurate height 
estimations using object-based segmentation on 
LiDAR-derived CHMs than from 3D LiDAR point cloud 
segmentation, in mixed conifer forest in Sierra Nevada, 
United States.

Studies attempting to segment individual trees in 
tropical forests using high resolution imagery have faced 
many difficulties due to the complex structure and high 
biodiversity found in these ecosystems, often causing 
underestimation of smaller trees (Asner et al., 2002). 
Same challenges were found in attempts using airborne 
hyperspectral data and a meanshift clustering algorithm 
(Féret et al., 2013).  Imputation of biomass and carbon 
density using tree level estimations, in contrast to area-
based, is an emerging viable alternative to provide input 
to fine-scale models of forest biomass. However the 
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successful application of this approach strongly relies on 
the continuous improvement of automatic segmentation 
of individual crowns from high resolution LiDAR (Graves 
et al., 2018). In a tropical forest in Panama, Ferraz et 
al. (2016) used a combination of crown segmentation 
and a 3D clustering algorithm to delineate crowns and 
impute Above Ground Biomass (AGB) at tree level. 
Jucker et al. (2016) demonstrated the use of LiDAR 
individual crown metrics as input to biomass models 
with a global scale dataset, including data from Brazilian 
tropical forests. Similarly, Graves et al. (2018) used image 
segmentation on CHMs to calculate individual crown 
metrics to successfully estimate biomass of isolated trees 
in tropical agricultural landscapes. Coomes et al. (2017), 
in dense humid forests in Malaysia, pointed out that a 
key factor contributing to uncertainty in carbon density 
estimates is the over-segmentation of large trees and 
under-segmentation of sub-canopy trees. As reported by 
Coomes et al. (2017), ITD metrics-derived models have 
as advantage the similarity with existing carbon allometric 
models, the ability to identify and minimize sources of 
uncertainties and bias, and the less dependency on plot 
size on prediction errors. Based on those assumptions, the 
study and development of algorithms capable of correctly 
detect and extract individual crown information may give 
subsidies to possible more precise estimations of biomass 
and carbon from remote sensing data in tropical forests.

Assessing accuracy of ITD methods has been 
shown to be a difficult task because there is no 
standardized procedure for assessing performance of 
different algorithms, unless multiple algorithms are 
tested on a single study area using the same accuracy 
parameters, allied to a lack of field data for validation 
in some studies that aim to compare ITD approaches 
in point cloud data (Kaartinen et al., 2012; Zhen et 
al., 2016). Therefore, based on similar comparison 
frameworks, with the objective of assessing the strengths 
and weaknesses of ITD algorithms, this study aimed 
to test different approaches of automated individual 
tree detection from LiDAR data, exploring its potential 
application for Brazilian Amazon forests.

MATERIAL AND METHODS

Study area and field data collection

The study site is situated in Jamari National Forest, 
state of Rondônia, northern Brazil. The predominant 
vegetation is characterized as Open Ombrophylous 
Forest, with dominance of palm trees, lianas, and high 
diversity of large trees. The understory is composed 
by the same species that occupy the highest strata, but 

in younger stages. The area is under sustainable forest 
management use in a federal concession, and a low impact 
logging has been done in the past (Longo et al., 2016). 
Climate is classified as Am Tropical monsoon in Koppen’s 
climate classification, with annual precipitation of 2403 
mm and mean temperature of 26ºC (Alvares et al. 2013).

Twenty field plots of 2500 m2 (50 x 50 m) were 
established. All trees above 35 cm of diameter at breast 
height (DBH, 1.30 cm) were included in the inventory. 
Trees with DBHs above 10 cm were measured inside 
a 5 x 50 m subplot (Figure 1, D). The four corners of 
each plot were georeferenced using a differential GNSS 
Trimble GeoXH 6000, with estimated post-processed 
accuracy of < 0.5 m. The local X and Y coordinates of 
tree stems were calculated using the two closest dGNSS 
points and a measuring tape to collect the distance.

Lidar data collection and processing

 This study was conducted with data made 
available freely by the Sustainable Landscapes Project 
– EMBRAPA and USDA. The LiDAR flight was acquired 
in September of 2013, and the field inventory was 
conducted in December of the same year. An Optech 
Orion sensor, mounted on an ALS system was used to 
collect a total of 500 hectares.  The characteristics and 
precision of the LiDAR data are presented in Table 1. The 
point cloud processing was performed using LAStools 
software (Isenburg, 2019) and LidR package (Roussel and 
Auty, 2018) in R environment (R Core Team, 2017).

TABLE 1 LiDAR flight details.
Attributes Values

Average laser pulse density 30.94 pulses/m2

Average flight altitude 853 m
Field of view 11.1°

Scanning frequency 67.5 Hz
Datum Sirgas 2000 / UTM zone 20 S

In the initial processing, a summary report of the 
point cloud was generated using LAStools’ lasinfo function. 
Then, all XYZ duplicated points were removed, storing 
only unique points, using lasduplicate. Subsequently, the 
returns were classified as ground and vegetation points, 
using lasground and lasclassify respectively. The lasnoise 
function was then used to label as noise all returns that in 
a 12m x 12m x 12m grid cell, had up to 5 nearby points. 
Thereafter, the Z values of points classified as ground 
were subtracted to generate a normalized point cloud, 
using lasheight function, and then lasclip tool was used 
to subset the data into separate clouds corresponding to 
the 20 plots established in the field. In R environment, 
the normalized point clouds were used to create a 
1-meter resolution Canopy Height Model (CHM), using 
lidR’s grid_canopy function.
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Individual Tree Detection algorithms

A total of four methods were tested on the 
dataset (Table 2), selected based on their performance 
in past studies, easy reproduction and availability with 
free open source software. The methods tested here 
adopt different functioning principles to perform tree 
detection: Entirely raster-based and raster associated 
with point cloud analysis, as seen in Table 2.

FIGURE 1  Location of the study area. (A) Brazil and State of Rondônia; (B) Rondônia and Jamari National Forest; (C) LiDAR flight coverage; 
(D) Field plots and sub-plots; (E) Location of field plots within the flight coverage..

TABLE 2 Summary of tested ITD methods.
ID Method Method Group
1 Watershed Raster
2 Silva et al. (2016) Raster
3 Dalponte and Coomes (2016) Raster + Point Cloud
4 Coomes et al. (2017) Raster + Point Cloud

Method 1: Watershed.

Originally reported by Vincent and Soille (1991), 
watershed segmentation simulates an immersion in 
water in a digital gray scale model using queue of pixels. 
As the water fills, the pixels coming from different 
minimum points merge forming “dams” that correspond 
to the watersheds. We implemented this method in lidR 
package, which returns maximum points, corresponding 
to treetops, and delineates individual crowns. To achieve 

best performance, a 0.5 resolution CHM was used 
specifically in this method, based on best performance in 
a prior empirical test. This algorithm, as well as Method 
3, was applied using the lastrees function in lidR package 
for R environment.

Method 2: Silva et al. (2016).

This method uses a local maxima 3 x 3 meter 
window to find treetops on a smoothed CHM. Smoothing 
is applied to remove noise and to generate a pit-free 
canopy model, in order to improve over-segmentation 
errors. A 3 x 3 meter window size was empirically chosen 
after testing different sizes. Subsequently, an initial tree 
crown area was delimited by a variable crown buffer, 
which was calculated for each tree multiplying the LiDAR 
height by a crown radius/total height factor, which the 
default value of 0.6 was chosen. The last step consisted 
of isolating polygons that corresponded to individual 
trees through a centroidal voronoi tessellation approach. 
This workflow was performed using rLiDAR package 
for R (Silva et al., 2017).  Initially the FindTreesCHM 
function was used to find tree tops, and subsequently the 
ForestCAS function was used to grow crown limits.
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Method 3: Dalponte and Coomes (2016).

This three step-algorithm (1) uses a Gaussian low-
pass filter to smooth the CHM in order to eliminate sharp 
changes on the surface; (2) applies a 3 x 3 meter window 
to locate local maxima in the CHM. (3) A region growing 
is applied originating from the local maximum point to 
search for nearby lower pixels that supposedly belong to 
the same crown, and finally the algorithm creates a 2-D 
convex-hull polygon using the point cloud information. 

Method 4: Coomes et al. (2017).

This procedure is different from Method 3 by 
using a variable size window to search for local maxima. 
Here, the window size varies in relation to the height, i.e., 
a higher local maximum pixel is considered a larger tree, 
and therefore a larger window size is applied. A dataset 
of over 5000 trees that had crown diameter and height 
measured from field plots in Ombrophylous and Seasonal 
forests throughout the legal Amazon in Brazil, provided 
by the Sustainable Landscapes Project, was used to 
model crown diameter and height relationship. Similarly 
to Coomes et al. (2017), we used a quantile regression, 
using quantreg package in R, to fit a linear model with 
tau = 0.9, or 90% of data bellow the regression line. 
The authors specifically adapted this method to minimize 
errors of omission of small trees and over-segmentation 
of large trees in tropical forest. The implementation of 
this algorithm was done using itcLiDARallo function in 
itcSegment package in R (Dalponte, 2018).

Automated matching of reference and candidate trees

The accuracy assessment was performed by 
an automated tree matching algorithm, that links 
predicted trees to reference trees in the field plots. This 
fully automated procedure was based on a previous 
ITD comparison study by Kaartinen et al. (2012). In a 
benchmark study, Eysn et al. (2015) applied a similar 
automated methodology to validate ITD methods, 
and because of its easy and simple reproduction, this 
procedure was preferred over manual assessment with 
trained interpreters.

The matching process consists of measuring the 
Euclidean distance of reference trees to nearby test trees 
within a search radius. In case of more than one tree inside 
the search radius threshold, the candidate tree with the least 
ΔD (distance between reference and test tree) is assigned 
to the test tree and considered a perfect detection, or true 
positive (TP) and the other tree is marked as commission 
(FP) and over-detection. The reference trees with no 
matches are considered false negative (FN) or omission.  
The search radius was fixed in 6 meters. This parameter 

value was chosen based on CHM crown diameters 
manually measured from 32 reference trees selected from 
the study site. On average, crown diameter was 12.36 m 
and thus a round value of 6 m was used. In conifer forests, 
Kaartinen et al (2012) and Eysn et al. (2015) used a 5-meter 
radius in automated tree matching.

The matching algorithm returns recall (r), 
precision (p) and F-score (Sokolova et al., 2006; Li et al., 
2012), according to equations 1, 2 and 3. Over-detection 
rate (O%) is the number of reference trees with more 
than one test trees assigned by the total number of TP. 
This workflow was also implemented in R.

[1]

[2]

[3]

RESULTS

Table 3 to 5 summarize the results found in this 
study. The total number of trees counted in the twenty 
field plots was 259 (Nobs). Method 4 had the smallest 
error in the number of trees detected, underestimating 
trees by 93 individuals (Table 3). At plot level, all methods 
were highly biased. Method 2 showed less biased results, 
underestimating an average of 4.42% or 0.9 trees per plot 
(Table 4). Method 3 highly overestimated the number of 
trees overall and at plot level. Method 1 and 4 had very 
similar performance (Table 5), and are the two less effective 
algorithms, mainly caused by the low recall (r).

TABLE 3 Number of individual trees detected (Np), absolute 
and relative error by method.

Method Np Error Error (%)
1 Watershed 225 -68 -30,22
2 Silva 372 96 25,81
3 Dalponte and Coomes 584 291 49,83
4 Coomes 200 -93 -46,50

Detecting 58% of all trees correctly, Method 2 
achieved the best overall results in terms of F - score, 
0.51. Method 4 was the most accurate, achieving the 
lowest number of trees falsely detected (FP), 50% of 
precision, and the lowest over-detection rate (O%). 
Method 3, detecting 65% of trees, obtained the highest 
recall, or percentage of correct detections, as well as the 
best results of omission error (FN) (Table 5).

DISCUSSION

The successful detection of individual trees in 
the Amazon forest may subsidize alternative methods 
of estimating biomass, and allow for new ecology and 
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habitat investigations. In our study, the automated 
process using Method 3 algorithm was able to detect and 
match 65% of trees referenced in the field inventory, 
however, considering the tradeoff between TP and 
detection errors (FP, FN), Method 2 was considered the 
most efficient. Omission was the main source of error in 
Methods 1 and 4, and for Methods 2 and 3, commission 
error was more significant.

The workflow proposed by Silva et al. (2016), 
Method 2, achieved the best F-score parameters in this 
study, outperforming other ITD methods. However, 
results found in the previously reported work in California 
conifer Sierra Nevada forests were significantly better, 
with an average of 82% of trees correctly detected, 
and a balanced number of missed and falsely detected 
trees, with tendency to omission. Here, false positive 
trees were the main source of error, certainly caused 

TABLE 4 Error in number of trees detected compared 
to reference trees by field plot. Positive values 
mean overestimation error, and negative 
values mean underestimation.

Plot Nobs Method
 1 2 3 4

1 22 -11 0 14 -13
2 21 -8 -2 9 -11
3 22 -9 -7 4 -8
4 13 -1 5 16 -5
5 22 -7 -1 11 -10
6 16 -2 5 11 -3
7 18 -6 6 18 -7
8 20 -8 3 11 -5
9 22 -11 -2 5 -12

10 21 -10 -3 9 -9
11 28 -18 -8 -1 -20
12 24 -20 -6 6 -17
13 22 -8 -2 7 -12
14 28 -11 -8 6 -13
15 23 -13 -7 9 -13
16 19 -9 -1 18 -10
17 20 -6 -3 9 -10
18 13 -5 1 13 -3
19 19 -3 5 22 -6
20 14 -5 7 20 -6

Mean -8.55 -0.90 10.85 -9.65
Bias (%) -42.01 -4.42 53.32 -47.42

FIGURE 2  Location of the study area. (A) Brazil and State of Rondônia; (B) Rondônia and Jamari National Forest; (C) LiDAR flight coverage; 
(D) Field plots and sub-plots; (E) Location of field plots within the flight coverage..

TABLE 5 Accuracy assessment.
Method TP FP FN r p F score O%

1 Watershed 106 119 181 0.37 0.47 0.41 6
2 Silva 171 201 122 0.58 0.46 0.51 34.5
3 Dalponte 190 394 103 0.65 0.33 0.43 44.2
4 Coomes 115 71 114 0.35 0.50 0.41 5
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by the inflexibility of the search window for large trees, 
often assigning multiple trees where one crown covers a 
large area. The same effect was observed in Method 3, 
that also uses a fixed window size, but with significantly 
more incorrect detections. Testing larger windows 
sizes, we found that FP errors improved, however, TP 
considerably decreased. Silva et al. (2016) observed 94% 
of precision, and an F - score of 0.90, contrasting with 
46% and 0.51 in this study, respectively. Although overall 
this algorithm was considered the best, high FP errors 
might suggest that Method 2 might not be optimal for 
attribute estimation in this type of forest. 

The approach proposed by Dalponte and Coomes 
(2016), Method 3, showed the highest recall, although 
the poorest accuracy statistics was found. As reported by 
Dalponte and Coomes (2016), this method was efficient to 
detect larger trees, while it tended to omit trees in smaller 
height and crown width in uneven-aged forest dominated 
by Picea abies (L.) Karst. As discussed above, the fixed 
search window tends to over-detect large trees, which in 
Method 3 resulted in 44.2% of over-detection rate (O%). 
To improve these deficiencies and adapt the algorithm to 
map carbon in Asian tropical forests, Coomes et al. (2017) 
proposed a variable size window,  (Method 4). Comparing 
the two workflows, Method 4 had significant improvements 
of omission errors, which is the main deficiency of Method 
3. Method 4 also showed a low O%, meaning that correctly 
detected trees have not been split into multiple crowns. 
This is an important parameter when the final objective of 
ITD is the imputation and development of methodologies 
to extract individual tree measurements, such as basal area 
and biomass, as crown dimension is emerging as a viable 
variable for predicting biomass (Goodman et al., 2014). 
Promising results have been reported of ITD-derived 
crown metrics, such as crown area and diameter, as input to 
biomass allometric models for tropical forest (Jucker et al. 
2016; Coomes et al., 2017). Furthermore, Method 4 could 
possibly have achieved better efficiency if local tree crown 
measurements were available for establishing a relationship 
between height and search window size. Coomes et al. 
(2017) points out that their algorithm detected slightly less 
than 10% in the 10 - 30 cm size classes in tropical forests 
in Malaysia, which is related to the use of maximum points 
search on rasterized canopy models, although 97% of 
dominant trees were correctly detected. 

Good precision in relation to other methods was 
found in Method 1 (Watershed), showing a low O%, 
that is certainly related to its ability to delineate large and 
heterogeneous shaped crowns, using a different strategy 
from the main premise of tree-top searching used by the 
other methods tested. In this study, however, watershed 

was the algorithm that most omitted reference trees. 
Ayrey et al. (2017), found that watershed segmentation 
significantly outperformed local maxima in dense uneven-
aged conifer forest, with detection rates of 49% to 58%. 
The authors suggest a more robust approach, applying 
the algorithm to multiple stacked layers to increase 
detection of understory and overtopped trees, which 
resulted in an 11% improvement in the number of trees 
correctly detected. Reitberger et al. (2009) proposes a 
watershed-based method that is capable of detecting 
understory trees, and a 12% improvement compared to 
the conventional watershed method.

Raster CHM-based methods, such as watershed 
and local maxima have been reported as ineffective to 
detect lower vegetation (Chen et al., 2006; Popescu et 
al., 2007; Shendryk et al., 2016). Kwak et al. (2007) found 
that pine trees were more easily delineated than Quercus 
sp. in mixed forests in South Korea, using watershed 
algorithm. In this study, fixed window local maxima often 
assigned multiple trees to one reference tree, when 
the search window covered only parts of large crowns. 
Another characteristic of tropical forests that may have 
affected the performance of ITD is that the highest points 
of the crowns are likely to be more distant from where 
the main stem is located, comparing to pine trees. These 
particularities can be pointed out as challenges for ITD. 
Furthermore, algorithm parameters such as window size, 
CHM resolution, and specific algorithm parameters were 
observed to have a significant impact on detection rates. 
Therefore these important parameters should be adapted 
for each specific forest type and point cloud features, in 
order to achieve best results of tree detection.

To the present date, yet few studies aimed to 
compare available automated ITD algorithms on tropical 
forests using LiDAR data, although many comparison 
studies with conifer forests have been conducted. 
Current methods use premises that work very well 
for temperate forests but are not efficient for tropical 
forest. However, much effort is being made to develop 
and improve ITD for in the tropics, like the studies done 
by Graves et al. (2017) and Coomes et al. (2017). Ferraz 
et al. (2016) applied an individual tree level approach 
using a 3D Adaptive Mean shift algorithm, a directly 
on point cloud computing procedure that decomposes 
clusters of points into clusters that correspond to 
individual tree crowns, and successfully predicted AGB 
in a tropical forest in Panama. Hu et al. (2017) used a 
similar approach to a conifer and broadleaf mixed forest 
in China, reporting 86% of trees detected overall, 48% 
of suppressed trees and 77% of intermediate trees, 
which shows the potential of this methodology for 
Brazilian forests. Methods of ITD that use complete 
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3D information are emerging as a viable alternative for 
tree detection in complex forests. The central advantage 
of 3D methods is that the processing of raw point 
clouds uses all the horizontal and vertical information 
(Hamraz et al., 2017), although these methods can be 
very computationally intensive. Methods that take into 
account the shape of the crown may be a possible 
solution for tropical forest. For example Li et al. (2012) 
developed an algorithm for conifer forests that uses the 
conical shape and spacing between trees as premise. The 
paper done by Wan-Mohd-Jaafar et al. (2017) in tropical 
forests in Malaysia and by Figueiredo et al. (2014), in a 
tropical forest in the state of Acre–Brazil, have proven 
the viability of using LiDAR to measure individual crown 
metrics to model biomass and volume, with the use of 
manual procedures to perform the analysis, and Jucker 
et al. (2014) points out the potential of using individual 
crown metrics and height for AGB estimation, especially 
in large trees. Therefore, once an automated process is 
established, large areas could be inventoried using less 
time and resources. Applying a specific ITD algorithm 
more efficient for each forest stratum could be a strategy 
to tackle the challenge of heterogeneity in tropical 
forest, e.g. Method 4 is efficient for large trees, while 
a 3D method can be used to detect overlapped trees. 
Furthermore, since detection of large trees has been 
achieving good performance in past studies, detection of 
lower strata trees is the next step in future investigations.

CONCLUSION

 Automated tree detection was able to detect 
65% of field-referenced trees from LiDAR point cloud in 
the Amazon tropical forest. The most effective algorithm 
was the method proposed by Silva et al. (2016), although 
omission and commission errors were significantly high 
in all of the procedures tested. Current CHM-based 
methods are ineffective to detect trees in lower strata. 
The complexity and heterogeneity of forest formations 
in the Amazon is certainly a challenge for current tree 
detection algorithms. Robust methods that take into 
account the shape of the crowns and the complex 
structure of tropical forests are a possible solution to 
improve detection and precision rates.
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